| author | nipkow | 
| Sat, 26 Sep 2020 18:59:12 +0200 | |
| changeset 72313 | babd74b71ea8 | 
| parent 69655 | 2b56cbb02e8a | 
| child 72566 | 831f17da1aab | 
| permissions | -rw-r--r-- | 
| 57250 | 1  | 
(* Author: Tobias Nipkow *)  | 
| 64887 | 2  | 
(* Todo: minimal ipl of balanced trees *)  | 
| 57250 | 3  | 
|
| 60500 | 4  | 
section \<open>Binary Tree\<close>  | 
| 57250 | 5  | 
|
6  | 
theory Tree  | 
|
7  | 
imports Main  | 
|
8  | 
begin  | 
|
9  | 
||
| 58424 | 10  | 
datatype 'a tree =  | 
| 64887 | 11  | 
  Leaf ("\<langle>\<rangle>") |
 | 
| 69655 | 12  | 
  Node "'a tree" ("value": 'a) "'a tree" ("(1\<langle>_,/ _,/ _\<rangle>)")
 | 
| 
57569
 
e20a999f7161
register tree with datatype_compat ot support QuickCheck
 
hoelzl 
parents: 
57530 
diff
changeset
 | 
13  | 
datatype_compat tree  | 
| 57250 | 14  | 
|
| 69218 | 15  | 
primrec left :: "'a tree \<Rightarrow> 'a tree" where  | 
16  | 
"left (Node l v r) = l" |  | 
|
17  | 
"left Leaf = Leaf"  | 
|
18  | 
||
19  | 
primrec right :: "'a tree \<Rightarrow> 'a tree" where  | 
|
20  | 
"right (Node l v r) = r" |  | 
|
21  | 
"right Leaf = Leaf"  | 
|
22  | 
||
| 68998 | 23  | 
text\<open>Counting the number of leaves rather than nodes:\<close>  | 
| 58438 | 24  | 
|
| 68998 | 25  | 
fun size1 :: "'a tree \<Rightarrow> nat" where  | 
26  | 
"size1 \<langle>\<rangle> = 1" |  | 
|
27  | 
"size1 \<langle>l, x, r\<rangle> = size1 l + size1 r"  | 
|
| 58438 | 28  | 
|
| 63861 | 29  | 
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where  | 
30  | 
"subtrees \<langle>\<rangle> = {\<langle>\<rangle>}" |
 | 
|
31  | 
"subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)"  | 
|
32  | 
||
33  | 
fun mirror :: "'a tree \<Rightarrow> 'a tree" where  | 
|
34  | 
"mirror \<langle>\<rangle> = Leaf" |  | 
|
35  | 
"mirror \<langle>l,x,r\<rangle> = \<langle>mirror r, x, mirror l\<rangle>"  | 
|
36  | 
||
37  | 
class height = fixes height :: "'a \<Rightarrow> nat"  | 
|
38  | 
||
39  | 
instantiation tree :: (type)height  | 
|
40  | 
begin  | 
|
41  | 
||
42  | 
fun height_tree :: "'a tree => nat" where  | 
|
43  | 
"height Leaf = 0" |  | 
|
| 68999 | 44  | 
"height (Node l a r) = max (height l) (height r) + 1"  | 
| 63861 | 45  | 
|
46  | 
instance ..  | 
|
47  | 
||
48  | 
end  | 
|
49  | 
||
50  | 
fun min_height :: "'a tree \<Rightarrow> nat" where  | 
|
51  | 
"min_height Leaf = 0" |  | 
|
52  | 
"min_height (Node l _ r) = min (min_height l) (min_height r) + 1"  | 
|
53  | 
||
54  | 
fun complete :: "'a tree \<Rightarrow> bool" where  | 
|
55  | 
"complete Leaf = True" |  | 
|
56  | 
"complete (Node l x r) = (complete l \<and> complete r \<and> height l = height r)"  | 
|
57  | 
||
58  | 
definition balanced :: "'a tree \<Rightarrow> bool" where  | 
|
59  | 
"balanced t = (height t - min_height t \<le> 1)"  | 
|
60  | 
||
61  | 
text \<open>Weight balanced:\<close>  | 
|
62  | 
fun wbalanced :: "'a tree \<Rightarrow> bool" where  | 
|
63  | 
"wbalanced Leaf = True" |  | 
|
64  | 
"wbalanced (Node l x r) = (abs(int(size l) - int(size r)) \<le> 1 \<and> wbalanced l \<and> wbalanced r)"  | 
|
65  | 
||
66  | 
text \<open>Internal path length:\<close>  | 
|
| 64887 | 67  | 
fun ipl :: "'a tree \<Rightarrow> nat" where  | 
68  | 
"ipl Leaf = 0 " |  | 
|
69  | 
"ipl (Node l _ r) = ipl l + size l + ipl r + size r"  | 
|
| 63861 | 70  | 
|
71  | 
fun preorder :: "'a tree \<Rightarrow> 'a list" where  | 
|
72  | 
"preorder \<langle>\<rangle> = []" |  | 
|
73  | 
"preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r"  | 
|
74  | 
||
75  | 
fun inorder :: "'a tree \<Rightarrow> 'a list" where  | 
|
76  | 
"inorder \<langle>\<rangle> = []" |  | 
|
77  | 
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r"  | 
|
78  | 
||
79  | 
text\<open>A linear version avoiding append:\<close>  | 
|
80  | 
fun inorder2 :: "'a tree \<Rightarrow> 'a list \<Rightarrow> 'a list" where  | 
|
81  | 
"inorder2 \<langle>\<rangle> xs = xs" |  | 
|
82  | 
"inorder2 \<langle>l, x, r\<rangle> xs = inorder2 l (x # inorder2 r xs)"  | 
|
83  | 
||
| 64925 | 84  | 
fun postorder :: "'a tree \<Rightarrow> 'a list" where  | 
85  | 
"postorder \<langle>\<rangle> = []" |  | 
|
86  | 
"postorder \<langle>l, x, r\<rangle> = postorder l @ postorder r @ [x]"  | 
|
87  | 
||
| 63861 | 88  | 
text\<open>Binary Search Tree:\<close>  | 
| 66606 | 89  | 
fun bst_wrt :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a tree \<Rightarrow> bool" where
 | 
90  | 
"bst_wrt P \<langle>\<rangle> \<longleftrightarrow> True" |  | 
|
91  | 
"bst_wrt P \<langle>l, a, r\<rangle> \<longleftrightarrow>  | 
|
92  | 
bst_wrt P l \<and> bst_wrt P r \<and> (\<forall>x\<in>set_tree l. P x a) \<and> (\<forall>x\<in>set_tree r. P a x)"  | 
|
| 63861 | 93  | 
|
| 66606 | 94  | 
abbreviation bst :: "('a::linorder) tree \<Rightarrow> bool" where
 | 
| 67399 | 95  | 
"bst \<equiv> bst_wrt (<)"  | 
| 63861 | 96  | 
|
97  | 
fun (in linorder) heap :: "'a tree \<Rightarrow> bool" where  | 
|
98  | 
"heap Leaf = True" |  | 
|
99  | 
"heap (Node l m r) =  | 
|
100  | 
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))"  | 
|
101  | 
||
102  | 
||
| 69593 | 103  | 
subsection \<open>\<^const>\<open>map_tree\<close>\<close>  | 
| 65339 | 104  | 
|
| 65340 | 105  | 
lemma eq_map_tree_Leaf[simp]: "map_tree f t = Leaf \<longleftrightarrow> t = Leaf"  | 
| 65339 | 106  | 
by (rule tree.map_disc_iff)  | 
107  | 
||
| 65340 | 108  | 
lemma eq_Leaf_map_tree[simp]: "Leaf = map_tree f t \<longleftrightarrow> t = Leaf"  | 
| 65339 | 109  | 
by (cases t) auto  | 
110  | 
||
111  | 
||
| 69593 | 112  | 
subsection \<open>\<^const>\<open>size\<close>\<close>  | 
| 63861 | 113  | 
|
| 68998 | 114  | 
lemma size1_size: "size1 t = size t + 1"  | 
115  | 
by (induction t) simp_all  | 
|
| 58438 | 116  | 
|
| 62650 | 117  | 
lemma size1_ge0[simp]: "0 < size1 t"  | 
| 68998 | 118  | 
by (simp add: size1_size)  | 
| 62650 | 119  | 
|
| 65340 | 120  | 
lemma eq_size_0[simp]: "size t = 0 \<longleftrightarrow> t = Leaf"  | 
| 65339 | 121  | 
by(cases t) auto  | 
122  | 
||
| 65340 | 123  | 
lemma eq_0_size[simp]: "0 = size t \<longleftrightarrow> t = Leaf"  | 
| 60505 | 124  | 
by(cases t) auto  | 
125  | 
||
| 58424 | 126  | 
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)"  | 
127  | 
by (cases t) auto  | 
|
| 57530 | 128  | 
|
| 59776 | 129  | 
lemma size_map_tree[simp]: "size (map_tree f t) = size t"  | 
130  | 
by (induction t) auto  | 
|
131  | 
||
132  | 
lemma size1_map_tree[simp]: "size1 (map_tree f t) = size1 t"  | 
|
| 68998 | 133  | 
by (simp add: size1_size)  | 
| 59776 | 134  | 
|
135  | 
||
| 69593 | 136  | 
subsection \<open>\<^const>\<open>set_tree\<close>\<close>  | 
| 65339 | 137  | 
|
| 65340 | 138  | 
lemma eq_set_tree_empty[simp]: "set_tree t = {} \<longleftrightarrow> t = Leaf"
 | 
| 65339 | 139  | 
by (cases t) auto  | 
140  | 
||
| 65340 | 141  | 
lemma eq_empty_set_tree[simp]: "{} = set_tree t \<longleftrightarrow> t = Leaf"
 | 
| 65339 | 142  | 
by (cases t) auto  | 
143  | 
||
144  | 
lemma finite_set_tree[simp]: "finite(set_tree t)"  | 
|
145  | 
by(induction t) auto  | 
|
146  | 
||
147  | 
||
| 69593 | 148  | 
subsection \<open>\<^const>\<open>subtrees\<close>\<close>  | 
| 
60808
 
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
 
nipkow 
parents: 
60507 
diff
changeset
 | 
149  | 
|
| 65340 | 150  | 
lemma neq_subtrees_empty[simp]: "subtrees t \<noteq> {}"
 | 
151  | 
by (cases t)(auto)  | 
|
152  | 
||
153  | 
lemma neq_empty_subtrees[simp]: "{} \<noteq> subtrees t"
 | 
|
154  | 
by (cases t)(auto)  | 
|
155  | 
||
| 72313 | 156  | 
lemma size_subtrees: "s \<in> subtrees t \<Longrightarrow> size s \<le> size t"  | 
157  | 
by(induction t)(auto)  | 
|
158  | 
||
| 63861 | 159  | 
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t"  | 
160  | 
by (induction t)(auto)  | 
|
| 59776 | 161  | 
|
| 63861 | 162  | 
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t"  | 
163  | 
by (induction t) auto  | 
|
| 59776 | 164  | 
|
| 63861 | 165  | 
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t"  | 
166  | 
by (metis Node_notin_subtrees_if)  | 
|
| 
60808
 
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
 
nipkow 
parents: 
60507 
diff
changeset
 | 
167  | 
|
| 63861 | 168  | 
|
| 69593 | 169  | 
subsection \<open>\<^const>\<open>height\<close> and \<^const>\<open>min_height\<close>\<close>  | 
| 
60808
 
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
 
nipkow 
parents: 
60507 
diff
changeset
 | 
170  | 
|
| 65340 | 171  | 
lemma eq_height_0[simp]: "height t = 0 \<longleftrightarrow> t = Leaf"  | 
| 65339 | 172  | 
by(cases t) auto  | 
173  | 
||
| 65340 | 174  | 
lemma eq_0_height[simp]: "0 = height t \<longleftrightarrow> t = Leaf"  | 
| 63665 | 175  | 
by(cases t) auto  | 
176  | 
||
| 
60808
 
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
 
nipkow 
parents: 
60507 
diff
changeset
 | 
177  | 
lemma height_map_tree[simp]: "height (map_tree f t) = height t"  | 
| 59776 | 178  | 
by (induction t) auto  | 
179  | 
||
| 64414 | 180  | 
lemma height_le_size_tree: "height t \<le> size (t::'a tree)"  | 
181  | 
by (induction t) auto  | 
|
182  | 
||
| 64533 | 183  | 
lemma size1_height: "size1 t \<le> 2 ^ height (t::'a tree)"  | 
| 62202 | 184  | 
proof(induction t)  | 
185  | 
case (Node l a r)  | 
|
186  | 
show ?case  | 
|
187  | 
proof (cases "height l \<le> height r")  | 
|
188  | 
case True  | 
|
| 64533 | 189  | 
have "size1(Node l a r) = size1 l + size1 r" by simp  | 
| 64918 | 190  | 
also have "\<dots> \<le> 2 ^ height l + 2 ^ height r" using Node.IH by arith  | 
191  | 
also have "\<dots> \<le> 2 ^ height r + 2 ^ height r" using True by simp  | 
|
| 64922 | 192  | 
also have "\<dots> = 2 ^ height (Node l a r)"  | 
| 64918 | 193  | 
using True by (auto simp: max_def mult_2)  | 
194  | 
finally show ?thesis .  | 
|
| 62202 | 195  | 
next  | 
196  | 
case False  | 
|
| 64533 | 197  | 
have "size1(Node l a r) = size1 l + size1 r" by simp  | 
| 64918 | 198  | 
also have "\<dots> \<le> 2 ^ height l + 2 ^ height r" using Node.IH by arith  | 
199  | 
also have "\<dots> \<le> 2 ^ height l + 2 ^ height l" using False by simp  | 
|
| 62202 | 200  | 
finally show ?thesis using False by (auto simp: max_def mult_2)  | 
201  | 
qed  | 
|
202  | 
qed simp  | 
|
203  | 
||
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
204  | 
corollary size_height: "size t \<le> 2 ^ height (t::'a tree) - 1"  | 
| 68998 | 205  | 
using size1_height[of t, unfolded size1_size] by(arith)  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
206  | 
|
| 63861 | 207  | 
lemma height_subtrees: "s \<in> subtrees t \<Longrightarrow> height s \<le> height t"  | 
208  | 
by (induction t) auto  | 
|
| 57687 | 209  | 
|
| 63598 | 210  | 
|
| 64540 | 211  | 
lemma min_height_le_height: "min_height t \<le> height t"  | 
| 63598 | 212  | 
by(induction t) auto  | 
213  | 
||
214  | 
lemma min_height_map_tree[simp]: "min_height (map_tree f t) = min_height t"  | 
|
215  | 
by (induction t) auto  | 
|
216  | 
||
| 64533 | 217  | 
lemma min_height_size1: "2 ^ min_height t \<le> size1 t"  | 
| 63598 | 218  | 
proof(induction t)  | 
219  | 
case (Node l a r)  | 
|
220  | 
have "(2::nat) ^ min_height (Node l a r) \<le> 2 ^ min_height l + 2 ^ min_height r"  | 
|
221  | 
by (simp add: min_def)  | 
|
| 64533 | 222  | 
also have "\<dots> \<le> size1(Node l a r)" using Node.IH by simp  | 
| 63598 | 223  | 
finally show ?case .  | 
224  | 
qed simp  | 
|
225  | 
||
226  | 
||
| 69593 | 227  | 
subsection \<open>\<^const>\<open>complete\<close>\<close>  | 
| 63036 | 228  | 
|
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
229  | 
lemma complete_iff_height: "complete t \<longleftrightarrow> (min_height t = height t)"  | 
| 63598 | 230  | 
apply(induction t)  | 
231  | 
apply simp  | 
|
232  | 
apply (simp add: min_def max_def)  | 
|
| 64540 | 233  | 
by (metis le_antisym le_trans min_height_le_height)  | 
| 63598 | 234  | 
|
| 63770 | 235  | 
lemma size1_if_complete: "complete t \<Longrightarrow> size1 t = 2 ^ height t"  | 
| 63036 | 236  | 
by (induction t) auto  | 
237  | 
||
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
238  | 
lemma size_if_complete: "complete t \<Longrightarrow> size t = 2 ^ height t - 1"  | 
| 68998 | 239  | 
using size1_if_complete[simplified size1_size] by fastforce  | 
| 63770 | 240  | 
|
| 69117 | 241  | 
lemma size1_height_if_incomplete:  | 
242  | 
"\<not> complete t \<Longrightarrow> size1 t < 2 ^ height t"  | 
|
243  | 
proof(induction t)  | 
|
244  | 
case Leaf thus ?case by simp  | 
|
| 63770 | 245  | 
next  | 
| 69117 | 246  | 
case (Node l x r)  | 
247  | 
have 1: ?case if h: "height l < height r"  | 
|
248  | 
using h size1_height[of l] size1_height[of r] power_strict_increasing[OF h, of "2::nat"]  | 
|
249  | 
by(auto simp: max_def simp del: power_strict_increasing_iff)  | 
|
250  | 
have 2: ?case if h: "height l > height r"  | 
|
251  | 
using h size1_height[of l] size1_height[of r] power_strict_increasing[OF h, of "2::nat"]  | 
|
252  | 
by(auto simp: max_def simp del: power_strict_increasing_iff)  | 
|
253  | 
have 3: ?case if h: "height l = height r" and c: "\<not> complete l"  | 
|
254  | 
using h size1_height[of r] Node.IH(1)[OF c] by(simp)  | 
|
255  | 
have 4: ?case if h: "height l = height r" and c: "\<not> complete r"  | 
|
256  | 
using h size1_height[of l] Node.IH(2)[OF c] by(simp)  | 
|
257  | 
from 1 2 3 4 Node.prems show ?case apply (simp add: max_def) by linarith  | 
|
| 63770 | 258  | 
qed  | 
259  | 
||
| 69117 | 260  | 
lemma complete_iff_min_height: "complete t \<longleftrightarrow> (height t = min_height t)"  | 
261  | 
by(auto simp add: complete_iff_height)  | 
|
262  | 
||
263  | 
lemma min_height_size1_if_incomplete:  | 
|
264  | 
"\<not> complete t \<Longrightarrow> 2 ^ min_height t < size1 t"  | 
|
265  | 
proof(induction t)  | 
|
266  | 
case Leaf thus ?case by simp  | 
|
267  | 
next  | 
|
268  | 
case (Node l x r)  | 
|
269  | 
have 1: ?case if h: "min_height l < min_height r"  | 
|
270  | 
using h min_height_size1[of l] min_height_size1[of r] power_strict_increasing[OF h, of "2::nat"]  | 
|
271  | 
by(auto simp: max_def simp del: power_strict_increasing_iff)  | 
|
272  | 
have 2: ?case if h: "min_height l > min_height r"  | 
|
273  | 
using h min_height_size1[of l] min_height_size1[of r] power_strict_increasing[OF h, of "2::nat"]  | 
|
274  | 
by(auto simp: max_def simp del: power_strict_increasing_iff)  | 
|
275  | 
have 3: ?case if h: "min_height l = min_height r" and c: "\<not> complete l"  | 
|
276  | 
using h min_height_size1[of r] Node.IH(1)[OF c] by(simp add: complete_iff_min_height)  | 
|
277  | 
have 4: ?case if h: "min_height l = min_height r" and c: "\<not> complete r"  | 
|
278  | 
using h min_height_size1[of l] Node.IH(2)[OF c] by(simp add: complete_iff_min_height)  | 
|
279  | 
from 1 2 3 4 Node.prems show ?case  | 
|
280  | 
by (fastforce simp: complete_iff_min_height[THEN iffD1])  | 
|
281  | 
qed  | 
|
282  | 
||
283  | 
lemma complete_if_size1_height: "size1 t = 2 ^ height t \<Longrightarrow> complete t"  | 
|
284  | 
using size1_height_if_incomplete by fastforce  | 
|
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
285  | 
|
| 64533 | 286  | 
lemma complete_if_size1_min_height: "size1 t = 2 ^ min_height t \<Longrightarrow> complete t"  | 
| 69117 | 287  | 
using min_height_size1_if_incomplete by fastforce  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
288  | 
|
| 64533 | 289  | 
lemma complete_iff_size1: "complete t \<longleftrightarrow> size1 t = 2 ^ height t"  | 
290  | 
using complete_if_size1_height size1_if_complete by blast  | 
|
291  | 
||
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
292  | 
|
| 69593 | 293  | 
subsection \<open>\<^const>\<open>balanced\<close>\<close>  | 
| 63861 | 294  | 
|
295  | 
lemma balanced_subtreeL: "balanced (Node l x r) \<Longrightarrow> balanced l"  | 
|
296  | 
by(simp add: balanced_def)  | 
|
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
297  | 
|
| 63861 | 298  | 
lemma balanced_subtreeR: "balanced (Node l x r) \<Longrightarrow> balanced r"  | 
299  | 
by(simp add: balanced_def)  | 
|
300  | 
||
301  | 
lemma balanced_subtrees: "\<lbrakk> balanced t; s \<in> subtrees t \<rbrakk> \<Longrightarrow> balanced s"  | 
|
302  | 
using [[simp_depth_limit=1]]  | 
|
303  | 
by(induction t arbitrary: s)  | 
|
304  | 
(auto simp add: balanced_subtreeL balanced_subtreeR)  | 
|
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
305  | 
|
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
306  | 
text\<open>Balanced trees have optimal height:\<close>  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
307  | 
|
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
308  | 
lemma balanced_optimal:  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
309  | 
fixes t :: "'a tree" and t' :: "'b tree"  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
310  | 
assumes "balanced t" "size t \<le> size t'" shows "height t \<le> height t'"  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
311  | 
proof (cases "complete t")  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
312  | 
case True  | 
| 64924 | 313  | 
have "(2::nat) ^ height t \<le> 2 ^ height t'"  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
314  | 
proof -  | 
| 64924 | 315  | 
have "2 ^ height t = size1 t"  | 
| 69115 | 316  | 
using True by (simp add: size1_if_complete)  | 
| 68998 | 317  | 
also have "\<dots> \<le> size1 t'" using assms(2) by(simp add: size1_size)  | 
| 64924 | 318  | 
also have "\<dots> \<le> 2 ^ height t'" by (rule size1_height)  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
319  | 
finally show ?thesis .  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
320  | 
qed  | 
| 64924 | 321  | 
thus ?thesis by (simp)  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
322  | 
next  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
323  | 
case False  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
324  | 
have "(2::nat) ^ min_height t < 2 ^ height t'"  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
325  | 
proof -  | 
| 64533 | 326  | 
have "(2::nat) ^ min_height t < size1 t"  | 
327  | 
by(rule min_height_size1_if_incomplete[OF False])  | 
|
| 68998 | 328  | 
also have "\<dots> \<le> size1 t'" using assms(2) by (simp add: size1_size)  | 
| 64918 | 329  | 
also have "\<dots> \<le> 2 ^ height t'" by(rule size1_height)  | 
330  | 
finally have "(2::nat) ^ min_height t < (2::nat) ^ height t'" .  | 
|
| 64924 | 331  | 
thus ?thesis .  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
332  | 
qed  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
333  | 
hence *: "min_height t < height t'" by simp  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
334  | 
have "min_height t + 1 = height t"  | 
| 64540 | 335  | 
using min_height_le_height[of t] assms(1) False  | 
| 63829 | 336  | 
by (simp add: complete_iff_height balanced_def)  | 
| 
63755
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
337  | 
with * show ?thesis by arith  | 
| 
 
182c111190e5
Renamed balanced to complete; added balanced; more about both
 
nipkow 
parents: 
63665 
diff
changeset
 | 
338  | 
qed  | 
| 63036 | 339  | 
|
340  | 
||
| 69593 | 341  | 
subsection \<open>\<^const>\<open>wbalanced\<close>\<close>  | 
| 63861 | 342  | 
|
343  | 
lemma wbalanced_subtrees: "\<lbrakk> wbalanced t; s \<in> subtrees t \<rbrakk> \<Longrightarrow> wbalanced s"  | 
|
344  | 
using [[simp_depth_limit=1]] by(induction t arbitrary: s) auto  | 
|
345  | 
||
346  | 
||
| 69593 | 347  | 
subsection \<open>\<^const>\<open>ipl\<close>\<close>  | 
| 63413 | 348  | 
|
349  | 
text \<open>The internal path length of a tree:\<close>  | 
|
350  | 
||
| 64923 | 351  | 
lemma ipl_if_complete_int:  | 
352  | 
"complete t \<Longrightarrow> int(ipl t) = (int(height t) - 2) * 2^(height t) + 2"  | 
|
353  | 
apply(induction t)  | 
|
354  | 
apply simp  | 
|
355  | 
apply simp  | 
|
356  | 
apply (simp add: algebra_simps size_if_complete of_nat_diff)  | 
|
357  | 
done  | 
|
| 63413 | 358  | 
|
359  | 
||
| 59776 | 360  | 
subsection "List of entries"  | 
361  | 
||
| 65340 | 362  | 
lemma eq_inorder_Nil[simp]: "inorder t = [] \<longleftrightarrow> t = Leaf"  | 
| 65339 | 363  | 
by (cases t) auto  | 
364  | 
||
| 65340 | 365  | 
lemma eq_Nil_inorder[simp]: "[] = inorder t \<longleftrightarrow> t = Leaf"  | 
| 65339 | 366  | 
by (cases t) auto  | 
367  | 
||
| 
57449
 
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
 
hoelzl 
parents: 
57250 
diff
changeset
 | 
368  | 
lemma set_inorder[simp]: "set (inorder t) = set_tree t"  | 
| 58424 | 369  | 
by (induction t) auto  | 
| 57250 | 370  | 
|
| 59776 | 371  | 
lemma set_preorder[simp]: "set (preorder t) = set_tree t"  | 
372  | 
by (induction t) auto  | 
|
373  | 
||
| 64925 | 374  | 
lemma set_postorder[simp]: "set (postorder t) = set_tree t"  | 
375  | 
by (induction t) auto  | 
|
376  | 
||
| 59776 | 377  | 
lemma length_preorder[simp]: "length (preorder t) = size t"  | 
378  | 
by (induction t) auto  | 
|
379  | 
||
380  | 
lemma length_inorder[simp]: "length (inorder t) = size t"  | 
|
381  | 
by (induction t) auto  | 
|
382  | 
||
| 64925 | 383  | 
lemma length_postorder[simp]: "length (postorder t) = size t"  | 
384  | 
by (induction t) auto  | 
|
385  | 
||
| 59776 | 386  | 
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)"  | 
387  | 
by (induction t) auto  | 
|
388  | 
||
389  | 
lemma inorder_map: "inorder (map_tree f t) = map f (inorder t)"  | 
|
390  | 
by (induction t) auto  | 
|
391  | 
||
| 64925 | 392  | 
lemma postorder_map: "postorder (map_tree f t) = map f (postorder t)"  | 
393  | 
by (induction t) auto  | 
|
394  | 
||
| 63765 | 395  | 
lemma inorder2_inorder: "inorder2 t xs = inorder t @ xs"  | 
396  | 
by (induction t arbitrary: xs) auto  | 
|
397  | 
||
| 57687 | 398  | 
|
| 63861 | 399  | 
subsection \<open>Binary Search Tree\<close>  | 
| 59561 | 400  | 
|
| 66606 | 401  | 
lemma bst_wrt_mono: "(\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> bst_wrt P t \<Longrightarrow> bst_wrt Q t"  | 
| 59928 | 402  | 
by (induction t) (auto)  | 
403  | 
||
| 67399 | 404  | 
lemma bst_wrt_le_if_bst: "bst t \<Longrightarrow> bst_wrt (\<le>) t"  | 
| 66606 | 405  | 
using bst_wrt_mono less_imp_le by blast  | 
406  | 
||
| 67399 | 407  | 
lemma bst_wrt_le_iff_sorted: "bst_wrt (\<le>) t \<longleftrightarrow> sorted (inorder t)"  | 
| 59561 | 408  | 
apply (induction t)  | 
409  | 
apply(simp)  | 
|
| 68109 | 410  | 
by (fastforce simp: sorted_append intro: less_imp_le less_trans)  | 
| 59561 | 411  | 
|
| 67399 | 412  | 
lemma bst_iff_sorted_wrt_less: "bst t \<longleftrightarrow> sorted_wrt (<) (inorder t)"  | 
| 59928 | 413  | 
apply (induction t)  | 
414  | 
apply simp  | 
|
| 68109 | 415  | 
apply (fastforce simp: sorted_wrt_append)  | 
| 59928 | 416  | 
done  | 
417  | 
||
| 59776 | 418  | 
|
| 69593 | 419  | 
subsection \<open>\<^const>\<open>heap\<close>\<close>  | 
| 60505 | 420  | 
|
421  | 
||
| 69593 | 422  | 
subsection \<open>\<^const>\<open>mirror\<close>\<close>  | 
| 59561 | 423  | 
|
424  | 
lemma mirror_Leaf[simp]: "mirror t = \<langle>\<rangle> \<longleftrightarrow> t = \<langle>\<rangle>"  | 
|
425  | 
by (induction t) simp_all  | 
|
426  | 
||
| 65339 | 427  | 
lemma Leaf_mirror[simp]: "\<langle>\<rangle> = mirror t \<longleftrightarrow> t = \<langle>\<rangle>"  | 
428  | 
using mirror_Leaf by fastforce  | 
|
429  | 
||
| 59561 | 430  | 
lemma size_mirror[simp]: "size(mirror t) = size t"  | 
431  | 
by (induction t) simp_all  | 
|
432  | 
||
433  | 
lemma size1_mirror[simp]: "size1(mirror t) = size1 t"  | 
|
| 68998 | 434  | 
by (simp add: size1_size)  | 
| 59561 | 435  | 
|
| 
60808
 
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
 
nipkow 
parents: 
60507 
diff
changeset
 | 
436  | 
lemma height_mirror[simp]: "height(mirror t) = height t"  | 
| 59776 | 437  | 
by (induction t) simp_all  | 
438  | 
||
| 66659 | 439  | 
lemma min_height_mirror [simp]: "min_height (mirror t) = min_height t"  | 
440  | 
by (induction t) simp_all  | 
|
441  | 
||
442  | 
lemma ipl_mirror [simp]: "ipl (mirror t) = ipl t"  | 
|
443  | 
by (induction t) simp_all  | 
|
444  | 
||
| 59776 | 445  | 
lemma inorder_mirror: "inorder(mirror t) = rev(inorder t)"  | 
446  | 
by (induction t) simp_all  | 
|
447  | 
||
448  | 
lemma map_mirror: "map_tree f (mirror t) = mirror (map_tree f t)"  | 
|
449  | 
by (induction t) simp_all  | 
|
450  | 
||
| 59561 | 451  | 
lemma mirror_mirror[simp]: "mirror(mirror t) = t"  | 
452  | 
by (induction t) simp_all  | 
|
453  | 
||
| 57250 | 454  | 
end  |