src/HOL/Transcendental.thy
author paulson <lp15@cam.ac.uk>
Tue, 28 Apr 2015 16:23:05 +0100
changeset 60149 9b0825a00b1a
parent 60141 833adf7db7d8
child 60150 bd773c47ad0b
permissions -rw-r--r--
Fixed a non-terminating proof (almost certainly caused by no change of mind)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 58834
diff changeset
     7
section{*Power Series, Transcendental Functions etc.*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
    10
imports Binomial Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    13
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    14
  by (metis of_nat_fact of_real_of_nat_eq)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    15
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    16
lemma real_fact_nat [simp]: "real (fact n :: nat) = fact n"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    17
  by (simp add: real_of_nat_def)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    18
59731
paulson <lp15@cam.ac.uk>
parents: 59730 59688
diff changeset
    19
lemma real_fact_int [simp]: "real (fact n :: int) = fact n"
paulson <lp15@cam.ac.uk>
parents: 59730 59688
diff changeset
    20
  by (metis of_int_of_nat_eq of_nat_fact real_of_int_def)
paulson <lp15@cam.ac.uk>
parents: 59730 59688
diff changeset
    21
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    22
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    23
  fixes f :: "nat \<Rightarrow> 'a::banach"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    24
  assumes f: "(\<lambda>n. root n (norm (f n))) ----> x" -- "could be weakened to lim sup"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    25
  assumes "x < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    26
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    27
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    28
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    29
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    30
  from `x < 1` obtain z where z: "x < z" "z < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    31
    by (metis dense)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    32
  from f `x < z`
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    33
  have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    34
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    35
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    36
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    37
  proof eventually_elim
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    38
    fix n assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    39
    from power_strict_mono[OF less, of n] n
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    40
    show "norm (f n) \<le> z ^ n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    41
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    42
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    43
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    44
    unfolding eventually_sequentially
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    45
    using z `0 \<le> x` by (auto intro!: summable_comparison_test[OF _  summable_geometric])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    46
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    47
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
    48
subsection {* Properties of Power Series *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    49
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    50
lemma lemma_realpow_diff:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
    51
  fixes y :: "'a::monoid_mult"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    52
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    53
proof -
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    54
  assume "p \<le> n"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    55
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
    56
  thus ?thesis by (simp add: power_commutes)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    57
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    58
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    59
lemma lemma_realpow_diff_sumr2:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    60
  fixes y :: "'a::{comm_ring,monoid_mult}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    61
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    62
    "x ^ (Suc n) - y ^ (Suc n) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    63
      (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    64
proof (induct n)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    65
  case (Suc n)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    66
  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    67
    by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    68
  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    69
    by (simp add: algebra_simps)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    70
  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    71
    by (simp only: Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    72
  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
    73
    by (simp only: mult.left_commute)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    74
  also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    75
    by (simp add: field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    76
  finally show ?case .
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    77
qed simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    78
55832
8dd16f8dfe99 repaired document;
wenzelm
parents: 55734
diff changeset
    79
corollary power_diff_sumr2: --{* @{text COMPLEX_POLYFUN} in HOL Light *}
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    80
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    81
  shows   "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)"
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    82
using lemma_realpow_diff_sumr2[of x "n - 1" y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    83
by (cases "n = 0") (simp_all add: field_simps)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    84
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    85
lemma lemma_realpow_rev_sumr:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    86
   "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    87
    (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
57129
7edb7550663e introduce more powerful reindexing rules for big operators
hoelzl
parents: 57025
diff changeset
    88
  by (subst nat_diff_setsum_reindex[symmetric]) simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    89
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    90
lemma power_diff_1_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    91
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    92
  shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
    93
using lemma_realpow_diff_sumr2 [of x _ 1]
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    94
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    95
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    96
lemma one_diff_power_eq':
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    97
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    98
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
    99
using lemma_realpow_diff_sumr2 [of 1 _ x]
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   100
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   101
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   102
lemma one_diff_power_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   103
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   104
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   105
by (metis one_diff_power_eq' [of n x] nat_diff_setsum_reindex)
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   106
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   107
lemma powser_zero:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   108
  fixes f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   109
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   110
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   111
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   112
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   113
  thus ?thesis unfolding One_nat_def by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   114
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   115
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   116
lemma powser_sums_zero:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   117
  fixes a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   118
  shows "(\<lambda>n. a n * 0^n) sums a 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   119
    using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   120
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   121
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   122
text{*Power series has a circle or radius of convergence: if it sums for @{term
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   123
  x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   124
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   125
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   126
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   127
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   128
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   129
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   130
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   131
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   132
  from 1 have "(\<lambda>n. f n * x^n) ----> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   133
    by (rule summable_LIMSEQ_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   134
  hence "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   135
    by (rule convergentI)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   136
  hence "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   137
    by (rule convergent_Cauchy)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   138
  hence "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   139
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   140
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   141
    by (simp add: Bseq_def, safe)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   142
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   143
                   K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   144
  proof (intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   145
    fix n::nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   146
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   147
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   148
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   149
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   150
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   151
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   152
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   153
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   154
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   155
      by (simp only: mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   156
    finally show "norm (norm (f n * z ^ n)) \<le>
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   157
                  K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   158
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   159
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   160
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   161
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   162
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   163
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   164
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   165
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   166
      by (rule summable_geometric)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   167
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   168
      by (rule summable_mult)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   169
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   170
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   171
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   172
                    power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   173
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   174
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   175
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   176
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   177
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   178
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   179
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   180
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   181
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   182
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   183
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   184
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   185
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   186
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   187
  assumes "norm x < 1"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   188
    shows "(\<lambda>n. of_nat n * x ^ n) ----> 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   189
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   190
  have "norm x / (1 - norm x) \<ge> 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   191
    using assms
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   192
    by (auto simp: divide_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   193
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   194
    using ex_le_of_int
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   195
    by (meson ex_less_of_int)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   196
  ultimately have N0: "N>0" 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   197
    by auto
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   198
  then have *: "real (N + 1) * norm x / real N < 1"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   199
    using N assms
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   200
    by (auto simp: field_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   201
  { fix n::nat
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   202
    assume "N \<le> int n"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   203
    then have "real N * real_of_nat (Suc n) \<le> real_of_nat n * real (1 + N)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   204
      by (simp add: algebra_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   205
    then have "(real N * real_of_nat (Suc n)) * (norm x * norm (x ^ n))
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   206
               \<le> (real_of_nat n * real (1 + N)) * (norm x * norm (x ^ n))"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   207
      using N0 mult_mono by fastforce
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   208
    then have "real N * (norm x * (real_of_nat (Suc n) * norm (x ^ n)))
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   209
         \<le> real_of_nat n * (norm x * (real (1 + N) * norm (x ^ n)))"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   210
      by (simp add: algebra_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   211
  } note ** = this
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   212
  show ?thesis using *
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   213
    apply (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   214
    apply (simp add: N0 norm_mult nat_le_iff field_simps power_Suc ** 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   215
                del: of_nat_Suc real_of_int_add)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   216
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   217
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   218
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   219
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   220
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   221
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) ---> 0) sequentially"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   222
using powser_times_n_limit_0 [of "inverse x"]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   223
by (simp add: norm_divide divide_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   224
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   225
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   226
  fixes f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   227
  shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   228
    "(\<Sum>i<2 * n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   229
     (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   230
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   231
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   232
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   233
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   234
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   235
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   236
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   237
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   238
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   239
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   240
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   241
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   242
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   243
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   244
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   245
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   246
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   247
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   248
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   249
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   250
  assume "0 < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
  from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   252
  obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g {..<n} - x) < r)" by blast
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   253
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   254
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   255
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   256
    fix m
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   257
    assume "m \<ge> 2 * no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   258
    hence "m div 2 \<ge> no" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   259
    have sum_eq: "?SUM (2 * (m div 2)) = setsum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   260
      using sum_split_even_odd by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   261
    hence "(norm (?SUM (2 * (m div 2)) - x) < r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   262
      using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   263
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   264
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   265
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   266
      case True
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   267
      then show ?thesis by (auto simp add: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   268
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   269
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   270
      then have eq: "Suc (2 * (m div 2)) = m" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   271
      hence "even (2 * (m div 2))" using `odd m` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   272
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   273
      also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   274
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   275
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   276
    ultimately have "(norm (?SUM m - x) < r)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   277
  }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   278
  thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   279
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   280
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   281
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   282
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   284
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   285
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   286
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   287
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   288
    fix B T E
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   289
    have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   290
      by (cases B) auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  } note if_sum = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   292
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
    using sums_if'[OF `g sums x`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   294
  {
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 38642
diff changeset
   295
    have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   296
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   297
    have "?s sums y" using sums_if'[OF `f sums y`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   298
    from this[unfolded sums_def, THEN LIMSEQ_Suc]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   299
    have "(\<lambda> n. if even n then f (n div 2) else 0) sums y"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
   300
      by (simp add: lessThan_Suc_eq_insert_0 image_iff setsum.reindex if_eq sums_def cong del: if_cong)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   301
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   302
  from sums_add[OF g_sums this] show ?thesis unfolding if_sum .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   303
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   304
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   305
subsection {* Alternating series test / Leibniz formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   306
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   307
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   308
  fixes a :: "nat \<Rightarrow> real"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   309
  assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   310
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) ----> l) \<and>
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   311
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) ----> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   312
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   313
proof (rule nested_sequence_unique)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   314
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   315
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   316
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   317
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   318
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   319
    show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   320
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   321
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   322
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   323
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   324
    show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   325
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   328
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   329
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   330
    show "?f n \<le> ?g n" using fg_diff a_pos
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   331
      unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   332
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   333
  show "(\<lambda>n. ?f n - ?g n) ----> 0" unfolding fg_diff
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   334
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   335
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
    assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
    with `a ----> 0`[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   338
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   339
    hence "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   340
    thus "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   341
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   342
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   343
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   344
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   345
  fixes a :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   346
  assumes a_zero: "a ----> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   347
    and a_pos: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   348
    and a_monotone: "\<And> n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   349
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   350
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   351
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   352
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   353
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   354
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   355
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   356
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   357
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   358
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   359
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   360
    where below_l: "\<forall> n. ?f n \<le> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   361
      and "?f ----> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   362
      and above_l: "\<forall> n. l \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   363
      and "?g ----> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   364
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   365
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   366
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
  have "?Sa ----> l"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   368
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   369
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   370
    assume "0 < r"
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   371
    with `?f ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   372
    obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   373
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   374
    from `0 < r` `?g ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   375
    obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   376
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   377
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   378
      fix n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   379
      assume "n \<ge> (max (2 * f_no) (2 * g_no))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   380
      hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   381
      have "norm (?Sa n - l) < r"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   382
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   383
        case True
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   384
        then have n_eq: "2 * (n div 2) = n" by (simp add: even_two_times_div_two)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   385
        with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   386
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   387
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   388
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   389
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   390
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   391
        hence "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   392
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   393
          by (simp add: even_two_times_div_two)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   394
        hence range_eq: "n - 1 + 1 = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   395
          using odd_pos[OF False] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   397
        from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   398
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   399
        from g[OF this] show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   400
          unfolding n_eq range_eq .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   401
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   402
    }
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   403
    thus "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   404
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   405
  hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   406
    unfolding sums_def .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   407
  thus "summable ?S" using summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   408
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   409
  have "l = suminf ?S" using sums_unique[OF sums_l] .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   410
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   411
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   412
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   413
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   414
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   415
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   416
  show "?g ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   417
    using `?g ----> l` `l = suminf ?S` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   418
  show "?f ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   419
    using `?f ----> l` `l = suminf ?S` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   420
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   421
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   422
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   423
  fixes a :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   424
  assumes a_zero: "a ----> 0" and "monoseq a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   425
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   426
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   427
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   429
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   430
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) ----> (\<Sum>i. (- 1)^i*a i)" (is "?f")
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   431
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) ----> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   432
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   433
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   434
  proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   435
    case True
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   436
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   437
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   438
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   439
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   440
      have "a (Suc n) \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
        using ord[where n="Suc n" and m=n] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   442
    } note mono = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
    note leibniz = summable_Leibniz'[OF `a ----> 0` ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   444
    from leibniz[OF mono]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   445
    show ?thesis using `0 \<le> a 0` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   446
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   447
    let ?a = "\<lambda> n. - a n"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   448
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   449
    with monoseq_le[OF `monoseq a` `a ----> 0`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   450
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   451
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   452
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   453
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   454
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   455
      have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   456
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   457
    } note monotone = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   458
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   459
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   460
        OF tendsto_minus[OF `a ----> 0`, unfolded minus_zero] monotone]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   461
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   462
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   463
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   464
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   465
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   466
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   467
    hence ?summable unfolding summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   468
    moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   469
    have "\<And>a b :: real. \<bar>- a - - b\<bar> = \<bar>a - b\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   470
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   471
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   472
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   473
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   474
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   475
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   476
    have ?pos using `0 \<le> ?a 0` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   477
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   478
      using leibniz(2,4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   479
      unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   480
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   481
    moreover have ?f and ?g
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   482
      using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   483
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   484
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   485
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   486
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   487
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   488
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   489
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   490
subsection {* Term-by-Term Differentiability of Power Series *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   491
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   492
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   493
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   494
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   495
text{*Lemma about distributing negation over it*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   496
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   497
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   498
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   499
lemma sums_Suc_imp:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   500
  "(f::nat \<Rightarrow> 'a::real_normed_vector) 0 = 0 \<Longrightarrow> (\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   501
  using sums_Suc_iff[of f] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   502
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   503
lemma diffs_equiv:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   504
  fixes x :: "'a::{real_normed_vector, ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   505
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   506
      (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   507
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   508
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   509
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   510
lemma lemma_termdiff1:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   511
  fixes z :: "'a :: {monoid_mult,comm_ring}" shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   512
  "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   513
   (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   514
  by (auto simp add: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   515
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   516
lemma sumr_diff_mult_const2:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   517
  "setsum f {..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i<n. f i - r)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   518
  by (simp add: setsum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   519
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   520
lemma lemma_termdiff2:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   521
  fixes h :: "'a :: {field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   522
  assumes h: "h \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   523
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   524
    "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   525
     h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p.
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   526
          (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   527
  apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   528
  apply (simp add: right_diff_distrib diff_divide_distrib h)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   529
  apply (simp add: mult.assoc [symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   530
  apply (cases "n", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   531
  apply (simp add: lemma_realpow_diff_sumr2 h
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   532
                   right_diff_distrib [symmetric] mult.assoc
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   533
              del: power_Suc setsum_lessThan_Suc of_nat_Suc)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   534
  apply (subst lemma_realpow_rev_sumr)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   535
  apply (subst sumr_diff_mult_const2)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   536
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
  apply (simp only: lemma_termdiff1 setsum_right_distrib)
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
   538
  apply (rule setsum.cong [OF refl])
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   539
  apply (simp add: less_iff_Suc_add)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   540
  apply (clarify)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   541
  apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 ac_simps
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   542
              del: setsum_lessThan_Suc power_Suc)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   543
  apply (subst mult.assoc [symmetric], subst power_add [symmetric])
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   544
  apply (simp add: ac_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   545
  done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   546
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   547
lemma real_setsum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   548
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   549
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   550
    and K: "0 \<le> K"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   551
  shows "setsum f {..<n-k} \<le> of_nat n * K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   552
  apply (rule order_trans [OF setsum_mono])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   553
  apply (rule f, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   554
  apply (simp add: mult_right_mono K)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   555
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   556
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   557
lemma lemma_termdiff3:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   558
  fixes h z :: "'a::{real_normed_field}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   559
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   560
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   561
    and 3: "norm (z + h) \<le> K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   562
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   563
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   564
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   565
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   566
        norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p.
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   567
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   568
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   569
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   570
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   571
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   572
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   573
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   574
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   575
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   576
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   577
      done
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   578
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   579
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   580
      apply (intro
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   581
         order_trans [OF norm_setsum]
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   582
         real_setsum_nat_ivl_bounded2
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   583
         mult_nonneg_nonneg
47489
04e7d09ade7a tuned some proofs;
huffman
parents: 47108
diff changeset
   584
         of_nat_0_le_iff
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   585
         zero_le_power K)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   586
      apply (rule le_Kn, simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   587
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   588
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   589
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   590
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   591
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   592
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   593
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   594
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   595
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   596
  assumes k: "0 < (k::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   597
    and le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   598
  shows "f -- 0 --> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   599
proof (rule tendsto_norm_zero_cancel)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   600
  show "(\<lambda>h. norm (f h)) -- 0 --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   601
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   602
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   603
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   604
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   605
      using k by (auto simp add: eventually_at dist_norm le)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   606
    show "(\<lambda>h. 0) -- (0::'a) --> (0::real)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   607
      by (rule tendsto_const)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   608
    have "(\<lambda>h. K * norm h) -- (0::'a) --> K * norm (0::'a)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   609
      by (intro tendsto_intros)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   610
    then show "(\<lambda>h. K * norm h) -- (0::'a) --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   611
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   612
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   613
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   614
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   615
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   616
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   617
  assumes k: "0 < (k::real)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   618
  assumes f: "summable f"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   619
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   620
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   621
proof (rule lemma_termdiff4 [OF k])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   622
  fix h::'a
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   623
  assume "h \<noteq> 0" and "norm h < k"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   624
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   625
    by (simp add: le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   626
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   627
    by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   628
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   629
    by (rule summable_mult2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   630
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   631
    by (rule summable_comparison_test)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   632
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   633
    by (rule summable_norm)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   634
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   635
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   636
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   637
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   638
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   639
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   640
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   641
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   642
text{* FIXME: Long proofs*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   643
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   644
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   645
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   646
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   647
    and 2: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   648
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   649
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   650
proof -
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   651
  from dense [OF 2]
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   652
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   653
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   654
    by (rule order_le_less_trans)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   655
  hence r_neq_0: "r \<noteq> 0" by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   656
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   657
  proof (rule lemma_termdiff5)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   658
    show "0 < r - norm x" using r1 by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   659
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   660
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   661
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   662
      by (rule powser_insidea)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   663
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   664
      using r
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   665
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   666
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   667
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   668
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   669
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   670
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   671
      apply (simp add: diffs_def)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   672
      apply (case_tac n, simp_all add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   673
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   674
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   675
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   676
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   677
    also have
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   678
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   679
           r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   680
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   681
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   682
      apply (case_tac "n", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   683
      apply (rename_tac nat)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   684
      apply (case_tac "nat", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   685
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   686
      done
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   687
    finally
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   688
    show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   689
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   690
    fix h::'a and n::nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   691
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   692
    assume "norm h < r - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   693
    hence "norm x + norm h < r" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   694
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   695
      by (rule order_le_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   696
    show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   697
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   698
      apply (simp only: norm_mult mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   699
      apply (rule mult_left_mono [OF _ norm_ge_zero])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   700
      apply (simp add: mult.assoc [symmetric])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   701
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   702
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   703
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   704
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   705
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   706
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   707
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   708
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   709
      and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   710
      and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   711
      and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   712
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   713
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   714
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   715
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   716
            - suminf (\<lambda>n. diffs c n * x^n)) -- 0 --> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   717
  proof (rule LIM_equal2)
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   718
    show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   719
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   720
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   721
    assume "norm (h - 0) < norm K - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   722
    hence "norm x + norm h < norm K" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   723
    hence 5: "norm (x + h) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   724
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   725
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   726
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   727
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   728
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   729
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   730
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   731
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   732
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   733
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   734
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   735
  next
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   736
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   737
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   738
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   739
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   740
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   741
subsection {* The Derivative of a Power Series Has the Same Radius of Convergence *}
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   742
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   743
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   744
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   745
  assumes K: "norm x < K"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   746
      and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   747
    shows "summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   748
proof (cases "x = 0")
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   749
  case True then show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   750
  using powser_sums_zero sums_summable by auto
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   751
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   752
  case False
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   753
  then have "K>0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   754
    using K less_trans zero_less_norm_iff by blast
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   755
  then obtain r::real where r: "norm x < norm r" "norm r < K" "r>0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   756
    using K False
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   757
    by (auto simp: abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   758
  have "(\<lambda>n. of_nat n * (x / of_real r) ^ n) ----> 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   759
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   760
  then obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   761
    using r unfolding LIMSEQ_iff
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   762
    apply (drule_tac x=1 in spec)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   763
    apply (auto simp: norm_divide norm_mult norm_power field_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   764
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   765
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   766
    apply (rule summable_comparison_test' [of "\<lambda>n. norm(c n * (of_real r) ^ n)" N])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   767
    apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   768
    using N r norm_of_real [of "r+K", where 'a = 'a]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   769
    apply (auto simp add: norm_divide norm_mult norm_power )
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   770
    using less_eq_real_def by fastforce
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   771
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   772
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   773
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   774
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   775
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   776
    by (simp add: mult.assoc) (auto simp: power_Suc mult_ac)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   777
  then show ?thesis 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   778
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   779
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   780
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   781
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   782
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   783
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   784
    shows "summable (\<lambda>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   785
  apply (rule termdiff_converges [where K = "1 + norm x"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   786
  using assms
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   787
  apply (auto simp: )
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   788
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   789
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   790
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   791
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   792
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   793
      and K: "norm x < norm K"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   794
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   795
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   796
  have [simp]: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   797
    using K
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   798
    apply (auto simp: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   799
    apply (rule le_less_trans [of _ "of_real (norm K) + of_real (norm x)"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   800
    apply (auto simp: mult_2_right norm_triangle_mono)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   801
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   802
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   803
    apply (rule summable_norm_cancel [OF powser_insidea [OF sm]])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   804
    using K
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   805
    apply (auto simp: algebra_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   806
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   807
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   808
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   809
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   810
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   811
  ultimately show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   812
    apply (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   813
    apply (auto simp: algebra_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   814
    using K
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   815
    apply (simp add: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   816
    apply (rule less_le_trans [of _ "of_real (norm K) + of_real (norm x)"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   817
    apply (simp_all add: of_real_add [symmetric] del: of_real_add)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   818
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   819
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   820
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   821
lemma powser_limit_0: 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   822
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   823
  assumes s: "0 < s"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   824
      and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   825
    shows "(f ---> a 0) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   826
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   827
  have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   828
    apply (rule sums_summable [where l = "f (of_real s / 2)", OF sm])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   829
    using s
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   830
    apply (auto simp: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   831
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   832
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   833
    apply (rule termdiffs_strong)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   834
    using s
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   835
    apply (auto simp: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   836
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   837
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   838
    by (blast intro: DERIV_continuous)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   839
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) ---> a 0) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   840
    by (simp add: continuous_within powser_zero)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   841
  then show ?thesis 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   842
    apply (rule Lim_transform)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   843
    apply (auto simp add: LIM_eq)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   844
    apply (rule_tac x="s" in exI)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   845
    using s 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   846
    apply (auto simp: sm [THEN sums_unique])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   847
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   848
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   849
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   850
lemma powser_limit_0_strong: 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   851
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   852
  assumes s: "0 < s"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   853
      and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
    shows "(f ---> a 0) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   855
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   856
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) ---> a 0) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
    apply (rule powser_limit_0 [OF s])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   858
    apply (case_tac "x=0")
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   859
    apply (auto simp add: powser_sums_zero sm)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   860
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   861
  show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   862
    apply (subst LIM_equal [where g = "(\<lambda>x. if x = 0 then a 0 else f x)"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   863
    apply (simp_all add: *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   864
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   865
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   866
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   867
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   868
subsection {* Derivability of power series *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   869
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   870
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   871
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   872
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   873
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   874
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   875
    and "summable L"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   876
    and L_def: "\<And>n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   877
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   878
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   879
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   880
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   881
  assume "0 < r" hence "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   882
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   883
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   884
    using suminf_exist_split[OF `0 < r/3` `summable L`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   885
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   886
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   887
    using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   888
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   889
  let ?N = "Suc (max N_L N_f')"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   890
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   891
    L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   892
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   893
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   894
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   895
  let ?r = "r / (3 * real ?N)"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
   896
  from `0 < r` have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   897
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   898
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   899
  def S' \<equiv> "Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   900
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   901
  have "0 < S'" unfolding S'_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   902
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   903
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   904
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   905
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   906
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   907
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   908
        using image_iff[THEN iffD1] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   909
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   910
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   911
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   912
      have "0 < ?s n" by (rule someI2[where a=s]) (auto simp add: s_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   913
      thus "0 < x" unfolding `x = ?s n` .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   914
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   915
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   916
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   917
  def S \<equiv> "min (min (x0 - a) (b - x0)) S'"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   918
  hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   919
    and "S \<le> S'" using x0_in_I and `0 < S'`
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   920
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   921
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   922
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   923
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   924
    assume "x \<noteq> 0" and "\<bar> x \<bar> < S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   925
    hence x_in_I: "x0 + x \<in> { a <..< b }"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   926
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   927
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   928
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   929
    note div_smbl = summable_divide[OF diff_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   930
    note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   931
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   932
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   933
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   934
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   935
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   936
    { fix n
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   937
      have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   938
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   939
        unfolding abs_divide .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   940
      hence "\<bar> (\<bar>?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   941
        using `x \<noteq> 0` by auto }
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   942
    note 1 = this and 2 = summable_rabs_comparison_test[OF _ ign[OF `summable L`]]
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   943
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   944
      by (metis (lifting) abs_idempotent order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF `summable L`]]])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   945
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   946
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   947
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   948
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n \<bar>)" ..
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   949
    also have "\<dots> < (\<Sum>n<?N. ?r)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   950
    proof (rule setsum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   951
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   952
      assume "n \<in> {..< ?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   953
      have "\<bar>x\<bar> < S" using `\<bar>x\<bar> < S` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   954
      also have "S \<le> S'" using `S \<le> S'` .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   955
      also have "S' \<le> ?s n" unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   956
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   957
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   958
          using `n \<in> {..< ?N}` by auto
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   959
        thus "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   960
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   961
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   962
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   963
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   964
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   965
      with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n` show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   966
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   967
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   968
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   969
      by (rule setsum_constant)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   970
    also have "\<dots> = real ?N * ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   971
      unfolding real_eq_of_nat by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   972
    also have "\<dots> = r/3" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   973
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   974
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   975
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   976
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   977
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   978
      unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   979
      using suminf_divide[OF diff_smbl, symmetric] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   980
    also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   981
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   982
      unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]]
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   983
      apply (subst (5) add.commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   984
      by (rule abs_triangle_ineq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   985
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   986
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   987
    also have "\<dots> < r /3 + r/3 + r/3"
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   988
      using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3`
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   989
      by (rule add_strict_mono [OF add_less_le_mono])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   990
    finally have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   991
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   992
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   993
  thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   994
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   995
    using `0 < S` unfolding real_norm_def diff_0_right by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   996
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   997
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   998
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   999
  fixes f :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1000
  assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1001
    and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1002
  shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1003
  (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1004
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1005
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1006
    fix R'
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1007
    assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1008
    hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1009
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1010
    have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1011
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1012
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1013
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1014
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1015
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1016
        hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1017
          using `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1018
        have "norm R' < norm ((R' + R) / 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1019
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1020
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1021
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1022
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1023
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1024
        fix n x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1025
        assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1026
        show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1027
        proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1028
          have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1029
            (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1030
            unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1031
            by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1032
          also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1033
          proof (rule mult_left_mono)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1034
            have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1035
              by (rule setsum_abs)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1036
            also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1037
            proof (rule setsum_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1038
              fix p
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1039
              assume "p \<in> {..<Suc n}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1040
              hence "p \<le> n" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1041
              {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1042
                fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1043
                fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1044
                assume "x \<in> {-R'<..<R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1045
                hence "\<bar>x\<bar> \<le> R'"  by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1046
                hence "\<bar>x^n\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1047
                  unfolding power_abs by (rule power_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1048
              }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1049
              from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'`
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1050
              have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1051
                unfolding abs_mult by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1052
              thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1053
                unfolding power_add[symmetric] using `p \<le> n` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1054
            qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1055
            also have "\<dots> = real (Suc n) * R' ^ n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1056
              unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1057
            finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1058
              unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1059
            show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1060
              unfolding abs_mult[symmetric] by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1061
          qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1062
          also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1063
            unfolding abs_mult mult.assoc[symmetric] by algebra
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1064
          finally show ?thesis .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1065
        qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1066
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1067
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1068
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1069
        show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1070
          by (auto intro!: derivative_eq_intros simp del: power_Suc simp: real_of_nat_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1071
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1072
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1073
        fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1074
        assume "x \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1075
        hence "R' \<in> {-R <..< R}" and "norm x < norm R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1076
          using assms `R' < R` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1077
        have "summable (\<lambda> n. f n * x^n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1078
        proof (rule summable_comparison_test, intro exI allI impI)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1079
          fix n
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1080
          have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1081
            by (rule mult_left_mono) auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1082
          show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1083
            unfolding real_norm_def abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1084
            by (rule mult_right_mono) (auto simp add: le[unfolded mult_1_right])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1085
        qed (rule powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1086
        from this[THEN summable_mult2[where c=x], unfolded mult.assoc, unfolded mult.commute]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1087
        show "summable (?f x)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1088
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1089
      show "summable (?f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1090
        using converges[OF `x0 \<in> {-R <..< R}`] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1091
      show "x0 \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1092
        using `x0 \<in> {-R' <..< R'}` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1093
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1094
  } note for_subinterval = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1095
  let ?R = "(R + \<bar>x0\<bar>) / 2"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1096
  have "\<bar>x0\<bar> < ?R" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1097
  hence "- ?R < x0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1098
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1099
    case True
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1100
    hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1101
    thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1102
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1103
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1104
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1105
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1106
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1107
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1108
  hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1109
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1110
  from for_subinterval[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1111
  show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1112
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1113
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1114
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1115
subsection {* Exponential Function *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1116
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1117
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1118
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1119
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1120
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1121
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1122
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1123
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1124
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1125
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1126
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1127
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1128
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1129
  obtain N :: nat where N: "norm x < real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1130
    using reals_Archimedean3 [OF r0] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1131
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1132
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1133
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1134
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1135
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1136
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1137
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1138
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1139
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1140
      using norm_ge_zero by (rule mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1141
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1142
      by (rule order_trans [OF norm_mult_ineq])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1143
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1144
      by (simp add: pos_divide_le_eq ac_simps)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1145
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1146
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1147
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1148
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1149
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1150
lemma summable_norm_exp:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1151
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1152
  shows "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1153
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1154
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1155
    by (rule summable_exp_generic)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1156
  fix n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1157
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1158
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1159
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1160
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1161
lemma summable_exp: 
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1162
  fixes x :: "'a::{real_normed_field,banach}"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1163
  shows "summable (\<lambda>n. inverse (fact n) * x^n)"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1164
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1165
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1166
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1167
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1168
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1169
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1170
lemma exp_fdiffs:
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1171
  fixes XXX :: "'a::{real_normed_field,banach}"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1172
  shows "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1173
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1174
           del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1175
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1176
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1177
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1178
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1179
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1180
  unfolding exp_def scaleR_conv_of_real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1181
  apply (rule DERIV_cong)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1182
  apply (rule termdiffs [where K="of_real (1 + norm x)"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1183
  apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1184
  apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1185
  apply (simp del: of_real_add)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1186
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1187
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1188
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1189
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1190
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1191
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1192
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1193
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1194
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1195
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1196
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1197
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1198
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1199
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1200
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1201
lemma isCont_exp:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1202
  fixes x::"'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1203
  shows "isCont exp x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1204
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1205
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1206
lemma isCont_exp' [simp]:
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1207
  fixes f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1208
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1209
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1210
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1211
lemma tendsto_exp [tendsto_intros]:
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1212
  fixes f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1213
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) ---> exp a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1214
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1215
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1216
lemma continuous_exp [continuous_intros]:
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1217
  fixes f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1218
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1219
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1220
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1221
lemma continuous_on_exp [continuous_intros]:
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1222
  fixes f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1223
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1224
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1225
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1226
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1227
subsubsection {* Properties of the Exponential Function *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1228
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1229
lemma exp_zero [simp]: "exp 0 = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1230
  unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1231
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1232
lemma exp_series_add_commuting:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1233
  fixes x y :: "'a::{real_normed_algebra_1, banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1234
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1235
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1236
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1237
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1238
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1239
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1240
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1241
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1242
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1243
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1244
    unfolding S_def by (simp del: mult_Suc)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1245
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1246
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1247
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1248
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1249
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1250
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1251
    by (simp only: times_S)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1252
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n-i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1253
    by (simp only: Suc)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1254
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n-i))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1255
                + y * (\<Sum>i\<le>n. S x i * S y (n-i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1256
    by (rule distrib_right)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1257
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n-i))
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1258
                + (\<Sum>i\<le>n. S x i * y * S y (n-i))"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1259
    by (simp add: setsum_right_distrib ac_simps S_comm)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1260
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n-i))
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1261
                + (\<Sum>i\<le>n. S x i * (y * S y (n-i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1262
    by (simp add: ac_simps)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1263
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1264
                + (\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1265
    by (simp add: times_S Suc_diff_le)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1266
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1267
             (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1268
    by (subst setsum_atMost_Suc_shift) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1269
  also have "(\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1270
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1271
    by simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1272
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1273
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1274
             (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
  1275
    by (simp only: setsum.distrib [symmetric] scaleR_left_distrib [symmetric]
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1276
                   real_of_nat_add [symmetric]) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1277
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n-i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
  1278
    by (simp only: scaleR_right.setsum)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1279
  finally show
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1280
    "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1281
    by (simp del: setsum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1282
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1283
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1284
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1285
  unfolding exp_def
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1286
  by (simp only: Cauchy_product summable_norm_exp exp_series_add_commuting)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1287
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1288
lemma exp_add:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1289
  fixes x y::"'a::{real_normed_field,banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1290
  shows "exp (x + y) = exp x * exp y"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1291
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1292
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1293
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1294
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1295
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1296
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1297
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1298
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1299
  unfolding exp_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1300
  apply (subst suminf_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1301
  apply (rule summable_exp_generic)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1302
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1303
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1304
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1305
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1306
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1307
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1308
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1309
proof
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1310
  have "exp x * exp (- x) = 1" by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1311
  also assume "exp x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1312
  finally show "False" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1313
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1314
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1315
lemma exp_minus_inverse:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1316
  shows "exp x * exp (- x) = 1"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1317
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1318
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1319
lemma exp_minus:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1320
  fixes x :: "'a::{real_normed_field, banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1321
  shows "exp (- x) = inverse (exp x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1322
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1323
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1324
lemma exp_diff:
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1325
  fixes x :: "'a::{real_normed_field, banach}"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1326
  shows "exp (x - y) = exp x / exp y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1327
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1328
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1329
lemma exp_of_nat_mult:
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1330
  fixes x :: "'a::{real_normed_field,banach}"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1331
  shows "exp(of_nat n * x) = exp(x) ^ n"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1332
    by (induct n) (auto simp add: distrib_left exp_add mult.commute)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1333
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1334
lemma exp_setsum: "finite I \<Longrightarrow> exp(setsum f I) = setprod (\<lambda>x. exp(f x)) I"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1335
  by (induction I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1336
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1337
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1338
subsubsection {* Properties of the Exponential Function on Reals *}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1339
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1340
text {* Comparisons of @{term "exp x"} with zero. *}
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1341
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1342
text{*Proof: because every exponential can be seen as a square.*}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1343
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1344
proof -
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1345
  have "0 \<le> exp (x/2) * exp (x/2)" by simp
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1346
  thus ?thesis by (simp add: exp_add [symmetric])
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1347
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1348
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1349
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1350
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1351
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1352
lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1353
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1354
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1355
lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1356
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1357
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1358
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1359
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1360
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1361
(*FIXME: superseded by exp_of_nat_mult*)
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1362
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1363
  by (induct n) (auto simp add: real_of_nat_Suc distrib_left exp_add mult.commute)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1364
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1365
text {* Strict monotonicity of exponential. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1366
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1367
lemma exp_ge_add_one_self_aux:
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1368
  assumes "0 \<le> (x::real)" shows "1+x \<le> exp(x)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1369
using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1370
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1371
  assume "0 < x"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1372
  have "1+x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1373
    by (auto simp add: numeral_2_eq_2)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1374
  also have "... \<le> (\<Sum>n. inverse (fact n) * x^n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1375
    apply (rule setsum_le_suminf [OF summable_exp])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1376
    using `0 < x`
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1377
    apply (auto  simp add:  zero_le_mult_iff)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1378
    done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1379
  finally show "1+x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1380
    by (simp add: exp_def)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1381
next
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1382
  assume "0 = x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1383
  then show "1 + x \<le> exp x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1384
    by auto
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1385
qed
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1386
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1387
lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1388
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1389
  assume x: "0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1390
  hence "1 < 1 + x" by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1391
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1392
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1393
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1394
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1395
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1396
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1397
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1398
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1399
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1400
proof -
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1401
  from `x < y` have "0 < y - x" by simp
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1402
  hence "1 < exp (y - x)" by (rule exp_gt_one)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1403
  hence "1 < exp y / exp x" by (simp only: exp_diff)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1404
  thus "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1405
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1406
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1407
lemma exp_less_cancel: "exp (x::real) < exp y \<Longrightarrow> x < y"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1408
  unfolding linorder_not_le [symmetric]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1409
  by (auto simp add: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1410
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1411
lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1412
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1413
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1414
lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1415
  by (auto simp add: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1416
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1417
lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1418
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1419
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1420
text {* Comparisons of @{term "exp x"} with one. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1421
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1422
lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1423
  using exp_less_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1424
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1425
lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1426
  using exp_less_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1427
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1428
lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1429
  using exp_le_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1430
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1431
lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1432
  using exp_le_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1433
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1434
lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1435
  using exp_inj_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1436
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1437
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1438
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1439
  assume "1 \<le> y"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1440
  hence "0 \<le> y - 1" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1441
  hence "1 + (y - 1) \<le> exp (y - 1)" by (rule exp_ge_add_one_self_aux)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1442
  thus "y \<le> exp (y - 1)" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1443
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1444
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1445
lemma exp_total: "0 < (y::real) \<Longrightarrow> \<exists>x. exp x = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1446
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1447
  assume "1 \<le> y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1448
  thus "\<exists>x. exp x = y" by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1449
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1450
  assume "0 < y" and "y \<le> 1"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1451
  hence "1 \<le> inverse y" by (simp add: one_le_inverse_iff)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1452
  then obtain x where "exp x = inverse y" by (fast dest: lemma_exp_total)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1453
  hence "exp (- x) = y" by (simp add: exp_minus)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1454
  thus "\<exists>x. exp x = y" ..
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1455
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1456
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1457
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1458
subsection {* Natural Logarithm *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1459
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1460
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1461
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1462
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1463
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1464
definition powr :: "['a,'a] => 'a::ln"     (infixr "powr" 80)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1465
  -- {*exponentation via ln and exp*}
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1466
  where  [code del]: "x powr a \<equiv> if x = 0 then 0 else exp(a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1467
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1468
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1469
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1470
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1471
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1472
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1473
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1474
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1475
definition ln_real :: "real \<Rightarrow> real"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1476
  where "ln_real x = (THE u. exp u = x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1477
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1478
instance 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1479
by intro_classes (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1480
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1481
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1482
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1483
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1484
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1485
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1486
lemma ln_exp [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1487
  fixes x::real shows "ln (exp x) = x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1488
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1489
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1490
lemma exp_ln [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1491
  fixes x::real shows "0 < x \<Longrightarrow> exp (ln x) = x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1492
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1493
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1494
lemma exp_ln_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1495
  fixes x::real shows "exp (ln x) = x \<longleftrightarrow> 0 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1496
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1497
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1498
lemma ln_unique: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1499
  fixes x::real shows "exp y = x \<Longrightarrow> ln x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1500
  by (erule subst, rule ln_exp)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1501
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1502
lemma ln_mult:  
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1503
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1504
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1505
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1506
lemma ln_setprod: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1507
  fixes f:: "'a => real" 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1508
  shows
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  1509
    "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> f i > 0\<rbrakk> \<Longrightarrow> ln(setprod f I) = setsum (\<lambda>x. ln(f x)) I"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  1510
  by (induction I rule: finite_induct) (auto simp: ln_mult setprod_pos)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  1511
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1512
lemma ln_inverse: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1513
  fixes x::real shows "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1514
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1515
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1516
lemma ln_div: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1517
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1518
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1519
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1520
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1521
  by (rule ln_unique) (simp add: exp_real_of_nat_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1522
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1523
lemma ln_less_cancel_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1524
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1525
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1526
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1527
lemma ln_le_cancel_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1528
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1529
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1530
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1531
lemma ln_inj_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1532
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1533
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1534
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1535
lemma ln_add_one_self_le_self [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1536
  fixes x::real shows "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1537
  apply (rule exp_le_cancel_iff [THEN iffD1])
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1538
  apply (simp add: exp_ge_add_one_self_aux)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1539
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1540
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1541
lemma ln_less_self [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1542
  fixes x::real shows "0 < x \<Longrightarrow> ln x < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1543
  by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1544
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1545
lemma ln_ge_zero [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1546
  fixes x::real shows "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1547
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1548
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1549
lemma ln_ge_zero_imp_ge_one: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1550
  fixes x::real shows "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1551
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1552
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1553
lemma ln_ge_zero_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1554
  fixes x::real shows "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1555
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1556
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1557
lemma ln_less_zero_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1558
  fixes x::real shows "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1559
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1560
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1561
lemma ln_gt_zero: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1562
  fixes x::real shows "1 < x \<Longrightarrow> 0 < ln x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1563
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1564
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1565
lemma ln_gt_zero_imp_gt_one: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1566
  fixes x::real shows "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1567
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1568
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1569
lemma ln_gt_zero_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1570
  fixes x::real shows "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1571
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1572
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1573
lemma ln_eq_zero_iff [simp]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1574
  fixes x::real shows "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1575
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1576
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1577
lemma ln_less_zero: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1578
  fixes x::real shows "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1579
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1580
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1581
lemma ln_neg_is_const: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1582
  fixes x::real shows "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1583
  by (auto simp add: ln_real_def intro!: arg_cong[where f=The])
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1584
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1585
lemma isCont_ln: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1586
  fixes x::real assumes "x \<noteq> 0" shows "isCont ln x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1587
proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1588
  assume "0 < x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1589
  moreover then have "isCont ln (exp (ln x))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1590
    by (intro isCont_inv_fun[where d="\<bar>x\<bar>" and f=exp]) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1591
  ultimately show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1592
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1593
next
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1594
  assume "\<not> 0 < x" with `x \<noteq> 0` show "isCont ln x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1595
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1596
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1597
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  1598
                intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1599
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1600
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1601
lemma tendsto_ln [tendsto_intros]: 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1602
  fixes a::real shows
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1603
  "(f ---> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) ---> ln a) F"
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1604
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1605
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1606
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1607
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1608
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1609
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1610
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1611
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1612
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1613
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1614
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1615
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1616
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1617
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1618
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1619
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1620
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1621
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1622
lemma DERIV_ln:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1623
  fixes x::real shows "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1624
  apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1625
  apply (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1626
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1627
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1628
lemma DERIV_ln_divide:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1629
  fixes x::real shows "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1630
  by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1631
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1632
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1633
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1634
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1635
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1636
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1637
  (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1638
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1639
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1640
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1641
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1642
  proof (rule DERIV_isconst3[where x=x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1643
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1644
    assume "x \<in> {0 <..< 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1645
    hence "0 < x" and "x < 2" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1646
    have "norm (1 - x) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1647
      using `0 < x` and `x < 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1648
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1649
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1650
      using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1651
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1652
      unfolding power_mult_distrib[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1653
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1654
    finally have "DERIV ln x :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1655
      using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1656
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1657
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1658
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1659
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1660
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1661
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1662
        using `0 < x` `x < 2` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1663
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1664
      assume "x \<in> {- 1<..<1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1665
      hence "norm (-x) < 1" by auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1666
      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1667
        unfolding One_nat_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1668
        by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1669
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1670
    hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1671
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1672
    hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1673
      unfolding DERIV_def repos .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1674
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1675
      by (rule DERIV_diff)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1676
    thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1677
  qed (auto simp add: assms)
44289
d81d09cdab9c optimize some proofs
huffman
parents: 44282
diff changeset
  1678
  thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1679
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1680
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1681
lemma exp_first_two_terms:
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1682
  fixes x :: "'a::{real_normed_field,banach}"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1683
  shows "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1684
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1685
  have "exp x = suminf (\<lambda>n. inverse(fact n) * (x^n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1686
    by (simp add: exp_def scaleR_conv_of_real nonzero_of_real_inverse)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1687
  also from summable_exp have "... = (\<Sum> n. inverse(fact(n+2)) * (x ^ (n+2))) +
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1688
    (\<Sum> n::nat<2. inverse(fact n) * (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1689
    by (rule suminf_split_initial_segment)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1690
  also have "?a = 1 + x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1691
    by (simp add: numeral_2_eq_2)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1692
  finally show ?thesis
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1693
    by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1694
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1695
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1696
lemma exp_bound: "0 <= (x::real) \<Longrightarrow> x <= 1 \<Longrightarrow> exp x <= 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1697
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1698
  assume a: "0 <= x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1699
  assume b: "x <= 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1700
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1701
    fix n :: nat
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1702
    have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1703
      by (induct n) simp_all
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1704
    hence "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1705
      by (simp only: real_of_nat_le_iff)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1706
    hence "((2::real) * 2 ^ n) \<le> fact (n + 2)"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1707
      unfolding of_nat_fact real_of_nat_def
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1708
      by (simp add: of_nat_mult of_nat_power)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1709
    hence "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1710
      by (rule le_imp_inverse_le) simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1711
    hence "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1712
      by (simp add: power_inverse)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1713
    hence "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1714
      by (rule mult_mono)
56536
aefb4a8da31f made mult_nonneg_nonneg a simp rule
nipkow
parents: 56483
diff changeset
  1715
        (rule mult_mono, simp_all add: power_le_one a b)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1716
    hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1717
      unfolding power_add by (simp add: ac_simps del: fact.simps) }
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1718
  note aux1 = this
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1719
  have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1720
    by (intro sums_mult geometric_sums, simp)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1721
  hence aux2: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1722
    by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1723
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <= x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1724
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1725
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <=
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1726
        suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1727
      apply (rule suminf_le)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1728
      apply (rule allI, rule aux1)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1729
      apply (rule summable_exp [THEN summable_ignore_initial_segment])
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1730
      by (rule sums_summable, rule aux2)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1731
    also have "... = x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1732
      by (rule sums_unique [THEN sym], rule aux2)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1733
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1734
  qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1735
  thus ?thesis unfolding exp_first_two_terms by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1736
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1737
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1738
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1739
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1740
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1741
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1742
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1743
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1744
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1745
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1746
lemma exp_bound_half: "norm(z) \<le> 1/2 \<Longrightarrow> norm(exp z) \<le> 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1747
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1748
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1749
lemma exp_bound_lemma:
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1750
  assumes "norm(z) \<le> 1/2" shows "norm(exp z) \<le> 1 + 2 * norm(z)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1751
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1752
  have n: "(norm z)\<^sup>2 \<le> norm z * 1"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1753
    unfolding power2_eq_square
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1754
    apply (rule mult_left_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1755
    using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1756
    apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1757
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1758
  show ?thesis
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1759
    apply (rule order_trans [OF norm_exp])
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1760
    apply (rule order_trans [OF exp_bound])
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1761
    using assms n
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1762
    apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1763
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1764
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1765
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1766
lemma real_exp_bound_lemma:
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1767
  fixes x :: real
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1768
  shows "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp(x) \<le> 1 + 2 * x"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1769
using exp_bound_lemma [of x]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1770
by simp
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1771
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1772
lemma ln_one_minus_pos_upper_bound:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1773
  fixes x::real shows "0 <= x \<Longrightarrow> x < 1 \<Longrightarrow> ln (1 - x) <= - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1774
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1775
  assume a: "0 <= (x::real)" and b: "x < 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1776
  have "(1 - x) * (1 + x + x\<^sup>2) = (1 - x^3)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1777
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1778
  also have "... <= 1"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1779
    by (auto simp add: a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1780
  finally have "(1 - x) * (1 + x + x\<^sup>2) <= 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1781
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1782
    by (simp add: add_pos_nonneg a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1783
  ultimately have "1 - x <= 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1784
    by (elim mult_imp_le_div_pos)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1785
  also have "... <= 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1786
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1787
              real_sqrt_pow2_iff real_sqrt_power)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1788
  also have "... = exp (-x)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1789
    by (auto simp add: exp_minus divide_inverse)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1790
  finally have "1 - x <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1791
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1792
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1793
  finally have "exp (ln (1 - x)) <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1794
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1795
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1796
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1797
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1798
  apply (case_tac "0 <= x")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1799
  apply (erule exp_ge_add_one_self_aux)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1800
  apply (case_tac "x <= -1")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1801
  apply (subgoal_tac "1 + x <= 0")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1802
  apply (erule order_trans)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1803
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1804
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1805
  apply (subgoal_tac "1 + x = exp(ln (1 + x))")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1806
  apply (erule ssubst)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1807
  apply (subst exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1808
  apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1809
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1810
  apply (rule ln_one_minus_pos_upper_bound)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1811
  apply auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1812
done
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1813
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1814
lemma ln_one_plus_pos_lower_bound:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1815
  fixes x::real shows "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1816
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1817
  assume a: "0 <= x" and b: "x <= 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1818
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1819
    by (rule exp_diff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1820
  also have "... <= (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1821
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1822
  also have "... <= (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  1823
    by (simp add: a divide_left_mono add_pos_nonneg)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1824
  also from a have "... <= 1 + x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1825
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1826
  finally have "exp (x - x\<^sup>2) <= 1 + x" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1827
  also have "... = exp (ln (1 + x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1828
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1829
    from a have "0 < 1 + x" by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1830
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1831
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1832
  qed
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1833
  finally have "exp (x - x\<^sup>2) <= exp (ln (1 + x))" .
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1834
  thus ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1835
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1836
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1837
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1838
lemma ln_one_minus_pos_lower_bound:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1839
  fixes x::real 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1840
  shows "0 <= x \<Longrightarrow> x <= (1 / 2) \<Longrightarrow> - x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1841
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1842
  assume a: "0 <= x" and b: "x <= (1 / 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1843
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1844
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1845
    apply (subst ln_inverse [symmetric])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1846
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1847
    apply (rule arg_cong [where f=ln])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1848
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1849
    done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1850
  also have "- (x / (1 - x)) <= ..."
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1851
  proof -
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1852
    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1853
      using a c by (intro ln_add_one_self_le_self) auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1854
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1855
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1856
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1857
  also have "- (x / (1 - x)) = -x / (1 - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1858
    by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1859
  finally have d: "- x / (1 - x) <= ln (1 - x)" .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1860
  have "0 < 1 - x" using a b by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1861
  hence e: "-x - 2 * x\<^sup>2 <= - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1862
    using mult_right_le_one_le[of "x*x" "2*x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1863
    by (simp add: field_simps power2_eq_square)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1864
  from e d show "- x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1865
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1866
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1867
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1868
lemma ln_add_one_self_le_self2:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1869
  fixes x::real shows "-1 < x \<Longrightarrow> ln(1 + x) <= x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1870
  apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1871
  apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1872
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1873
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1874
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1875
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1876
  fixes x::real shows "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> abs(ln (1 + x) - x) <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1877
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1878
  assume x: "0 <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1879
  assume x1: "x <= 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1880
  from x have "ln (1 + x) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1881
    by (rule ln_add_one_self_le_self)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1882
  then have "ln (1 + x) - x <= 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1883
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1884
  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1885
    by (rule abs_of_nonpos)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1886
  also have "... = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1887
    by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1888
  also have "... <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1889
  proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1890
    from x x1 have "x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1891
      by (intro ln_one_plus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1892
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1893
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1894
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1895
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1896
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1897
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1898
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1899
  fixes x::real shows "-(1 / 2) <= x \<Longrightarrow> x <= 0 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1900
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1901
  assume a: "-(1 / 2) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1902
  assume b: "x <= 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1903
  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1904
    apply (subst abs_of_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1905
    apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1906
    apply (rule ln_add_one_self_le_self2)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1907
    using a apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1908
    done
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1909
  also have "... <= 2 * x\<^sup>2"
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1910
    apply (subgoal_tac "- (-x) - 2 * (-x)\<^sup>2 <= ln (1 - (-x))")
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1911
    apply (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1912
    apply (rule ln_one_minus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1913
    using a b apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1914
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1915
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1916
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1917
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1918
lemma abs_ln_one_plus_x_minus_x_bound:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1919
  fixes x::real shows "abs x <= 1 / 2 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1920
  apply (case_tac "0 <= x")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1921
  apply (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1922
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1923
  apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1924
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1925
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1926
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1927
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1928
lemma ln_x_over_x_mono:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1929
  fixes x::real shows "exp 1 <= x \<Longrightarrow> x <= y \<Longrightarrow> (ln y / y) <= (ln x / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1930
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1931
  assume x: "exp 1 <= x" "x <= y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1932
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1933
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1934
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1935
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1936
    by (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1937
  also have "... = x * ln(y / x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1938
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1939
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1940
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1941
  also have "... = 1 + (y - x) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1942
    using x a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1943
  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1944
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1945
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1946
  also have "... = y - x" using a by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1947
  also have "... = (y - x) * ln (exp 1)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1948
  also have "... <= (y - x) * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1949
    apply (rule mult_left_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1950
    apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1951
    apply fact
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1952
    apply (rule a)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1953
    apply (rule x)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1954
    using x apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1955
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1956
  also have "... = y * ln x - x * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1957
    by (rule left_diff_distrib)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1958
  finally have "x * ln y <= y * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1959
    by arith
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1960
  then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1961
  also have "... = y * (ln x / x)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1962
  finally show ?thesis using b by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1963
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1964
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1965
lemma ln_le_minus_one:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1966
  fixes x::real shows "0 < x \<Longrightarrow> ln x \<le> x - 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1967
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1968
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1969
corollary ln_diff_le: 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1970
  fixes x::real 
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1971
  shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1972
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1973
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1974
lemma ln_eq_minus_one:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1975
  fixes x::real 
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1976
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1977
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1978
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1979
  let ?l = "\<lambda>y. ln y - y + 1"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1980
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1981
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1982
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1983
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1984
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1985
    assume "x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1986
    from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1987
    from `x < a` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1988
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1989
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1990
      assume "x \<le> y" "y \<le> a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1991
      with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1992
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1993
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1994
        by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1995
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1996
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1997
      using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1998
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1999
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2000
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2001
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2002
    from `a < x` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2003
    proof (rule DERIV_neg_imp_decreasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2004
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2005
      assume "a \<le> y" "y \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2006
      with `1 < a` have "1 / y - 1 < 0" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2007
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2008
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2009
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2010
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2011
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2012
      using ln_le_minus_one `1 < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2013
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2014
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2015
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2016
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2017
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2018
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2019
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2020
lemma exp_at_bot: "(exp ---> (0::real)) at_bot"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2021
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2022
proof (rule ZfunI, simp add: eventually_at_bot_dense)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2023
  fix r :: real assume "0 < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2024
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2025
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2026
    assume "x < ln r"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2027
    then have "exp x < exp (ln r)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2028
      by simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2029
    with `0 < r` have "exp x < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2030
      by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2031
  }
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2032
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2033
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2034
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2035
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2036
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g="ln"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2037
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2038
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2039
lemma lim_exp_minus_1:
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2040
  fixes x :: "'a::{real_normed_field,banach}"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2041
  shows "((\<lambda>z::'a. (exp(z) - 1) / z) ---> 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2042
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2043
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2044
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2045
  then show ?thesis
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2046
    by (simp add: Deriv.DERIV_iff2)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2047
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2048
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2049
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2050
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2051
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2052
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2053
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2054
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2055
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2056
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2057
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2058
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2059
  case 0
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2060
  show "((\<lambda>x. x ^ 0 / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2061
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2062
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2063
              at_top_le_at_infinity order_refl)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2064
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2065
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2066
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2067
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2068
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2069
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2070
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2071
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2072
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2073
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2074
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2075
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) ---> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2076
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2077
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2078
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2079
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2080
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2081
definition log :: "[real,real] => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2082
  -- {*logarithm of @{term x} to base @{term a}*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2083
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2085
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2086
lemma tendsto_log [tendsto_intros]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2087
  "\<lbrakk>(f ---> a) F; (g ---> b) F; 0 < a; a \<noteq> 1; 0 < b\<rbrakk> \<Longrightarrow> ((\<lambda>x. log (f x) (g x)) ---> log a b) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2088
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2089
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2090
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2091
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2092
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2093
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2094
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2095
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2096
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2097
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2098
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2099
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2100
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2101
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2102
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2103
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2104
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2105
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2106
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2107
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2110
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2111
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2112
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2113
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2114
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2115
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2116
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2117
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2118
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2119
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2120
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2121
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2122
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x=0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2123
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2124
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2125
lemma powr_one_gt_zero_iff [simp]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2126
  fixes x::real shows "(x powr 1 = x) = (0 \<le> x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2127
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2128
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2129
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2130
lemma powr_mult:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2131
  fixes x::real shows "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2132
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2133
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2134
lemma powr_ge_pzero [simp]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2135
  fixes x::real shows "0 <= x powr y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2136
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2137
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2138
lemma powr_divide:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2139
  fixes x::real shows "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2140
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2141
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2142
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2143
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2144
lemma powr_divide2:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2145
  fixes x::real shows "x powr a / x powr b = x powr (a - b)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2146
  apply (simp add: powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2147
  apply (subst exp_diff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2148
  apply (simp add: left_diff_distrib)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2149
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2151
lemma powr_add:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2152
  fixes x::real shows "x powr (a + b) = (x powr a) * (x powr b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2153
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2154
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2155
lemma powr_mult_base:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2156
  fixes x::real shows "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2157
  using assms by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2158
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2159
lemma powr_powr:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2160
  fixes x::real shows "(x powr a) powr b = x powr (a * b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2161
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2162
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2163
lemma powr_powr_swap:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2164
  fixes x::real shows "(x powr a) powr b = (x powr b) powr a"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2165
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2166
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2167
lemma powr_minus:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2168
  fixes x::real shows "x powr (-a) = inverse (x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2169
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2170
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2171
lemma powr_minus_divide:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2172
  fixes x::real shows "x powr (-a) = 1/(x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2173
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2174
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2175
lemma divide_powr_uminus:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2176
  fixes a::real shows "a / b powr c = a * b powr (- c)"
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2177
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2178
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2179
lemma powr_less_mono:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2180
  fixes x::real shows "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2181
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2182
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2183
lemma powr_less_cancel:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2184
  fixes x::real shows "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2185
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2186
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2187
lemma powr_less_cancel_iff [simp]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2188
  fixes x::real shows "1 < x \<Longrightarrow> (x powr a < x powr b) = (a < b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2189
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2190
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2191
lemma powr_le_cancel_iff [simp]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2192
  fixes x::real shows "1 < x \<Longrightarrow> (x powr a \<le> x powr b) = (a \<le> b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2193
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2194
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2195
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2196
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2197
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2198
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2199
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2200
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2201
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2202
  def lb \<equiv> "1 / ln b"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2203
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2204
    using `x > 0` by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2205
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2206
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2207
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2208
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2209
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2210
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2211
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2212
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2213
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2214
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2215
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2216
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2217
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2218
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2219
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2220
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2221
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2222
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2223
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2224
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2225
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2226
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2227
text{*Base 10 logarithms*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2228
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2229
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2230
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2231
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2232
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2233
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2234
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2235
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2236
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2237
lemma log_eq_one [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2238
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2239
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2240
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2241
  apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2242
  apply (simp add: log_mult [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2243
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2244
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2245
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2246
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2247
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2248
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> (x::real) \<noteq> 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2249
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2250
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2251
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x + y = log b (x * b powr y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2252
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y + log b x = log b (b powr y * x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2253
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x - y = log b (x * b powr -y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2254
  and minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y - log b x = log b (b powr y / x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2255
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2256
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2257
lemma log_less_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2258
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2259
  apply safe
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2260
  apply (rule_tac [2] powr_less_cancel)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2261
  apply (drule_tac a = "log a x" in powr_less_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2262
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2263
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2264
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2265
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2266
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2267
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2268
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2269
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2270
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2271
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2272
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2273
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2274
  next
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2275
    assume "x < y" hence "log b x < log b y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2276
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2277
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2278
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2279
    assume "y < x" hence "log b y < log b x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2280
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2281
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2282
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2283
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2284
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2285
lemma log_le_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2286
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (log a x \<le> log a y) = (x \<le> y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2287
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2288
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2289
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2290
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2291
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2292
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2293
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2294
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2295
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2296
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2297
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2298
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2299
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2300
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2301
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2302
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2303
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2304
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2305
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2306
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2307
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2308
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2309
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2310
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2311
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2312
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2313
lemma le_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2314
  assumes "1 < b" "x > 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2315
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> (x::real)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2316
  using assms 
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2317
  apply auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2318
  apply (metis (no_types, hide_lams) less_irrefl less_le_trans linear powr_le_cancel_iff
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2319
               powr_log_cancel zero_less_one)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2320
  apply (metis not_less order.trans order_refl powr_le_cancel_iff powr_log_cancel zero_le_one)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2321
  done
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2322
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2323
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2324
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2325
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2326
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2327
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2328
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2329
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2330
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2331
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2332
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2333
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2334
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2335
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2336
lemmas powr_le_iff = le_log_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2337
  and powr_less_iff = le_log_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2338
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2339
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2340
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2341
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2342
  floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2343
  by (auto simp add: floor_eq_iff powr_le_iff less_powr_iff)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2344
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2345
lemma powr_realpow: "0 < x ==> x powr (real n) = x^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2346
  apply (induct n)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2347
  apply simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2348
  apply (subgoal_tac "real(Suc n) = real n + 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2349
  apply (erule ssubst)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2350
  apply (subst powr_add, simp, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2351
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2352
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2353
lemma powr_realpow_numeral: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2354
  unfolding real_of_nat_numeral [symmetric] by (rule powr_realpow)
52139
40fe6b80b481 add lemma
noschinl
parents: 51641
diff changeset
  2355
57180
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  2356
lemma powr2_sqrt[simp]: "0 < x \<Longrightarrow> sqrt x powr 2 = x"
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  2357
by(simp add: powr_realpow_numeral)
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  2358
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2359
lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0 else x powr (real n))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2360
  apply (case_tac "x = 0", simp, simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2361
  apply (rule powr_realpow [THEN sym], simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2362
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2363
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2364
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2365
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2366
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2367
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2368
  case True
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2369
  have r: "x powr i = 1 / x powr (-i)" by (simp add: powr_minus field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2370
  show ?thesis using `i < 0` `x > 0` by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2371
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2372
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2373
  then show ?thesis by (simp add: assms powr_realpow[symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2374
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2375
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2376
lemma compute_powr[code]:
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2377
  fixes i::real
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2378
  shows "b powr i =
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2379
    (if b \<le> 0 then Code.abort (STR ''op powr with nonpositive base'') (\<lambda>_. b powr i)
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2380
    else if floor i = i then (if 0 \<le> i then b ^ nat(floor i) else 1 / b ^ nat(floor (- i)))
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2381
    else Code.abort (STR ''op powr with non-integer exponent'') (\<lambda>_. b powr i))"
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2382
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2383
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2384
lemma powr_one:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2385
  fixes x::real shows "0 \<le> x \<Longrightarrow> x powr 1 = x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2386
  using powr_realpow [of x 1]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2387
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2388
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2389
lemma powr_numeral:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2390
  fixes x::real shows "0 < x \<Longrightarrow> x powr numeral n = x ^ numeral n"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2391
  by (fact powr_realpow_numeral)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2392
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2393
lemma powr_neg_one:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2394
  fixes x::real shows "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2395
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2396
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2397
lemma powr_neg_numeral:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2398
  fixes x::real shows "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2399
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2400
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2401
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2402
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2403
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2404
lemma ln_powr:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2405
  fixes x::real shows "x \<noteq> 0 \<Longrightarrow> ln (x powr y) = y * ln x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2406
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2407
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2408
lemma ln_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> ln (root n b) =  ln b / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2409
by(simp add: root_powr_inverse ln_powr)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2410
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2411
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2412
  by (simp add: ln_powr powr_numeral ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2413
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2414
lemma log_root: "\<lbrakk> n > 0; a > 0 \<rbrakk> \<Longrightarrow> log b (root n a) =  log b a / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2415
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2416
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2417
lemma log_powr: "x \<noteq> 0 \<Longrightarrow> log b (x powr y) = y * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2418
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2419
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2420
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2421
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2422
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2423
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2424
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2425
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2426
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2427
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2428
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2429
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2430
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2431
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2432
lemma log_base_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> log (root n b) x = n * (log b x)"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2433
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2434
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2435
lemma ln_bound:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2436
  fixes x::real shows "1 <= x ==> ln x <= x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2437
  apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2438
  apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2439
  apply (rule ln_add_one_self_le_self, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2440
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2441
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2442
lemma powr_mono:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2443
  fixes x::real shows "a <= b ==> 1 <= x ==> x powr a <= x powr b"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2444
  apply (cases "x = 1", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2445
  apply (cases "a = b", simp)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2446
  apply (rule order_less_imp_le)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2447
  apply (rule powr_less_mono, auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2448
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2449
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2450
lemma ge_one_powr_ge_zero:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2451
  fixes x::real shows "1 <= x ==> 0 <= a ==> 1 <= x powr a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2452
using powr_mono by fastforce
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2453
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2454
lemma powr_less_mono2:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2455
  fixes x::real shows "0 < a ==> 0 \<le> x ==> x < y ==> x powr a < y powr a"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2456
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2457
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2458
lemma powr_less_mono2_neg:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2459
  fixes x::real shows "a < 0 ==> 0 < x ==> x < y ==> y powr a < x powr a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2460
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2461
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2462
lemma powr_mono2:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2463
  fixes x::real shows "0 <= a ==> 0 \<le> x ==> x <= y ==> x powr a <= y powr a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2464
  apply (case_tac "a = 0", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2465
  apply (case_tac "x = y", simp)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2466
  apply (metis dual_order.strict_iff_order powr_less_mono2)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2467
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2468
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2469
lemma powr_inj:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2470
  fixes x::real shows "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2471
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2472
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2473
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2474
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2475
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2476
lemma ln_powr_bound:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2477
  fixes x::real shows "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2478
by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute mult_imp_le_div_pos not_less powr_gt_zero)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2479
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2480
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2481
lemma ln_powr_bound2:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2482
  fixes x::real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2483
  assumes "1 < x" and "0 < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2484
  shows "(ln x) powr a <= (a powr a) * x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2485
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2486
  from assms have "ln x <= (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2487
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2488
  also have "... = a * (x powr (1 / a))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2489
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2490
  finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2491
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2492
  also have "... = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2493
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2494
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2495
    by (rule powr_powr)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2496
  also have "... = x" using assms
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2497
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2498
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2499
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2500
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2501
lemma tendsto_powr [tendsto_intros]: 
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2502
  fixes a::real 
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2503
  assumes f: "(f ---> a) F" and g: "(g ---> b) F" and a: "a \<noteq> 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2504
  shows "((\<lambda>x. f x powr g x) ---> a powr b) F"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2505
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2506
  { fix S :: "real set"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2507
    obtain T where "open T" "a \<in> T" "0 \<notin> T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2508
      using t1_space a by blast
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2509
    then have "eventually (\<lambda>x. f x = 0 \<longrightarrow> 0 \<in> S) F"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2510
      using f
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2511
      by (simp add: tendsto_def) (metis (mono_tags, lifting) eventually_mono)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2512
  }
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2513
  moreover
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2514
  { fix S :: "real set"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2515
    assume S: "open S" "exp (b * ln a) \<in> S"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2516
    then have "((\<lambda>x. exp (g x * ln (f x))) ---> exp (b * ln a)) F"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2517
    using f g a
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2518
      by (intro tendsto_intros) auto
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2519
    then have "eventually (\<lambda>x. f x \<noteq> 0 \<longrightarrow> exp (g x * ln (f x)) \<in> S) F"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2520
      using f S
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2521
      by (simp add: tendsto_def) (metis (mono_tags, lifting) eventually_mono)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2522
  }
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2523
  ultimately show ?thesis using assms
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2524
    by (simp add: powr_def tendsto_def eventually_conj_iff)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2525
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2526
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2527
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2528
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2529
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2530
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2531
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2532
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2533
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2534
lemma continuous_at_within_powr[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2535
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2536
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2537
    and "f a \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2538
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2539
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2540
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2541
lemma isCont_powr[continuous_intros, simp]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2542
  assumes "isCont f a" "isCont g a" "f a \<noteq> (0::real)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2543
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2544
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2545
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2546
lemma continuous_on_powr[continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2547
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> (0::real)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2548
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2549
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2550
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2551
(* FIXME: generalize by replacing d by with g x and g ---> d? *)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2552
lemma tendsto_zero_powrI:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2553
  assumes "eventually (\<lambda>x. 0 < f x ) F" and "(f ---> (0::real)) F"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2554
    and "0 < d"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2555
  shows "((\<lambda>x. f x powr d) ---> 0) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2556
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2557
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2558
  def Z \<equiv> "e powr (1 / d)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2559
  with `0 < e` have "0 < Z" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2560
  with assms have "eventually (\<lambda>x. 0 < f x \<and> dist (f x) 0 < Z) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2561
    by (intro eventually_conj tendstoD)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2562
  moreover
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2563
  from assms have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> x powr d < Z powr d"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2564
    by (intro powr_less_mono2) (auto simp: dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2565
  with assms `0 < e` have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> dist (x powr d) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2566
    unfolding dist_real_def Z_def by (auto simp: powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2567
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2568
  show "eventually (\<lambda>x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2569
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2570
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2571
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2572
  assumes "s < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2573
    and "LIM x F. f x :> at_top"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2574
  shows "((\<lambda>x. f x powr s) ---> (0::real)) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2575
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2576
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2577
  def Z \<equiv> "e powr (1 / s)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2578
  have "Z > 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2579
    using Z_def `0 < e` by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2580
  from assms have "eventually (\<lambda>x. Z < f x) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2581
    by (simp add: filterlim_at_top_dense)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2582
  moreover
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2583
  from assms have "\<And>x::real. Z < x \<Longrightarrow> x powr s < Z powr s"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2584
    using `Z > 0`
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2585
    by (auto simp: Z_def intro!: powr_less_mono2_neg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2586
  with assms `0 < e` have "\<And>x. Z < x \<Longrightarrow> dist (x powr s) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2587
    by (simp add: powr_powr Z_def dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2588
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2589
  show "eventually (\<lambda>x. dist (f x powr s) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2590
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2591
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2592
lemma tendsto_exp_limit_at_right:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2593
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2594
  shows "((\<lambda>y. (1 + x * y) powr (1 / y)) ---> exp x) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2595
proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2596
  assume "x \<noteq> 0"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2597
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2598
    by (auto intro!: derivative_eq_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2599
  then have "((\<lambda>y. ln (1 + x * y) / y) ---> x) (at 0)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2600
    by (auto simp add: has_field_derivative_def field_has_derivative_at)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2601
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) ---> exp x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2602
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2603
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2604
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2605
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2606
      unfolding eventually_at_right[OF zero_less_one]
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2607
      using `x \<noteq> 0`
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2608
      apply  (intro exI[of _ "1 / \<bar>x\<bar>"])
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2609
      apply (auto simp: field_simps powr_def abs_if)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2610
      by (metis add_less_same_cancel1 mult_less_0_iff not_less_iff_gr_or_eq zero_less_one)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2611
  qed (simp_all add: at_eq_sup_left_right)
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  2612
qed simp
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2613
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2614
lemma tendsto_exp_limit_at_top:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2615
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2616
  shows "((\<lambda>y. (1 + x / y) powr y) ---> exp x) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2617
  apply (subst filterlim_at_top_to_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2618
  apply (simp add: inverse_eq_divide)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2619
  apply (rule tendsto_exp_limit_at_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2620
  done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2621
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2622
lemma tendsto_exp_limit_sequentially:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2623
  fixes x :: real
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2624
  shows "(\<lambda>n. (1 + x / n) ^ n) ----> exp x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2625
proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2626
  from reals_Archimedean2 [of "abs x"] obtain n :: nat where *: "real n > abs x" ..
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2627
  hence "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2628
    apply (intro eventually_sequentiallyI [of n])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2629
    apply (case_tac "x \<ge> 0")
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2630
    apply (rule add_pos_nonneg, auto intro: divide_nonneg_nonneg)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2631
    apply (subgoal_tac "x / real xa > -1")
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2632
    apply (auto simp add: field_simps)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2633
    done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2634
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2635
    by (rule eventually_elim1) (erule powr_realpow)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2636
  show "(\<lambda>n. (1 + x / real n) powr real n) ----> exp x"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2637
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2638
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2639
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2640
subsection {* Sine and Cosine *}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2641
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2642
definition sin_coeff :: "nat \<Rightarrow> real" where
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2643
  "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2644
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2645
definition cos_coeff :: "nat \<Rightarrow> real" where
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2646
  "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2647
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2648
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2649
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2650
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2651
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2652
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2653
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2654
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2655
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2656
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2657
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2658
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2659
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2660
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2661
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2662
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2663
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2664
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2665
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2666
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2667
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2668
lemma summable_norm_sin:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2669
  fixes x :: "'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2670
  shows "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2671
  unfolding sin_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2672
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2673
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2674
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2675
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2676
lemma summable_norm_cos:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2677
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2678
  shows "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2679
  unfolding cos_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2680
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2681
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2682
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2683
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2684
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2685
unfolding sin_def
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2686
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2687
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2688
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2689
unfolding cos_def
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2690
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2691
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2692
lemma sin_of_real:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2693
  fixes x::real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2694
  shows "sin (of_real x) = of_real (sin x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2695
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2696
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2697
  proof
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2698
    fix n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2699
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2700
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2701
  qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2702
  also have "... sums (sin (of_real x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2703
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2704
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2705
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2706
    using sums_unique2 sums_of_real [OF sin_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2707
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2708
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2709
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2710
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2711
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2712
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2713
lemma cos_of_real:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2714
  fixes x::real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2715
  shows "cos (of_real x) = of_real (cos x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2716
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2717
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2718
  proof
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2719
    fix n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2720
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2721
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2722
  qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2723
  also have "... sums (cos (of_real x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2724
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2725
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2726
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2727
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2728
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2729
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2730
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2731
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2732
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2733
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2734
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2735
  by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2736
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2737
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2738
  by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2739
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2740
text{*Now at last we can get the derivatives of exp, sin and cos*}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2741
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2742
lemma DERIV_sin [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2743
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2744
  shows "DERIV sin x :> cos(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2745
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2746
  apply (rule DERIV_cong)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2747
  apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2748
  apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2749
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2750
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2751
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2752
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2753
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2754
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2755
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2756
lemma DERIV_cos [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2757
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2758
  shows "DERIV cos x :> -sin(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2759
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2760
  apply (rule DERIV_cong)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2761
  apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2762
  apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2763
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2764
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2765
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2766
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2767
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2768
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2769
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2770
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2771
lemma isCont_sin:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2772
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2773
  shows "isCont sin x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2774
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2775
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2776
lemma isCont_cos:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2777
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2778
  shows "isCont cos x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2779
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2780
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2781
lemma isCont_sin' [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2782
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2783
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2784
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2785
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2786
(*FIXME A CONTEXT FOR F WOULD BE BETTER*)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2787
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2788
lemma isCont_cos' [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2789
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2790
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2791
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2792
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2793
lemma tendsto_sin [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2794
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2795
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) ---> sin a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2796
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2797
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2798
lemma tendsto_cos [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2799
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2800
  shows "(f ---> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) ---> cos a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2801
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2802
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2803
lemma continuous_sin [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2804
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2805
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2806
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2807
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2808
lemma continuous_on_sin [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2809
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2810
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2811
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2812
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2813
lemma continuous_within_sin:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2814
  fixes z :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2815
  shows "continuous (at z within s) sin"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2816
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2817
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2818
lemma continuous_cos [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2819
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2820
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2821
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2822
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2823
lemma continuous_on_cos [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2824
  fixes f:: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2825
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2826
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2827
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2828
lemma continuous_within_cos:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2829
  fixes z :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2830
  shows "continuous (at z within s) cos"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2831
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2832
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2833
subsection {* Properties of Sine and Cosine *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2834
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2835
lemma sin_zero [simp]: "sin 0 = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2836
  unfolding sin_def sin_coeff_def by (simp add: scaleR_conv_of_real powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2837
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2838
lemma cos_zero [simp]: "cos 0 = 1"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2839
  unfolding cos_def cos_coeff_def by (simp add: scaleR_conv_of_real powser_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2840
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2841
lemma DERIV_fun_sin:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2842
     "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin(g x)) x :> cos(g x) * m"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2843
  by (auto intro!: derivative_intros)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2844
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2845
lemma DERIV_fun_cos:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2846
     "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> -sin(g x) * m"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2847
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2848
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2849
subsection {*Deriving the Addition Formulas*}
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2850
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2851
text{*The the product of two cosine series*}
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2852
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2853
  fixes x :: "'a::{real_normed_field,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2854
  shows "(\<lambda>p. \<Sum>n\<le>p.
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2855
          if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2856
          then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2857
         sums (cos x * cos y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2858
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2859
  { fix n p::nat
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2860
    assume "n\<le>p"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2861
    then have *: "even n \<Longrightarrow> even p \<Longrightarrow> (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2862
      by (metis div_add power_add le_add_diff_inverse odd_add)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2863
    have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2864
          (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2865
    using `n\<le>p`
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2866
      by (auto simp: * algebra_simps cos_coeff_def binomial_fact real_of_nat_def)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2867
  }
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2868
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2869
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2870
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2871
    by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2872
  also have "... = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2873
    by (simp add: algebra_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2874
  also have "... sums (cos x * cos y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2875
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2876
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2877
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2878
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2879
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2880
text{*The product of two sine series*}
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2881
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2882
  fixes x :: "'a::{real_normed_field,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2883
  shows "(\<lambda>p. \<Sum>n\<le>p.
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2884
          if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2885
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2886
         sums (sin x * sin y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2887
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2888
  { fix n p::nat
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2889
    assume "n\<le>p"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2890
    { assume np: "odd n" "even p"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2891
        with `n\<le>p` have "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2892
        by arith+
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2893
      moreover have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2894
        by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2895
      ultimately have *: "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2896
        using np `n\<le>p`
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2897
        apply (simp add: power_add [symmetric] div_add [symmetric] del: div_add)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2898
        apply (metis (no_types) One_nat_def Suc_1 le_div_geq minus_minus mult.left_neutral mult_minus_left power.simps(2) zero_less_Suc)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2899
        done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2900
    } then
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2901
    have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2902
          (if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2903
          then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2904
    using `n\<le>p`
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2905
      by (auto simp:  algebra_simps sin_coeff_def binomial_fact real_of_nat_def)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2906
  }
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2907
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2908
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2909
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2910
    by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2911
  also have "... = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2912
    by (simp add: algebra_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2913
  also have "... sums (sin x * sin y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2914
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2915
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2916
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2917
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2918
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2919
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2920
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2921
  shows
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2922
  "(\<lambda>p. \<Sum>n\<le>p. if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2923
               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2924
               else 0)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2925
        sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2926
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2927
  { fix p::nat
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2928
    have "(\<Sum>n\<le>p. if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2929
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2930
                  else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2931
          (if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2932
                  then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2933
                  else 0)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2934
      by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2935
    also have "... = (if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2936
                  then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2937
                  else 0)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2938
      by (auto simp: setsum_right_distrib field_simps scaleR_conv_of_real nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2939
    also have "... = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2940
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real real_of_nat_def atLeast0AtMost)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2941
    finally have "(\<Sum>n\<le>p. if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2942
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2943
                  else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)" .
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2944
  }
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2945
  then have "(\<lambda>p. \<Sum>n\<le>p.
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2946
               if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2947
               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2948
               else 0)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2949
        = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2950
        by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2951
   also have "... sums cos (x + y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2952
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2953
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2954
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2955
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2956
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2957
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2958
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2959
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2960
  { fix n p::nat
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2961
    assume "n\<le>p"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2962
    then have "(if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2963
               then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2964
          (if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2965
               then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2966
          = (if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2967
               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2968
      by simp
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2969
  }
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2970
  then have "(\<lambda>p. \<Sum>n\<le>p. (if even p
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2971
               then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2972
        sums (cos x * cos y - sin x * sin y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2973
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2974
    by (simp add: setsum_subtractf [symmetric])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2975
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2976
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2977
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2978
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2979
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2980
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2981
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2982
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2983
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2984
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2985
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2986
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2987
lemma sin_minus [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2988
  fixes x :: "'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2989
  shows "sin (-x) = -sin(x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2990
using sin_minus_converges [of x]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2991
by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel] suminf_minus sums_iff equation_minus_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2992
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2993
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2994
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2995
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2996
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2997
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2998
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2999
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3000
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3001
lemma cos_minus [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3002
  fixes x :: "'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3003
  shows "cos (-x) = cos(x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3004
using cos_minus_converges [of x]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3005
by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3006
              suminf_minus sums_iff equation_minus_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3007
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3008
lemma sin_cos_squared_add [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3009
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3010
  shows "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3011
using cos_add [of x "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3012
by (simp add: power2_eq_square algebra_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3013
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3014
lemma sin_cos_squared_add2 [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3015
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3016
  shows "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3017
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3018
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3019
lemma sin_cos_squared_add3 [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3020
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3021
  shows "cos x * cos x + sin x * sin x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3022
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3023
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3024
lemma sin_squared_eq:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3025
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3026
  shows "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3027
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3028
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3029
lemma cos_squared_eq:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3030
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3031
  shows "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3032
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3033
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3034
lemma abs_sin_le_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3035
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3036
  shows "\<bar>sin x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3037
  by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3038
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3039
lemma sin_ge_minus_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3040
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3041
  shows "-1 \<le> sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3042
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3043
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3044
lemma sin_le_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3045
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3046
  shows "sin x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3047
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3048
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3049
lemma abs_cos_le_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3050
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3051
  shows "\<bar>cos x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3052
  by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3053
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3054
lemma cos_ge_minus_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3055
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3056
  shows "-1 \<le> cos x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3057
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3058
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3059
lemma cos_le_one [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3060
  fixes x :: real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3061
  shows "cos x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3062
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3063
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3064
lemma cos_diff:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3065
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3066
  shows "cos (x - y) = cos x * cos y + sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3067
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3068
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3069
lemma cos_double:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3070
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3071
  shows "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3072
  using cos_add [where x=x and y=x]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3073
  by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3074
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3075
lemma DERIV_fun_pow: "DERIV g x :> m ==>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3076
      DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3077
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3078
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3079
lemma DERIV_fun_exp:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3080
     "DERIV g x :> m ==> DERIV (\<lambda>x. exp(g x)) x :> exp(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3081
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3082
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3083
subsection {* The Constant Pi *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3084
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3085
definition pi :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3086
  where "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3087
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3088
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"};
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3089
   hence define pi.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3090
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3091
lemma sin_paired:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3092
  fixes x :: real
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3093
  shows "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3094
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3095
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3096
    apply (rule sums_group)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3097
    using sin_converges [of x, unfolded scaleR_conv_of_real]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3098
    by auto
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  3099
  thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3100
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3101
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3102
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3103
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3104
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3105
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3106
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3107
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3108
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3109
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3110
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3111
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3112
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3113
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3114
      using assms by (intro mult_strict_mono', simp_all)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3115
    hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3116
      by (intro mult_strict_right_mono zero_less_power `0 < x`)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3117
    thus "0 < ?f n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3118
      by (simp add: real_of_nat_def divide_simps mult_ac del: mult_Suc)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3119
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3120
  have sums: "?f sums sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3121
    by (rule sin_paired [THEN sums_group], simp)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3122
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3123
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3124
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  3125
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3126
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3127
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3128
lemma cos_double_less_one:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3129
  fixes x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3130
  shows "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3131
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3132
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3133
lemma cos_paired:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3134
  fixes x :: real
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3135
  shows "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3136
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3137
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3138
    apply (rule sums_group)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3139
    using cos_converges [of x, unfolded scaleR_conv_of_real]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3140
    by auto
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  3141
  thus ?thesis unfolding cos_coeff_def by (simp add: ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3142
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3143
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3144
lemmas realpow_num_eq_if = power_eq_if
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3145
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3146
lemma sumr_pos_lt_pair:  (*FIXME A MESS, BUT THE REAL MESS IS THE NEXT THEOREM*)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3147
  fixes f :: "nat \<Rightarrow> real"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3148
  shows "\<lbrakk>summable f;
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3149
        \<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3150
      \<Longrightarrow> setsum f {..<k} < suminf f"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3151
unfolding One_nat_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3152
apply (subst suminf_split_initial_segment [where k=k], assumption, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3153
apply (drule_tac k=k in summable_ignore_initial_segment)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3154
apply (drule_tac k="Suc (Suc 0)" in sums_group [OF summable_sums], simp)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3155
apply simp
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3156
apply (frule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3157
apply (drule sums_summable, simp)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  3158
apply (erule suminf_pos)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  3159
apply (simp add: ac_simps)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3160
done
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3161
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3162
lemma cos_two_less_zero [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3163
  "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3164
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3165
  note fact.simps(2) [simp del]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3166
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3167
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3168
    by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3169
  then have **: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3170
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3171
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3172
    by (simp add: fact_num_eq_if realpow_num_eq_if)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3173
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n))))
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3174
    < (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3175
  proof -
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3176
    { fix d
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3177
      have "(4::real) * (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3178
            < (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) *
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3179
              fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3180
        unfolding real_of_nat_mult
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3181
        by (rule mult_strict_mono) (simp_all add: fact_less_mono)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3182
      then have "(4::real) * (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3183
        <  (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3184
        by (simp only: fact.simps(2) [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"] real_of_nat_def of_nat_mult of_nat_fact)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3185
      then have "(4::real) * inverse (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3186
        < inverse (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3187
        by (simp add: inverse_eq_divide less_divide_eq)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3188
    }
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3189
    note *** = this
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3190
    have [simp]: "\<And>x y::real. 0 < x - y \<longleftrightarrow> y < x" by arith
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3191
    from ** show ?thesis by (rule sumr_pos_lt_pair)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3192
      (simp add: divide_inverse mult.assoc [symmetric] ***)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3193
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3194
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3195
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3196
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3197
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3198
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3199
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3200
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3201
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3202
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3203
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3204
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3205
lemma cos_is_zero: "EX! x::real. 0 \<le> x & x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3206
proof (rule ex_ex1I)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3207
  show "\<exists>x::real. 0 \<le> x & x \<le> 2 & cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3208
    by (rule IVT2, simp_all)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3209
next
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3210
  fix x::real and y::real
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3211
  assume x: "0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3212
  assume y: "0 \<le> y \<and> y \<le> 2 \<and> cos y = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3213
  have [simp]: "\<forall>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3214
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3215
  from x y show "x = y"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3216
    apply (cut_tac less_linear [of x y], auto)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3217
    apply (drule_tac f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3218
    apply (drule_tac [5] f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3219
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3220
    apply (metis order_less_le_trans less_le sin_gt_zero_02)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3221
    apply (metis order_less_le_trans less_le sin_gt_zero_02)
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3222
    done
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3223
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3224
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3225
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3226
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3227
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3228
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3229
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3230
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3231
lemma cos_of_real_pi_half [simp]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3232
  fixes x :: "'a :: {real_field,banach,real_normed_algebra_1}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3233
  shows "cos ((of_real pi / 2) :: 'a) = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3234
by (metis cos_pi_half cos_of_real eq_numeral_simps(4) nonzero_of_real_divide of_real_0 of_real_numeral)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3235
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3236
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3237
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3238
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3239
  apply (metis cos_pi_half cos_zero zero_neq_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3240
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3241
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3242
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3243
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3244
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3245
lemma pi_half_less_two [simp]: "pi / 2 < 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3246
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3247
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3248
  apply (metis cos_pi_half cos_two_neq_zero)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3249
  done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3250
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3251
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3252
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3253
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3254
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3255
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3256
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3257
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3258
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3259
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3260
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3261
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3262
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3263
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3264
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3265
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3266
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3267
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3268
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3269
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3270
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3271
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3272
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3273
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3274
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3275
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3276
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3277
lemma sin_of_real_pi_half [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3278
  fixes x :: "'a :: {real_field,banach,real_normed_algebra_1}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3279
  shows "sin ((of_real pi / 2) :: 'a) = 1"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3280
  using sin_pi_half
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3281
by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3282
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3283
lemma sin_cos_eq:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3284
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3285
  shows "sin x = cos (of_real pi / 2 - x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3286
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3287
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3288
lemma minus_sin_cos_eq:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3289
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3290
  shows "-sin x = cos (x + of_real pi / 2)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3291
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3292
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3293
lemma cos_sin_eq:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3294
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3295
  shows "cos x = sin (of_real pi / 2 - x)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3296
  using sin_cos_eq [of "of_real pi / 2 - x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3297
  by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3298
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3299
lemma sin_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3300
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3301
  shows "sin (x + y) = sin x * cos y + cos x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3302
  using cos_add [of "of_real pi / 2 - x" "-y"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3303
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3304
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3305
lemma sin_diff:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3306
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3307
  shows "sin (x - y) = sin x * cos y - cos x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3308
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3309
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3310
lemma sin_double:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3311
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3312
  shows "sin(2 * x) = 2 * sin x * cos x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3313
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3314
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3315
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3316
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3317
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3318
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3319
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3320
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3321
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3322
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3323
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3324
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3325
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3326
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3327
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3328
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3329
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3330
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3331
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3332
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3333
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3334
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3335
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3336
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3337
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3338
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3339
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3340
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3341
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3342
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3343
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3344
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3345
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3346
  by (induct n) (auto simp: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3347
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3348
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3349
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3350
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3351
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3352
  by (induct n) (auto simp: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3353
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3354
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3355
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3356
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3357
lemma cos_two_pi [simp]: "cos (2*pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3358
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3359
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3360
lemma sin_two_pi [simp]: "sin (2*pi) = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3361
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3362
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3363
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3364
lemma sin_times_sin:
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3365
  fixes w :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3366
  shows "sin(w) * sin(z) = (cos(w - z) - cos(w + z)) / 2"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3367
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3368
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3369
lemma sin_times_cos:
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3370
  fixes w :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3371
  shows "sin(w) * cos(z) = (sin(w + z) + sin(w - z)) / 2"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3372
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3373
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3374
lemma cos_times_sin:
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3375
  fixes w :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3376
  shows "cos(w) * sin(z) = (sin(w + z) - sin(w - z)) / 2"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3377
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3378
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3379
lemma cos_times_cos:
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3380
  fixes w :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3381
  shows "cos(w) * cos(z) = (cos(w - z) + cos(w + z)) / 2"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3382
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3383
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3384
lemma sin_plus_sin:  (*FIXME field should not be necessary*)
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3385
  fixes w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3386
  shows "sin(w) + sin(z) = 2 * sin((w + z) / 2) * cos((w - z) / 2)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3387
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3388
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3389
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3390
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3391
lemma sin_diff_sin: 
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3392
  fixes w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3393
  shows "sin(w) - sin(z) = 2 * sin((w - z) / 2) * cos((w + z) / 2)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3394
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3395
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3396
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3397
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3398
lemma cos_plus_cos: 
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3399
  fixes w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3400
  shows "cos(w) + cos(z) = 2 * cos((w + z) / 2) * cos((w - z) / 2)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3401
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3402
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3403
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3404
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3405
lemma cos_diff_cos: 
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3406
  fixes w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3407
  shows "cos(w) - cos(z) = 2 * sin((w + z) / 2) * sin((z - w) / 2)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3408
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3409
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3410
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3411
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3412
lemma cos_double_cos: 
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3413
  fixes z :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3414
  shows "cos(2 * z) = 2 * cos z ^ 2 - 1"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3415
by (simp add: cos_double sin_squared_eq)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3416
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3417
lemma cos_double_sin: 
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3418
  fixes z :: "'a::{real_normed_field,banach}"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3419
  shows "cos(2 * z) = 1 - 2 * sin z ^ 2"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3420
by (simp add: cos_double sin_squared_eq)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3421
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3422
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3423
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3424
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3425
lemma cos_pi_minus [simp]: "cos (pi - x) = -(cos x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3426
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3427
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3428
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3429
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3430
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3431
lemma cos_minus_pi [simp]: "cos (x - pi) = -(cos x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3432
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3433
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3434
lemma sin_2pi_minus [simp]: "sin (2*pi - x) = -(sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3435
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3436
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3437
lemma cos_2pi_minus [simp]: "cos (2*pi - x) = cos x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3438
  by (metis (no_types, hide_lams) cos_add cos_minus cos_two_pi sin_minus sin_two_pi 
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3439
           diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3440
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3441
lemma sin_gt_zero2: "\<lbrakk>0 < x; x < pi/2\<rbrakk> \<Longrightarrow> 0 < sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3442
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3443
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3444
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3445
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3446
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3447
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3448
  have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3449
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3450
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3451
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3452
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3453
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3454
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3455
lemma cos_gt_zero: "\<lbrakk>0 < x; x < pi/2\<rbrakk> \<Longrightarrow> 0 < cos x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3456
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3457
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3458
lemma cos_gt_zero_pi: "\<lbrakk>-(pi/2) < x; x < pi/2\<rbrakk> \<Longrightarrow> 0 < cos x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3459
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3460
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3461
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3462
lemma cos_ge_zero: "\<lbrakk>-(pi/2) \<le> x; x \<le> pi/2\<rbrakk> \<Longrightarrow> 0 \<le> cos x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3463
  apply (auto simp: order_le_less cos_gt_zero_pi)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3464
  by (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3465
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3466
lemma sin_gt_zero: "\<lbrakk>0 < x; x < pi \<rbrakk> \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3467
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3468
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3469
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2*pi \<Longrightarrow> sin x < 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3470
  using sin_gt_zero [of "x-pi"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3471
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3472
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3473
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3474
proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3475
  assume "\<not> 2 \<le> pi" hence "pi < 2" by auto
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3476
  have "\<exists>y > pi. y < 2 \<and> y < 2*pi"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3477
  proof (cases "2 < 2*pi")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3478
    case True with dense[OF `pi < 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3479
  next
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3480
    case False have "pi < 2*pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3481
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3482
  qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3483
  then obtain y where "pi < y" and "y < 2" and "y < 2*pi" by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3484
  hence "0 < sin y" using sin_gt_zero_02 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3485
  moreover
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3486
  have "sin y < 0" using sin_gt_zero[of "y - pi"] `pi < y` and `y < 2*pi` sin_periodic_pi[of "y - pi"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3487
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3488
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3489
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3490
lemma sin_ge_zero: "\<lbrakk>0 \<le> x; x \<le> pi\<rbrakk> \<Longrightarrow> 0 \<le> sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3491
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3492
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3493
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2*pi \<Longrightarrow> sin x \<le> 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3494
  using sin_ge_zero [of "x-pi"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3495
  by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3496
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3497
text {* FIXME: This proof is almost identical to lemma @{text cos_is_zero}.
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3498
  It should be possible to factor out some of the common parts. *}
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3499
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3500
lemma cos_total: "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3501
proof (rule ex_ex1I)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3502
  assume y: "-1 \<le> y" "y \<le> 1"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3503
  show "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3504
    by (rule IVT2, simp_all add: y)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3505
next
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3506
  fix a b
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3507
  assume a: "0 \<le> a \<and> a \<le> pi \<and> cos a = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3508
  assume b: "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3509
  have [simp]: "\<forall>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3510
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3511
  from a b show "a = b"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3512
    apply (cut_tac less_linear [of a b], auto)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3513
    apply (drule_tac f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3514
    apply (drule_tac [5] f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3515
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3516
    apply (metis order_less_le_trans less_le sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3517
    apply (metis order_less_le_trans less_le sin_gt_zero)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3518
    done
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3519
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3520
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3521
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3522
  assumes y: "-1 \<le> y" "y \<le> 1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3523
    shows "\<exists>! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3524
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3525
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3526
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3527
           and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3528
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3529
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3530
    apply (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3531
    apply (rule ex1I [where a="pi/2 - x"])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3532
    apply (cut_tac [2] x'="pi/2 - xa" in uniq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3533
    using x
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3534
    apply auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3535
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3536
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3537
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3538
lemma reals_Archimedean4:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3539
     "\<lbrakk>0 < y; 0 \<le> x\<rbrakk> \<Longrightarrow> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3540
apply (auto dest!: reals_Archimedean3)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3541
apply (drule_tac x = x in spec, clarify)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3542
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3543
 prefer 2 apply (erule LeastI)
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3544
apply (case_tac "LEAST m::nat. x < real m * y", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  3545
apply (rename_tac m)
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  3546
apply (subgoal_tac "~ x < real m * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3547
 prefer 2 apply (rule not_less_Least, simp, force)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3548
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3549
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3550
lemma cos_zero_lemma:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3551
     "\<lbrakk>0 \<le> x; cos x = 0\<rbrakk> \<Longrightarrow>
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3552
      \<exists>n::nat. odd n & x = real n * (pi/2)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3553
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3554
apply (subgoal_tac "0 \<le> x - real n * pi &
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  3555
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3556
apply (auto simp: algebra_simps real_of_nat_Suc)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3557
 prefer 2 apply (simp add: cos_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3558
apply (simp add: cos_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3559
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3560
apply (rule_tac [2] cos_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3561
apply (drule_tac x = "x - real n * pi" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3562
apply (drule_tac x = "pi/2" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3563
apply (simp add: cos_diff)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3564
apply (rule_tac x = "Suc (2 * n)" in exI)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3565
apply (simp add: real_of_nat_Suc algebra_simps, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3566
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3567
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3568
lemma sin_zero_lemma:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3569
     "\<lbrakk>0 \<le> x; sin x = 0\<rbrakk> \<Longrightarrow>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3570
      \<exists>n::nat. even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3571
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3572
 apply (clarify, rule_tac x = "n - 1" in exI)
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3573
 apply (auto elim!: oddE simp add: real_of_nat_Suc field_simps)[1]
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3574
 apply (rule cos_zero_lemma)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3575
 apply (auto simp: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3576
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3577
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3578
lemma cos_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3579
     "(cos x = 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3580
      ((\<exists>n::nat. odd n & (x = real n * (pi/2))) |
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3581
       (\<exists>n::nat. odd n & (x = -(real n * (pi/2)))))"
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3582
proof -
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3583
  { fix n :: nat
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3584
    assume "odd n"
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3585
    then obtain m where "n = 2 * m + 1" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3586
    then have "cos (real n * pi / 2) = 0"
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3587
      by (simp add: field_simps real_of_nat_Suc) (simp add: cos_add add_divide_distrib)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3588
  } note * = this
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3589
  show ?thesis
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3590
  apply (rule iffI)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3591
  apply (cut_tac linorder_linear [of 0 x], safe)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3592
  apply (drule cos_zero_lemma, assumption+)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3593
  apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3594
  apply (auto dest: *)
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3595
  done
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3596
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3597
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3598
(* ditto: but to a lesser extent *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3599
lemma sin_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3600
     "(sin x = 0) =
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3601
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3602
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3603
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3604
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3605
apply (drule sin_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3606
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3607
apply (force simp add: minus_equation_iff [of x])
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3608
apply (auto elim: evenE)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3609
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3610
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3611
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3612
lemma cos_zero_iff_int:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3613
     "cos x = 0 \<longleftrightarrow> (\<exists>n::int. odd n & x = real n * (pi/2))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3614
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3615
  assume "cos x = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3616
  then show "\<exists>n::int. odd n & x = real n * (pi/2)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3617
    apply (simp add: cos_zero_iff, safe)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3618
    apply (metis even_int_iff real_of_int_of_nat_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3619
    apply (rule_tac x="- (int n)" in exI, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3620
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3621
next
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3622
  fix n::int
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3623
  assume "odd n"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3624
  then show "cos (real n * (pi / 2)) = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3625
    apply (simp add: cos_zero_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3626
    apply (case_tac n rule: int_cases2, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3627
    apply (rule disjI2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3628
    apply (rule_tac x="nat (-n)" in exI, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3629
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3630
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3631
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3632
lemma sin_zero_iff_int:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3633
     "sin x = 0 \<longleftrightarrow> (\<exists>n::int. even n & (x = real n * (pi/2)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3634
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3635
  assume "sin x = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3636
  then show "\<exists>n::int. even n \<and> x = real n * (pi / 2)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3637
    apply (simp add: sin_zero_iff, safe)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3638
    apply (metis even_int_iff real_of_int_of_nat_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3639
    apply (rule_tac x="- (int n)" in exI, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3640
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3641
next
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3642
  fix n::int
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3643
  assume "even n"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3644
  then show "sin (real n * (pi / 2)) = 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3645
    apply (simp add: sin_zero_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3646
    apply (case_tac n rule: int_cases2, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3647
    apply (rule disjI2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3648
    apply (rule_tac x="nat (-n)" in exI, simp)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3649
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3650
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3651
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3652
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>n::int. x = real n * pi)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3653
  apply (simp only: sin_zero_iff_int)
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3654
  apply (safe elim!: evenE)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3655
  apply (simp_all add: field_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3656
  using dvd_triv_left by fastforce
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3657
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3658
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3659
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3660
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3661
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  3662
  have "- (x - y) < 0" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3663
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3664
  from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3665
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3666
    by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  3667
  hence "0 < z" and "z < pi" using assms by auto
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3668
  hence "0 < sin z" using sin_gt_zero by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3669
  hence "cos x - cos y < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3670
    unfolding cos_diff minus_mult_commute[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3671
    using `- (x - y) < 0` by (rule mult_pos_neg2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3672
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3673
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3674
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3675
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3676
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3677
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3678
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3679
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3680
  show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3681
    using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3682
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3683
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3684
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3685
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3686
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3687
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3688
lemma cos_monotone_minus_pi_0:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3689
  assumes "-pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3690
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3691
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3692
  have "0 \<le> -x" and "-x < -y" and "-y \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3693
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3694
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3695
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3696
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3697
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3698
lemma cos_monotone_minus_pi_0':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3699
  assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3700
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3701
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3702
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3703
  show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3704
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3705
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3706
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3707
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3708
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3709
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3710
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3711
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3712
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3713
  shows "sin y < sin x"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3714
    apply (simp add: sin_cos_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3715
    apply (rule cos_monotone_0_pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3716
    using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3717
    apply auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3718
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3719
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3720
lemma sin_monotone_2pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3721
  assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3722
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3723
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3724
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3725
lemma sin_x_le_x:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3726
  fixes x::real assumes x: "x \<ge> 0" shows "sin x \<le> x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3727
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3728
  let ?f = "\<lambda>x. x - sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3729
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3730
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3731
    apply (intro allI impI exI[of _ "1 - cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3732
    apply (auto intro!: derivative_eq_intros simp: field_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3733
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3734
  thus "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3735
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3736
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3737
lemma sin_x_ge_neg_x:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3738
  fixes x::real assumes x: "x \<ge> 0" shows "sin x \<ge> - x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3739
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3740
  let ?f = "\<lambda>x. x + sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3741
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3742
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3743
    apply (intro allI impI exI[of _ "1 + cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3744
    apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3745
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3746
  thus "sin x \<ge> -x" by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3747
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3748
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3749
lemma abs_sin_x_le_abs_x:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3750
  fixes x::real shows "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3751
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3752
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3753
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3754
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3755
subsection {* More Corollaries about Sine and Cosine *}
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3756
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3757
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3758
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3759
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3760
    by (auto simp: algebra_simps sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3761
  thus ?thesis
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3762
    by (simp add: real_of_nat_Suc distrib_right add_divide_distrib
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3763
                  mult.commute [of pi])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3764
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3765
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3766
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3767
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3768
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3769
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3770
  apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3771
  apply (subst cos_add, simp)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3772
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3773
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3774
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3775
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3776
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3777
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3778
  apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3779
  apply (subst sin_add, simp)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3780
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3781
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3782
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3783
by (simp only: cos_add sin_add real_of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3784
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3785
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3786
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3787
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3788
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3789
  fixes x :: "'a::{real_normed_field,banach}"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3790
  assumes "sin x = 0" shows "norm (cos x) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3791
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3792
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3793
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3794
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3795
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3796
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3797
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3798
  fixes x :: "'a::{real_normed_field,banach}"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3799
  assumes "cos x = 1" shows "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3800
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3801
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3802
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3803
lemma sin_times_pi_eq_0: "sin(x * pi) = 0 \<longleftrightarrow> x \<in> Ints"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3804
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_real_of_int real_of_int_def)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3805
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3806
lemma cos_one_2pi: 
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3807
    "cos(x) = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2*pi) | (\<exists>n::nat. x = -(n * 2*pi))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3808
    (is "?lhs = ?rhs")
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3809
proof
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3810
  assume "cos(x) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3811
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3812
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3813
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3814
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3815
    fix n::nat
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3816
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3817
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3818
      using dvdE by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3819
    then have me: "even m" using `?lhs` n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3820
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3821
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3822
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3823
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3824
  next    
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3825
    fix n::nat
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3826
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3827
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3828
      using dvdE by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3829
    then have me: "even m" using `?lhs` n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3830
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3831
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3832
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3833
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3834
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3835
next
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3836
  assume "?rhs"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3837
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3838
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3839
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3840
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3841
lemma cos_one_2pi_int: "cos(x) = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2*pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3842
  apply auto  --{*FIXME simproc bug*}
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3843
  apply (auto simp: cos_one_2pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3844
  apply (metis real_of_int_of_nat_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3845
  apply (metis mult_minus_right real_of_int_minus real_of_int_of_nat_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3846
  by (metis mult_minus_right of_int_of_nat real_of_int_def real_of_nat_def)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3847
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3848
lemma sin_cos_sqrt: "0 \<le> sin(x) \<Longrightarrow> (sin(x) = sqrt(1 - (cos(x) ^ 2)))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3849
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3850
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3851
lemma sin_eq_0_pi: "-pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin(x) = 0 \<Longrightarrow> x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3852
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3853
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3854
lemma cos_treble_cos: 
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3855
  fixes x :: "'a::{real_normed_field,banach}"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3856
  shows "cos(3 * x) = 4 * cos(x) ^ 3 - 3 * cos x"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3857
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3858
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3859
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3860
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3861
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3862
  also have "... = 4 * cos(x) ^ 3 - 3 * cos x"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3863
    apply (simp only: cos_add cos_double sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3864
    apply (simp add: * field_simps power2_eq_square power3_eq_cube)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3865
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3866
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3867
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3868
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3869
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3870
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3871
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3872
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3873
    by (simp add: cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3874
  have "0 = cos (pi / 4 + pi / 4)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3875
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3876
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3877
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3878
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3879
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3880
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3881
    by (simp add: power_divide)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3882
  thus ?thesis
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3883
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3884
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3885
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3886
lemma cos_30: "cos (pi / 6) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3887
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3888
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3889
  have pos_c: "0 < ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3890
    by (rule cos_gt_zero, simp, simp)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3891
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3892
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3893
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3894
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3895
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3896
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3897
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3898
    using pos_c by (simp add: sin_squared_eq power_divide)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3899
  thus ?thesis
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3900
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3901
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3902
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3903
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3904
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3905
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3906
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3907
lemma sin_60: "sin (pi / 3) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3908
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3909
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3910
lemma cos_60: "cos (pi / 3) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3911
  apply (rule power2_eq_imp_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3912
  apply (simp add: cos_squared_eq sin_60 power_divide)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3913
  apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3914
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3915
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3916
lemma sin_30: "sin (pi / 6) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3917
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3918
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3919
lemma cos_integer_2pi: "n \<in> Ints \<Longrightarrow> cos(2*pi * n) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3920
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute real_of_int_def)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3921
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3922
lemma sin_integer_2pi: "n \<in> Ints \<Longrightarrow> sin(2*pi * n) = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3923
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3924
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3925
lemma cos_int_2npi [simp]: "cos (2 * real (n::int) * pi) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3926
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3927
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3928
lemma sin_int_2npi [simp]: "sin (2 * real (n::int) * pi) = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3929
  by (metis Ints_real_of_int mult.assoc mult.commute sin_integer_2pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3930
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3931
lemma sincos_principal_value: "\<exists>y. (-pi < y \<and> y \<le> pi) \<and> (sin(y) = sin(x) \<and> cos(y) = cos(x))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3932
  apply (rule exI [where x="pi - (2*pi) * frac((pi - x) / (2*pi))"])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3933
  apply (auto simp: field_simps frac_lt_1)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3934
  apply (simp_all add: frac_def divide_simps)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3935
  apply (simp_all add: add_divide_distrib diff_divide_distrib)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3936
  apply (simp_all add: sin_diff cos_diff mult.assoc [symmetric] cos_integer_2pi sin_integer_2pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3937
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3938
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3939
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3940
subsection {* Tangent *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3941
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3942
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3943
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3944
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3945
lemma tan_of_real:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3946
  fixes XXX :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3947
  shows  "of_real(tan x) = (tan(of_real x) :: 'a)"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3948
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3949
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3950
lemma tan_in_Reals [simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  3951
  fixes z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3952
  shows "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3953
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3954
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3955
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3956
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3957
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3958
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3959
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3960
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3961
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3962
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3963
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3964
lemma tan_minus [simp]: "tan (-x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3965
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3966
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3967
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3968
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3969
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3970
lemma lemma_tan_add1:
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3971
  "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3972
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3973
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3974
lemma add_tan_eq:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3975
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3976
  shows "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3977
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3978
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3979
lemma tan_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3980
  fixes x :: "'a::{real_normed_field,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3981
  shows
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3982
     "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0\<rbrakk>
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3983
      \<Longrightarrow> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3984
      by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3985
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3986
lemma tan_double:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3987
  fixes x :: "'a::{real_normed_field,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3988
  shows
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3989
     "\<lbrakk>cos x \<noteq> 0; cos (2 * x) \<noteq> 0\<rbrakk>
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3990
      \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3991
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3992
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3993
lemma tan_gt_zero: "\<lbrakk>0 < x; x < pi/2\<rbrakk> \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3994
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3995
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3996
lemma tan_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3997
  assumes lb: "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3998
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3999
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4000
  have "0 < tan (- x)" using assms by (simp only: tan_gt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4001
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4002
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4003
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4004
lemma tan_half:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  4005
  fixes x :: "'a::{real_normed_field,banach,field}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4006
  shows  "tan x = sin (2 * x) / (cos (2 * x) + 1)"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4007
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4008
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4009
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4010
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4011
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4012
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4013
lemma tan_45: "tan (pi / 4) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4014
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4015
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4016
lemma tan_60: "tan (pi / 3) = sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4017
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4018
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4019
lemma DERIV_tan [simp]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4020
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4021
  shows "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4022
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4023
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4024
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4025
lemma isCont_tan:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4026
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4027
  shows "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4028
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4029
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4030
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4031
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4032
  shows "\<lbrakk>isCont f a; cos (f a) \<noteq> 0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4033
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4034
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4035
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4036
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4037
  shows "\<lbrakk>(f ---> a) F; cos a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. tan (f x)) ---> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4038
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4039
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4040
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4041
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4042
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4043
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4044
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4045
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4046
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4047
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4048
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4049
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4050
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4051
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  4052
  shows
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4053
  "continuous (at x within s) f \<Longrightarrow> cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4054
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4055
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4056
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) -- pi/2 --> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4057
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4058
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4059
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4060
  apply (cut_tac LIM_cos_div_sin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4061
  apply (simp only: LIM_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4062
  apply (drule_tac x = "inverse y" in spec, safe, force)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4063
  apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4064
  apply (rule_tac x = "(pi/2) - e" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4065
  apply (simp (no_asm_simp))
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4066
  apply (drule_tac x = "(pi/2) - e" in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4067
  apply (auto simp add: tan_def sin_diff cos_diff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4068
  apply (rule inverse_less_iff_less [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4069
  apply (auto simp add: divide_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4070
  apply (rule mult_pos_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4071
  apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4072
  apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult.commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4073
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4074
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4075
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4076
  apply (frule order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4077
   prefer 2 apply force
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4078
  apply (drule lemma_tan_total, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4079
  apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4080
  apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4081
  apply (drule_tac y = xa in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4082
  apply (auto dest: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4083
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4084
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4085
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4086
  apply (cut_tac linorder_linear [of 0 y], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4087
  apply (drule tan_total_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4088
  apply (cut_tac [2] y="-y" in tan_total_pos, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4089
  apply (rule_tac [3] x = "-x" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4090
  apply (auto del: exI intro!: exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4091
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4092
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4093
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4094
  apply (cut_tac y = y in lemma_tan_total1, auto)
57492
74bf65a1910a Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents: 57418
diff changeset
  4095
  apply hypsubst_thin
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4096
  apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4097
  apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4098
  apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4099
  apply (rule_tac [4] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4100
  apply (rule_tac [2] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4101
  apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  4102
              simp add: real_differentiable_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4103
  txt{*Now, simulate TRYALL*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4104
  apply (rule_tac [!] DERIV_tan asm_rl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4105
  apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4106
              simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4107
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4108
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4109
lemma tan_monotone:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4110
  assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4111
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4112
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4113
  have "\<forall>x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse ((cos x')\<^sup>2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4114
  proof (rule allI, rule impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4115
    fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4116
    assume "y \<le> x' \<and> x' \<le> x"
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4117
    hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4118
    from cos_gt_zero_pi[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4119
    have "cos x' \<noteq> 0" by auto
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  4120
    thus "DERIV tan x' :> inverse ((cos x')\<^sup>2)" by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4121
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4122
  from MVT2[OF `y < x` this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4123
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4124
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4125
  hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4126
  hence "0 < cos z" using cos_gt_zero_pi by auto
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4127
  hence inv_pos: "0 < inverse ((cos z)\<^sup>2)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4128
  have "0 < x - y" using `y < x` by auto
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  4129
  with inv_pos have "0 < tan x - tan y" unfolding tan_diff by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4130
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4131
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4132
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4133
lemma tan_monotone':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4134
  assumes "- (pi / 2) < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4135
    and "y < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4136
    and "- (pi / 2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4137
    and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4138
  shows "(y < x) = (tan y < tan x)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4139
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4140
  assume "y < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4141
  thus "tan y < tan x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4142
    using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4143
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4144
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4145
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4146
  proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4147
    assume "\<not> y < x" hence "x \<le> y" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4148
    hence "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4149
    proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4150
      case True thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4151
    next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4152
      case False hence "x < y" using `x \<le> y` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4153
      from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4154
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4155
    thus False using `tan y < tan x` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4156
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4157
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4158
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4159
lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4160
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4161
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4162
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4163
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4164
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4165
lemma tan_periodic_nat[simp]:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4166
  fixes n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4167
  shows "tan (x + real n * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4168
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4169
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4170
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4171
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4172
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4173
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4174
    unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4175
  show ?case unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4176
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4177
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4178
lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4179
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4180
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4181
  hence i_nat: "real i = real (nat i)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4182
  show ?thesis unfolding i_nat by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4183
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4184
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4185
  hence i_nat: "real i = - real (nat (-i))" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4186
  have "tan x = tan (x + real i * pi - real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4187
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4188
  also have "\<dots> = tan (x + real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4189
    unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4190
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4191
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4192
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4193
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4194
  using tan_periodic_int[of _ "numeral n" ] unfolding real_numeral .
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4195
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4196
lemma tan_minus_45: "tan (-(pi/4)) = -1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4197
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4198
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4199
lemma tan_diff:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4200
  fixes x :: "'a::{real_normed_field,banach}"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4201
  shows
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4202
     "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0; cos (x - y) \<noteq> 0\<rbrakk>
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4203
      \<Longrightarrow> tan(x - y) = (tan(x) - tan(y))/(1 + tan(x) * tan(y))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4204
  using tan_add [of x "-y"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4205
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4206
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4207
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4208
lemma tan_pos_pi2_le: "0 \<le> x ==> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4209
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4210
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4211
lemma cos_tan: "abs(x) < pi/2 \<Longrightarrow> cos(x) = 1 / sqrt(1 + tan(x) ^ 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4212
  using cos_gt_zero_pi [of x]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4213
  by (simp add: divide_simps tan_def real_sqrt_divide abs_if split: split_if_asm)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4214
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4215
lemma sin_tan: "abs(x) < pi/2 \<Longrightarrow> sin(x) = tan(x) / sqrt(1 + tan(x) ^ 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4216
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4217
  by (force simp add: divide_simps tan_def real_sqrt_divide abs_if split: split_if_asm)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4218
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4219
lemma tan_mono_le: "-(pi/2) < x ==> x \<le> y ==> y < pi/2 \<Longrightarrow> tan(x) \<le> tan(y)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4220
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4221
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4222
lemma tan_mono_lt_eq: "-(pi/2) < x ==> x < pi/2 ==> -(pi/2) < y ==> y < pi/2
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4223
         \<Longrightarrow> (tan(x) < tan(y) \<longleftrightarrow> x < y)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4224
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4225
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4226
lemma tan_mono_le_eq: "-(pi/2) < x ==> x < pi/2 ==> -(pi/2) < y ==> y < pi/2
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4227
         \<Longrightarrow> (tan(x) \<le> tan(y) \<longleftrightarrow> x \<le> y)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4228
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4229
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4230
lemma tan_bound_pi2: "abs(x) < pi/4 \<Longrightarrow> abs(tan x) < 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4231
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4232
  by (auto simp: abs_if split: split_if_asm)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4233
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4234
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4235
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4236
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4237
subsection {* Inverse Trigonometric Functions *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4238
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4239
definition arcsin :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4240
  where "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4241
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4242
definition arccos :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4243
  where "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4244
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4245
definition arctan :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4246
  where "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4247
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4248
lemma arcsin:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4249
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4250
    -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2 & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4251
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  4252
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  4253
lemma arcsin_pi:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4254
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4255
  apply (drule (1) arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4256
  apply (force intro: order_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4257
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4258
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4259
lemma sin_arcsin [simp]: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4260
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4261
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4262
lemma arcsin_bounded: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4263
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4264
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4265
lemma arcsin_lbound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4266
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4267
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4268
lemma arcsin_ubound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4269
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4270
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4271
lemma arcsin_lt_bounded:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4272
     "\<lbrakk>-1 < y; y < 1\<rbrakk> \<Longrightarrow> -(pi/2) < arcsin y & arcsin y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4273
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4274
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4275
  apply (frule arcsin_bounded)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4276
  apply (safe, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4277
  apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4278
  apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4279
  apply (drule_tac [!] f = sin in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4280
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4281
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4282
lemma arcsin_sin: "\<lbrakk>-(pi/2) \<le> x; x \<le> pi/2\<rbrakk> \<Longrightarrow> arcsin(sin x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4283
  apply (unfold arcsin_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4284
  apply (rule the1_equality)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4285
  apply (rule sin_total, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4286
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4287
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4288
lemma arcsin_0 [simp]: "arcsin 0 = 0"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4289
  using arcsin_sin [of 0]
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4290
  by simp
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4291
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4292
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4293
  using arcsin_sin [of "pi/2"]
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4294
  by simp
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4295
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4296
lemma arcsin_minus_1 [simp]: "arcsin (-1) = - (pi/2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4297
  using arcsin_sin [of "-pi/2"]
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4298
  by simp
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4299
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4300
lemma arcsin_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin(-x) = -arcsin x"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4301
  by (metis (no_types, hide_lams) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4302
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4303
lemma arcsin_eq_iff: "abs x \<le> 1 \<Longrightarrow> abs y \<le> 1 \<Longrightarrow> (arcsin x = arcsin y \<longleftrightarrow> x = y)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4304
  by (metis abs_le_interval_iff arcsin)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4305
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4306
lemma cos_arcsin_nonzero: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos(arcsin x) \<noteq> 0"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4307
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4308
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  4309
lemma arccos:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4310
     "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk>
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4311
      \<Longrightarrow> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4312
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4313
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4314
lemma cos_arccos [simp]: "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4315
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4316
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4317
lemma arccos_bounded: "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> arccos y & arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4318
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4319
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4320
lemma arccos_lbound: "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4321
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4322
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4323
lemma arccos_ubound: "\<lbrakk>-1 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4324
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4325
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  4326
lemma arccos_lt_bounded:
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4327
     "\<lbrakk>-1 < y; y < 1\<rbrakk> \<Longrightarrow> 0 < arccos y & arccos y < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4328
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4329
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4330
  apply (frule arccos_bounded, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4331
  apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4332
  apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4333
  apply (drule_tac [!] f = cos in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4334
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4335
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4336
lemma arccos_cos: "\<lbrakk>0 \<le> x; x \<le> pi\<rbrakk> \<Longrightarrow> arccos(cos x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4337
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4338
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4339
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4340
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4341
lemma arccos_cos2: "\<lbrakk>x \<le> 0; -pi \<le> x\<rbrakk> \<Longrightarrow> arccos(cos x) = -x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4342
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4343
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4344
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4345
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4346
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4347
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4348
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4349
  apply (simp add: cos_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4350
  apply (rule cos_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4351
  apply (erule (1) arcsin_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4352
  apply (erule (1) arcsin_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4353
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4354
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4355
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4356
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4357
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4358
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4359
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4360
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4361
  apply (simp add: sin_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4362
  apply (rule sin_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4363
  apply (erule (1) arccos_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4364
  apply (erule (1) arccos_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4365
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4366
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4367
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4368
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4369
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4370
lemma arccos_0 [simp]: "arccos 0 = pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4371
by (metis arccos_cos cos_gt_zero cos_pi cos_pi_half pi_gt_zero pi_half_ge_zero not_le not_zero_less_neg_numeral numeral_One)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4372
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4373
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4374
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4375
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4376
lemma arccos_minus_1 [simp]: "arccos(-1) = pi"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4377
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4378
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4379
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos(-x) = pi - arccos x"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4380
  by (metis arccos_cos arccos_cos2 cos_minus_pi cos_total diff_le_0_iff_le le_add_same_cancel1 
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4381
    minus_diff_eq uminus_add_conv_diff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4382
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4383
lemma sin_arccos_nonzero: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> ~(sin(arccos x) = 0)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4384
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4385
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4386
lemma arctan: "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4387
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4388
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4389
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4390
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4391
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4392
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4393
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4394
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4395
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4396
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4397
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4398
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4399
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4400
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4401
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4402
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4403
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4404
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4405
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4406
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4407
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4408
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4409
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4410
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4411
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4412
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4413
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4414
lemma arctan_minus: "arctan (- x) = - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4415
  apply (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4416
  apply (simp only: neg_less_iff_less arctan_ubound)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4417
  apply (metis minus_less_iff arctan_lbound, simp add: arctan)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4418
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4419
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4420
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4421
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4422
    arctan_lbound arctan_ubound)
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4423
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4424
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4425
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4426
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4427
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4428
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4429
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4430
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  4431
    unfolding tan_def by (simp add: distrib_left power_divide)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4432
  thus "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4433
    using `0 < 1 + x\<^sup>2` by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4434
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4435
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4436
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4437
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4438
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4439
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4440
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4441
lemma tan_sec:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59865
diff changeset
  4442
  fixes x :: "'a::{real_normed_field,banach,field}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4443
  shows "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4444
  apply (rule power_inverse [THEN subst])
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 56213
diff changeset
  4445
  apply (rule_tac c1 = "(cos x)\<^sup>2" in mult_right_cancel [THEN iffD1])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4446
  apply (auto dest: field_power_not_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4447
          simp add: power_mult_distrib distrib_right power_divide tan_def
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4448
                    mult.assoc power_inverse [symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4449
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4450
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4451
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4452
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4453
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4454
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4455
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4456
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4457
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4458
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4459
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4460
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4461
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4462
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4463
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4464
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4465
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4466
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4467
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4468
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4469
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4470
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4471
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4472
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4473
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4474
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4475
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4476
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4477
  have "continuous_on (sin ` {- pi / 2 .. pi / 2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4478
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4479
  also have "sin ` {- pi / 2 .. pi / 2} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4480
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4481
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4482
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4483
    then show "x \<in> sin ` {- pi / 2..pi / 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4484
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  4485
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4486
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4487
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4488
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4489
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4490
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4491
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4492
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4493
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4494
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4495
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4496
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4497
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4498
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4499
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4500
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4501
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4502
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4503
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4504
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4505
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4506
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4507
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4508
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4509
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4510
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4511
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4512
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4513
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4514
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4515
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4516
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4517
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4518
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4519
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4520
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4521
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4522
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4523
lemma isCont_arctan: "isCont arctan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4524
  apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4525
  apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4526
  apply (subgoal_tac "isCont arctan (tan (arctan x))", simp add: arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4527
  apply (erule (1) isCont_inverse_function2 [where f=tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4528
  apply (metis arctan_tan order_le_less_trans order_less_le_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4529
  apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4530
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4531
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4532
lemma tendsto_arctan [tendsto_intros]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) ---> arctan x) F"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4533
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4534
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4535
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4536
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4537
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4538
lemma continuous_on_arctan [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4539
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4540
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4541
lemma DERIV_arcsin:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4542
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4543
  apply (rule DERIV_inverse_function [where f=sin and a="-1" and b=1])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4544
  apply (rule DERIV_cong [OF DERIV_sin])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4545
  apply (simp add: cos_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4546
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4547
  apply (rule power_strict_mono, simp, simp, simp, assumption, assumption)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4548
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4549
  apply (erule (1) isCont_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4550
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4551
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4552
lemma DERIV_arccos:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4553
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4554
  apply (rule DERIV_inverse_function [where f=cos and a="-1" and b=1])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4555
  apply (rule DERIV_cong [OF DERIV_cos])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4556
  apply (simp add: sin_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4557
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4558
  apply (rule power_strict_mono, simp, simp, simp, assumption, assumption)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4559
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4560
  apply (erule (1) isCont_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4561
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4562
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4563
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4564
  apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4565
  apply (rule DERIV_cong [OF DERIV_tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4566
  apply (rule cos_arctan_not_zero)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4567
  apply (simp add: arctan power_inverse tan_sec [symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4568
  apply (subgoal_tac "0 < 1 + x\<^sup>2", simp)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4569
  apply (simp_all add: add_pos_nonneg arctan isCont_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4570
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4571
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  4572
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4573
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4574
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4575
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  4576
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4577
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4578
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4579
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4580
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4581
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4582
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4583
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4584
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4585
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4586
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4587
lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4588
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4589
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4590
  assume "0 < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4591
  def y \<equiv> "pi/2 - min (pi/2) e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4592
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4593
    using `0 < e` by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4594
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4595
  show "eventually (\<lambda>x. dist (arctan x) (pi / 2) < e) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4596
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4597
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4598
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4599
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4600
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4601
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4602
      by (subst (asm) arctan_tan) simp_all
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4603
    with arctan_ubound[of x, arith] y `0 < e`
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4604
    show "dist (arctan x) (pi / 2) < e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4605
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4606
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4607
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4608
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4609
lemma tendsto_arctan_at_bot: "(arctan ---> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4610
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4611
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4612
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4613
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4614
subsection{* Prove Totality of the Trigonometric Functions *}
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4615
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4616
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4617
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4618
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4619
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4620
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4621
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4622
lemma sin_mono_less_eq: "\<lbrakk>-(pi/2) \<le> x; x \<le> pi/2; -(pi/2) \<le> y; y \<le> pi/2\<rbrakk>
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4623
         \<Longrightarrow> (sin(x) < sin(y) \<longleftrightarrow> x < y)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4624
by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4625
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4626
lemma sin_mono_le_eq: "\<lbrakk>-(pi/2) \<le> x; x \<le> pi/2; -(pi/2) \<le> y; y \<le> pi/2\<rbrakk>
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4627
         \<Longrightarrow> (sin(x) \<le> sin(y) \<longleftrightarrow> x \<le> y)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4628
by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4629
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4630
lemma sin_inj_pi: 
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4631
    "\<lbrakk>-(pi/2) \<le> x; x \<le> pi/2;-(pi/2) \<le> y; y \<le> pi/2; sin(x) = sin(y)\<rbrakk> \<Longrightarrow> x = y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4632
by (metis arcsin_sin)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4633
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4634
lemma cos_mono_less_eq:
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4635
    "0 \<le> x ==> x \<le> pi ==> 0 \<le> y ==> y \<le> pi \<Longrightarrow> (cos(x) < cos(y) \<longleftrightarrow> y < x)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4636
by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4637
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4638
lemma cos_mono_le_eq: "0 \<le> x ==> x \<le> pi ==> 0 \<le> y ==> y \<le> pi
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4639
         \<Longrightarrow> (cos(x) \<le> cos(y) \<longleftrightarrow> y \<le> x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4640
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4641
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4642
lemma cos_inj_pi: "0 \<le> x ==> x \<le> pi ==> 0 \<le> y ==> y \<le> pi ==> cos(x) = cos(y)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4643
         \<Longrightarrow> x = y"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4644
by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4645
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4646
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4647
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4648
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4649
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4650
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4651
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4652
    shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4653
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4654
  have x1: "x \<le> 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4655
    using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4656
    by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2) 
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4657
  moreover with assms have ax: "0 \<le> arccos x" "cos(arccos x) = x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4658
    by (auto simp: arccos)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4659
  moreover have "y = sqrt (1 - x\<^sup>2)" using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4660
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4661
  ultimately show ?thesis using assms arccos_le_pi2 [of x] 
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4662
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4663
qed    
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4664
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4665
lemma sincos_total_pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4666
  assumes "0 \<le> y" and "x\<^sup>2 + y\<^sup>2 = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4667
    shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4668
proof (cases rule: le_cases [of 0 x])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4669
  case le from sincos_total_pi_half [OF le]  
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4670
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4671
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4672
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4673
  case ge 
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4674
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4675
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4676
  then obtain t where "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4677
    using sincos_total_pi_half assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4678
    apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4679
    by (metis `0 \<le> - x` power2_minus)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4680
  then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4681
    by (rule_tac x="pi-t" in exI, auto)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4682
qed    
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4683
    
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4684
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4685
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4686
    shows "\<exists>t. 0 \<le> t \<and> t \<le> 2*pi \<and> x = cos t \<and> y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4687
proof (cases rule: le_cases [of 0 y])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4688
  case le from sincos_total_pi [OF le]  
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4689
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4690
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4691
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4692
  case ge 
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4693
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4694
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4695
  then obtain t where "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4696
    using sincos_total_pi assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4697
    apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4698
    by (metis `0 \<le> - y` power2_minus)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4699
  then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4700
    by (rule_tac x="2*pi-t" in exI, auto)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4701
qed    
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4702
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4703
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4704
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4705
    obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4706
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4707
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4708
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4709
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4710
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4711
    apply (cases "t = 2*pi")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4712
    using t that
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4713
    apply force+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4714
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4715
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4716
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4717
lemma arcsin_less_mono: "abs x \<le> 1 \<Longrightarrow> abs y \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4718
  apply (rule trans [OF sin_mono_less_eq [symmetric]])
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4719
  using arcsin_ubound arcsin_lbound
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  4720
  apply auto
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4721
  done
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4722
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4723
lemma arcsin_le_mono: "abs x \<le> 1 \<Longrightarrow> abs y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4724
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4725
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4726
lemma arcsin_less_arcsin: "-1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4727
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4728
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4729
lemma arcsin_le_arcsin: "-1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4730
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4731
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4732
lemma arccos_less_mono: "abs x \<le> 1 \<Longrightarrow> abs y \<le> 1 \<Longrightarrow> (arccos x < arccos y \<longleftrightarrow> y < x)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4733
  apply (rule trans [OF cos_mono_less_eq [symmetric]])
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4734
  using arccos_ubound arccos_lbound
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  4735
  apply auto
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4736
  done
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4737
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4738
lemma arccos_le_mono: "abs x \<le> 1 \<Longrightarrow> abs y \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4739
  using arccos_less_mono [of y x] 
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4740
  by (simp add: not_le [symmetric])
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4741
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4742
lemma arccos_less_arccos: "-1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4743
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4744
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4745
lemma arccos_le_arccos: "-1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4746
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4747
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4748
lemma arccos_eq_iff: "abs x \<le> 1 & abs y \<le> 1 \<Longrightarrow> (arccos x = arccos y \<longleftrightarrow> x = y)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4749
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4750
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4751
subsection {* Machins formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4752
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4753
lemma arctan_one: "arctan 1 = pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4754
  by (rule arctan_unique, simp_all add: tan_45 m2pi_less_pi)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4755
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4756
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4757
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4758
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4759
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4760
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4761
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4762
    unfolding arctan_less_iff using assms  by (auto simp add: arctan)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4763
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4764
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4765
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4766
lemma arctan_add:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4767
  assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4768
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4769
proof (rule arctan_unique [symmetric])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4770
  have "- (pi / 4) \<le> arctan x" and "- (pi / 4) < arctan y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4771
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4772
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4773
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4774
  show 1: "- (pi / 2) < arctan x + arctan y" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4775
  have "arctan x \<le> pi / 4" and "arctan y < pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4776
    unfolding arctan_one [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4777
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4778
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4779
  show 2: "arctan x + arctan y < pi / 2" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4780
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4781
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4782
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4783
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4784
theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4785
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4786
  have "\<bar>1 / 5\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4787
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4788
  have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4789
  moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4790
  have "\<bar>5 / 12\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4791
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4792
  have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4793
  moreover
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4794
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4795
  from arctan_add[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4796
  have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4797
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4798
  thus ?thesis unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4799
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4800
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4801
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4802
subsection {* Introducing the inverse tangent power series *}
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4803
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4804
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4805
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4806
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4807
  shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4808
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4809
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4810
  thus ?thesis unfolding monoseq_def One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4811
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4812
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4813
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4814
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4815
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4816
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4817
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4818
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4819
      assume "0 \<le> x" and "x \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4820
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4821
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4822
      proof (rule mult_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4823
        show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4824
          by (rule frac_le) simp_all
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4825
        show "0 \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4826
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4827
        show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4828
          by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4829
        show "0 \<le> x ^ Suc (Suc n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4830
          by (rule zero_le_power) (simp add: `0 \<le> x`)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4831
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4832
    } note mono = this
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4833
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4834
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4835
    proof (cases "0 \<le> x")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4836
      case True from mono[OF this `x \<le> 1`, THEN allI]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4837
      show ?thesis unfolding Suc_eq_plus1[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4838
        by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4839
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4840
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4841
      hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4842
      from mono[OF this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4843
      have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4844
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  4845
      thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4846
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4847
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4848
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4849
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4850
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4851
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4852
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4853
  shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4854
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4855
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4856
  thus ?thesis
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 58710
diff changeset
  4857
    unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4858
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4859
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4860
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4861
  show "?a ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4862
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4863
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4864
    hence "norm x < 1" by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  4865
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]]
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  4866
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  4867
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  4868
    then show ?thesis using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4869
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4870
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4871
    hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4872
    hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4873
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  4874
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  4875
    show ?thesis unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4876
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4877
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4878
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4879
text{*FIXME: generalise from the reals via type classes?*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4880
lemma summable_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4881
  fixes x :: real and n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4882
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4883
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4884
  (is "summable (?c x)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4885
  by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms])
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4886
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4887
lemma DERIV_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4888
  assumes "\<bar> x \<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4889
  shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4890
  (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4891
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4892
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4893
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4894
  have n_even: "\<And>n :: nat. even n \<Longrightarrow> 2 * (n div 2) = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4895
    by presburger
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4896
  then have if_eq: "\<And>n x'. ?f n * real (Suc n) * x'^n =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4897
    (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4898
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4899
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4900
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4901
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4902
    assume "\<bar>x\<bar> < 1"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  4903
    hence "x\<^sup>2 < 1" by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4904
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  4905
      by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x\<^sup>2 < 1` order_less_imp_le[OF `x\<^sup>2 < 1`])
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4906
    hence "summable (\<lambda> n. (- 1) ^ n * x^(2*n))" unfolding power_mult .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4907
  } note summable_Integral = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4908
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4909
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4910
    fix f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4911
    have "\<And>x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4912
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4913
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4914
      assume "f sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4915
      from sums_if[OF sums_zero this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4916
      show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4917
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4918
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4919
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4920
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  4921
      from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult.commute]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4922
      show "f sums x" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4923
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4924
    hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4925
  } note sums_even = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4926
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4927
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4928
    unfolding if_eq mult.commute[of _ 2] suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4929
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4930
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4931
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4932
    fix x :: real
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4933
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4934
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4935
      using n_even by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4936
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4937
    have "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4938
      unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4939
      by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4940
  } note arctan_eq = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4941
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4942
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4943
  proof (rule DERIV_power_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4944
    show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4945
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4946
      fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4947
      assume x'_bounds: "x' \<in> {- 1 <..< 1}"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4948
      then have "\<bar>x'\<bar> < 1" by auto
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4949
      then
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4950
        have *: "summable (\<lambda>n. (- 1) ^ n * x' ^ (2 * n))"
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4951
        by (rule summable_Integral)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4952
      let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4953
      show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4954
        apply (rule sums_summable [where l="0 + ?S"])
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4955
        apply (rule sums_if)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4956
        apply (rule sums_zero)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4957
        apply (rule summable_sums)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4958
        apply (rule *)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  4959
        done
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4960
    }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4961
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4962
  thus ?thesis unfolding Int_eq arctan_eq .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4963
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4964
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4965
lemma arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4966
  assumes "\<bar> x \<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4967
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4968
  (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4969
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4970
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4971
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4972
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4973
    fix r x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4974
    assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4975
    have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4976
    from DERIV_arctan_series[OF this] have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4977
  } note DERIV_arctan_suminf = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4978
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4979
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4980
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4981
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4982
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4983
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4984
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4985
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4986
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4987
    assume "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4988
    have "arctan x = (\<Sum>k. ?c x k)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4989
    proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4990
      obtain r where "\<bar>x\<bar> < r" and "r < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4991
        using dense[OF `\<bar>x\<bar> < 1`] by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4992
      hence "0 < r" and "-r < x" and "x < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4993
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4994
      have suminf_eq_arctan_bounded: "\<And>x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4995
        suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4996
      proof -
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4997
        fix x a b
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4998
        assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4999
        hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5000
        show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5001
        proof (rule DERIV_isconst2[of "a" "b"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5002
          show "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5003
            using `a < b` `a \<le> x` `x \<le> b` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5004
          have "\<forall>x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5005
          proof (rule allI, rule impI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5006
            fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5007
            assume "-r < x \<and> x < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5008
            hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5009
            hence "\<bar>x\<bar> < 1" using `r < 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5010
            have "\<bar> - (x\<^sup>2) \<bar> < 1"
59865
8a20dd967385 rationalised and generalised some theorems concerning abs and x^2.
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  5011
              using abs_square_less_1 `\<bar>x\<bar> < 1` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5012
            hence "(\<lambda> n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5013
              unfolding real_norm_def[symmetric] by (rule geometric_sums)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5014
            hence "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  5015
              unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5016
            hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5017
              using sums_unique unfolding inverse_eq_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5018
            have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5019
              unfolding suminf_c'_eq_geom
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5020
              by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56217
diff changeset
  5021
            from DERIV_diff [OF this DERIV_arctan]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5022
            show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5023
              by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5024
          qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5025
          hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5026
            using `-r < a` `b < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5027
          thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5028
            using `\<bar>x\<bar> < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5029
          show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5030
            using DERIV_in_rball DERIV_isCont by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5031
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5032
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5033
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5034
      have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5035
        unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5036
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5037
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5038
      have "suminf (?c x) - arctan x = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5039
      proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5040
        case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5041
        thus ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5042
      next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5043
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5044
        hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5045
        have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0"
59647
c6f413b660cf clarified Drule.gen_all: observe context more carefully;
wenzelm
parents: 59613
diff changeset
  5046
          by (rule suminf_eq_arctan_bounded[where x1="0" and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5047
            (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5048
        moreover
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5049
        have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)"
59647
c6f413b660cf clarified Drule.gen_all: observe context more carefully;
wenzelm
parents: 59613
diff changeset
  5050
          by (rule suminf_eq_arctan_bounded[where x1="x" and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5051
             (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5052
        ultimately
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5053
        show ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5054
      qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5055
      thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5056
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5057
  } note when_less_one = this
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5058
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5059
  show "arctan x = suminf (\<lambda> n. ?c x n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5060
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5061
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5062
    thus ?thesis by (rule when_less_one)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5063
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5064
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5065
    hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5066
    let ?a = "\<lambda>x n. \<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5067
    let ?diff = "\<lambda> x n. \<bar> arctan x - (\<Sum> i<n. ?c x i)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5068
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5069
      fix n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5070
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5071
      moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5072
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5073
        fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5074
        assume "0 < x" and "x < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5075
        hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5076
        from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5077
          by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5078
        note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5079
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5080
          by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5081
        hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5082
          by (rule abs_of_pos)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5083
        have "?diff x n \<le> ?a x n"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5084
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5085
          case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5086
          hence sgn_pos: "(-1)^n = (1::real)" by auto
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5087
          from `even n` obtain m where "n = 2 * m" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5088
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5089
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5090
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5091
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5092
          also have "\<dots> = ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5093
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5094
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5095
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5096
          case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5097
          hence sgn_neg: "(-1)^n = (-1::real)" by auto
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5098
          from `odd n` obtain m where "n = 2 * m + 1" ..
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5099
          then have m_def: "2 * m + 1 = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5100
          hence m_plus: "2 * (m + 1) = n + 1" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5101
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5102
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5103
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5104
          also have "\<dots> = - ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5105
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5106
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5107
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5108
        hence "0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5109
      }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5110
      hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5111
      moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5112
        unfolding diff_conv_add_uminus divide_inverse
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5113
        by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5114
          isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5115
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5116
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5117
        by (rule LIM_less_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5118
      hence "?diff 1 n \<le> ?a 1 n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5119
    }
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  5120
    have "?a 1 ----> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5121
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5122
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5123
    have "?diff 1 ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5124
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5125
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5126
      assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5127
      obtain N :: nat where N_I: "\<And>n. N \<le> n \<Longrightarrow> ?a 1 n < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5128
        using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5129
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5130
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5131
        assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5132
        have "norm (?diff 1 n - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5133
      }
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5134
      thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5135
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  5136
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5137
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5138
    hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5139
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5140
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5141
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5142
      case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5143
      then show ?thesis by (simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5144
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5145
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5146
      hence "x = -1" using `\<bar>x\<bar> = 1` by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5147
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5148
      have "- (pi / 2) < 0" using pi_gt_zero by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5149
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5150
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5151
      have c_minus_minus: "\<And>i. ?c (- 1) i = - ?c 1 i"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5152
        unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5153
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5154
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5155
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5156
      also have "\<dots> = - (pi / 4)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5157
        by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5158
      also have "\<dots> = - (arctan (tan (pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5159
        unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5160
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5161
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5162
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5163
        using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5164
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5165
        using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5166
        unfolding c_minus_minus by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5167
      finally show ?thesis using `x = -1` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5168
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5169
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5170
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5171
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5172
lemma arctan_half:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5173
  fixes x :: real
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  5174
  shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5175
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5176
  obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5177
    using tan_total by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5178
  hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5179
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5180
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5181
  have "0 < cos y" using cos_gt_zero_pi[OF low high] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5182
  hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5183
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5184
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5185
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5186
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5187
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5188
    using `cos y \<noteq> 0` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5189
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5190
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  5191
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5192
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5193
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  5194
    unfolding tan_def using `cos y \<noteq> 0` by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5195
  also have "\<dots> = tan y / (1 + 1 / cos y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5196
    using `cos y \<noteq> 0` unfolding add_divide_distrib by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5197
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5198
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5199
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5200
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5201
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5202
    unfolding `1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2` .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5203
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5204
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5205
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5206
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5207
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5208
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5209
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5210
  finally show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5211
    unfolding eq `tan y = x` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5212
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5213
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5214
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5215
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5216
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5217
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5218
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5219
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5220
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5221
  assumes "x \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5222
  shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5223
proof (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5224
  show "- (pi / 2) < sgn x * pi / 2 - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5225
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5226
    unfolding sgn_real_def
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5227
    apply (auto simp add: arctan algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5228
    apply (drule zero_less_arctan_iff [THEN iffD2])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5229
    apply arith
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5230
    done
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5231
  show "sgn x * pi / 2 - arctan x < pi / 2"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5232
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5233
    unfolding sgn_real_def arctan_minus
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  5234
    by (auto simp add: algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5235
  show "tan (sgn x * pi / 2 - arctan x) = 1 / x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5236
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5237
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5238
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5239
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5240
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5241
theorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5242
proof -
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5243
  have "pi / 4 = arctan 1" using arctan_one by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5244
  also have "\<dots> = ?SUM" using arctan_series[of 1] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5245
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5246
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5247
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5248
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  5249
subsection {* Existence of Polar Coordinates *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5250
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5251
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5252
  apply (rule power2_le_imp_le [OF _ zero_le_one])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5253
  apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5254
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5255
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  5256
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  5257
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5258
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5259
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  5260
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a & y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5261
proof -
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5262
  have polar_ex1: "\<And>y. 0 < y \<Longrightarrow> \<exists>r a. x = r * cos a & y = r * sin a"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5263
    apply (rule_tac x = "sqrt (x\<^sup>2 + y\<^sup>2)" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5264
    apply (rule_tac x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5265
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5266
                     real_sqrt_mult [symmetric] right_diff_distrib)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5267
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5268
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5269
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  5270
    case less
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5271
      then show ?thesis by (rule polar_ex1)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5272
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5273
    case equal
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5274
      then show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5275
        by (force simp add: intro!: cos_zero sin_zero)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5276
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5277
    case greater
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  5278
      then show ?thesis
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5279
     using polar_ex1 [where y="-y"]
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5280
    by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5281
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5282
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5283
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5284
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5285
subsection{*Basics about polynomial functions: extremal behaviour and root counts*}
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5286
(*ALL COULD GO TO COMPLEX_MAIN OR EARLIER*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5287
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5288
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5289
    fixes x :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5290
  assumes "1 \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5291
    shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5292
           (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5293
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5294
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5295
    by (auto simp: bij_betw_def inj_on_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5296
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5297
        (\<Sum>i\<le>n. a i * (x^i - y^i))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5298
    by (simp add: right_diff_distrib setsum_subtractf)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5299
  also have "... = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5300
    by (simp add: power_diff_sumr2 mult.assoc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5301
  also have "... = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5302
    by (simp add: setsum_right_distrib)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5303
  also have "... = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5304
    by (simp add: setsum.Sigma)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5305
  also have "... = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5306
    by (auto simp add: setsum.reindex_bij_betw [OF h, symmetric] intro: setsum.strong_cong)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5307
  also have "... = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5308
    by (simp add: setsum.Sigma)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5309
  also have "... = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5310
    by (simp add: setsum_right_distrib mult_ac)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5311
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5312
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5313
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5314
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5315
    fixes x :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5316
  assumes "1 \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5317
    shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5318
           (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j+k+1) * y^k * x^j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5319
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5320
  { fix j::nat
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5321
    assume "j<n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5322
    have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5323
      apply (auto simp: bij_betw_def inj_on_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5324
      apply (rule_tac x="x + Suc j" in image_eqI)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5325
      apply (auto simp: )
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5326
      done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5327
    have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5328
      by (auto simp add: setsum.reindex_bij_betw [OF h, symmetric] intro: setsum.strong_cong)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5329
  }
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5330
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5331
    by (simp add: polyfun_diff [OF assms] setsum_left_distrib)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5332
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5333
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5334
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5335
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5336
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5337
proof (cases "n=0")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5338
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5339
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5340
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5341
  case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5342
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5343
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) - (\<Sum>i\<le>n. c(i) * a^i) = (z - a) * (\<Sum>i<n. b(i) * z^i))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5344
    by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5345
  also have "... = (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) = (z - a) * (\<Sum>i<n. b(i) * z^i))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5346
    using False by (simp add: polyfun_diff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5347
  also have "... = True"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5348
    by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5349
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5350
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5351
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5352
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5353
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5354
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5355
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5356
  obtains b where "\<And>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5357
  using polyfun_linear_factor [of c n a] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5358
  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5359
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5360
lemma isCont_polynom:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5361
  fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5362
  shows "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5363
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5364
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5365
lemma zero_polynom_imp_zero_coeffs:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5366
    fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5367
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5368
    shows "c k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5369
using assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5370
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5371
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5372
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5373
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5374
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5375
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5376
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5377
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5378
  { fix w
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5379
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5380
      unfolding Set_Interval.setsum_atMost_Suc_shift
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5381
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5382
    also have "... = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5383
      by (simp add: power_Suc mult_ac setsum_right_distrib del: setsum_atMost_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5384
    finally have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5385
  }
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5386
  then have wnz: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5387
    using Suc  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5388
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) -- 0 --> 0"
60035
4b77fc0b3514 fix latex in Transcendental
hoelzl
parents: 60020
diff changeset
  5389
    by (simp cong: LIM_cong)                   --{*the case @{term"w=0"} by continuity*}
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5390
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5391
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5392
    by (force simp add: Limits.isCont_iff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5393
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0" using wnz
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5394
    by metis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5395
  then have "\<And>i. i\<le>n \<Longrightarrow> c (Suc i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5396
    using Suc.IH [of "\<lambda>i. c (Suc i)"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5397
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5398
  then show ?case using `k \<le> Suc n`
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5399
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5400
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5401
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5402
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5403
    fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5404
  assumes "c k \<noteq> 0" "k\<le>n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5405
    shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and>
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5406
             card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5407
using assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5408
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5409
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5410
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5411
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5412
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5413
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5414
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5415
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5416
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5417
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5418
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5419
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5420
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5421
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5422
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5423
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5424
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5425
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5426
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5427
    then have eq: "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b(i) * z^i) = 0}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5428
      by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5429
    have "~(\<forall>k\<le>m. b k = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5430
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5431
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5432
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5433
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5434
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5435
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5436
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5437
        using zero_polynom_imp_zero_coeffs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5438
        by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5439
      then show False using Suc.prems
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5440
        by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5441
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5442
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5443
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5444
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5445
      using Suc.IH [of b k'] bk'
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5446
      by (simp add: eq card_insert_if del: setsum_atMost_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5447
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5448
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5449
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5450
lemma
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5451
    fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5452
  assumes "c k \<noteq> 0" "k\<le>n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5453
    shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5454
      and polyfun_roots_card:   "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5455
using polyfun_rootbound assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5456
  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5457
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5458
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5459
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5460
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5461
        (is "?lhs = ?rhs")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5462
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5463
  assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5464
  moreover
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5465
  { assume "\<forall>i\<le>n. c i = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5466
    then have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5467
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5468
    then have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5469
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5470
      by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5471
  }
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5472
  ultimately show ?rhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5473
  by metis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5474
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5475
  assume ?rhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5476
  then show ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5477
    using polyfun_rootbound
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5478
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5479
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5480
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5481
lemma polyfun_eq_0: (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5482
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5483
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5484
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5485
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5486
lemma polyfun_eq_coeffs:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5487
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5488
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5489
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5490
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5491
    by (simp add: left_diff_distrib Groups_Big.setsum_subtractf)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5492
  also have "... \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5493
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5494
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5495
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5496
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5497
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5498
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5499
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5500
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5501
        (is "?lhs = ?rhs")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5502
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5503
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5504
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5505
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5506
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5507
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5508
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5509
      by (simp add: polyfun_eq_coeffs [symmetric])
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5510
    then show ?rhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5511
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5512
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5513
    assume ?rhs then show ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5514
      by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5515
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5516
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5517
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5518
lemma root_polyfun:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5519
  fixes z:: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5520
  assumes "1 \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5521
    shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5522
  using assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5523
  by (cases n; simp add: setsum_head_Suc atLeast0AtMost [symmetric])
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5524
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5525
lemma
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5526
    fixes zz :: "'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5527
  assumes "1 \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5528
    shows finite_roots_unity: "finite {z::'a. z^n = 1}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5529
      and card_roots_unity:   "card {z::'a. z^n = 1} \<le> n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5530
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5531
  by (auto simp add: root_polyfun [OF assms])
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5532
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  5533
end