author | wenzelm |
Thu, 16 Jun 2005 20:30:37 +0200 | |
changeset 16414 | cad2cf55c851 |
parent 15695 | f072119afa4e |
child 17391 | c6338ed6caf8 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
13908 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
18 |
consts |
|
5300 | 19 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" |
14100 | 20 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
15693 | 21 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) |
5300 | 22 |
dom :: "('a ~=> 'b) => 'a set" |
23 |
ran :: "('a ~=> 'b) => 'b set" |
|
24 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
25 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => |
|
14180 | 26 |
('a ~=> 'b)" |
14100 | 27 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b => |
28 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900) |
|
29 |
map_subst::"('a ~=> 'b) => 'b => 'b => |
|
30 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) |
|
13910 | 31 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) |
32 |
||
14739 | 33 |
syntax |
34 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) |
|
35 |
translations |
|
36 |
"f o_m m" == "option_map f o m" |
|
37 |
||
14180 | 38 |
nonterminals |
39 |
maplets maplet |
|
40 |
||
5300 | 41 |
syntax |
14180 | 42 |
empty :: "'a ~=> 'b" |
43 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
|
44 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
45 |
"" :: "maplet => maplets" ("_") |
|
46 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
47 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
48 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 49 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
50 |
syntax (xsymbols) |
14739 | 51 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
52 |
||
53 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55) |
|
54 |
||
14180 | 55 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
56 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
57 |
||
14100 | 58 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" |
59 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) |
|
60 |
map_subst :: "('a ~=> 'b) => 'b => 'b => |
|
61 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) |
|
62 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" |
|
63 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) |
|
5300 | 64 |
|
15693 | 65 |
syntax (latex output) |
15695 | 66 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
67 |
--"requires amssymb!" |
|
15693 | 68 |
|
5300 | 69 |
translations |
13890 | 70 |
"empty" => "_K None" |
71 |
"empty" <= "%x. None" |
|
5300 | 72 |
|
14100 | 73 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
3981 | 74 |
|
14180 | 75 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
76 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
77 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
78 |
"_Map ms" == "_MapUpd empty ms" |
|
79 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
|
80 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
81 |
||
3981 | 82 |
defs |
13908 | 83 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
3981 | 84 |
|
14100 | 85 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
15693 | 86 |
restrict_map_def: "m|`A == %x. if x : A then m x else None" |
14025 | 87 |
|
88 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
14100 | 89 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x" |
90 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
3981 | 91 |
|
13908 | 92 |
dom_def: "dom(m) == {a. m a ~= None}" |
14025 | 93 |
ran_def: "ran(m) == {b. EX a. m a = Some b}" |
3981 | 94 |
|
14376 | 95 |
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" |
13910 | 96 |
|
5183 | 97 |
primrec |
98 |
"map_of [] = empty" |
|
5300 | 99 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
100 |
||
13908 | 101 |
|
14100 | 102 |
subsection {* @{term empty} *} |
13908 | 103 |
|
13910 | 104 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
13908 | 105 |
apply (rule ext) |
106 |
apply (simp (no_asm)) |
|
107 |
done |
|
13910 | 108 |
|
13908 | 109 |
|
110 |
(* FIXME: what is this sum_case nonsense?? *) |
|
13910 | 111 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
13908 | 112 |
apply (rule ext) |
113 |
apply (simp (no_asm) split add: sum.split) |
|
114 |
done |
|
115 |
||
14100 | 116 |
subsection {* @{term map_upd} *} |
13908 | 117 |
|
118 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
119 |
apply (rule ext) |
|
120 |
apply (simp (no_asm_simp)) |
|
121 |
done |
|
122 |
||
13910 | 123 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
13908 | 124 |
apply safe |
14208 | 125 |
apply (drule_tac x = k in fun_cong) |
13908 | 126 |
apply (simp (no_asm_use)) |
127 |
done |
|
128 |
||
14100 | 129 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
130 |
by (drule fun_cong [of _ _ a], auto) |
|
131 |
||
132 |
lemma map_upd_Some_unfold: |
|
133 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
134 |
by auto |
|
135 |
||
15303 | 136 |
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
137 |
by fastsimp |
|
138 |
||
13908 | 139 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
140 |
apply (unfold image_def) |
|
141 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
142 |
apply (rule finite_subset) |
|
14208 | 143 |
prefer 2 apply assumption |
13908 | 144 |
apply auto |
145 |
done |
|
146 |
||
147 |
||
148 |
(* FIXME: what is this sum_case nonsense?? *) |
|
14100 | 149 |
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *} |
13908 | 150 |
|
13910 | 151 |
lemma sum_case_map_upd_empty[simp]: |
152 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
13908 | 153 |
apply (rule ext) |
154 |
apply (simp (no_asm) split add: sum.split) |
|
155 |
done |
|
156 |
||
13910 | 157 |
lemma sum_case_empty_map_upd[simp]: |
158 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
13908 | 159 |
apply (rule ext) |
160 |
apply (simp (no_asm) split add: sum.split) |
|
161 |
done |
|
162 |
||
13910 | 163 |
lemma sum_case_map_upd_map_upd[simp]: |
164 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
13908 | 165 |
apply (rule ext) |
166 |
apply (simp (no_asm) split add: sum.split) |
|
167 |
done |
|
168 |
||
169 |
||
14100 | 170 |
subsection {* @{term chg_map} *} |
13908 | 171 |
|
13910 | 172 |
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" |
14208 | 173 |
by (unfold chg_map_def, auto) |
13908 | 174 |
|
13910 | 175 |
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
14208 | 176 |
by (unfold chg_map_def, auto) |
13908 | 177 |
|
14537 | 178 |
lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b" |
179 |
by (auto simp: chg_map_def split add: option.split) |
|
180 |
||
13908 | 181 |
|
14100 | 182 |
subsection {* @{term map_of} *} |
13908 | 183 |
|
15304 | 184 |
lemma map_of_eq_None_iff: |
185 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
|
186 |
by (induct xys) simp_all |
|
187 |
||
188 |
lemma map_of_is_SomeD: |
|
189 |
"map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
|
190 |
apply(induct xys) |
|
191 |
apply simp |
|
192 |
apply(clarsimp split:if_splits) |
|
193 |
done |
|
194 |
||
195 |
lemma map_of_eq_Some_iff[simp]: |
|
196 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
|
197 |
apply(induct xys) |
|
198 |
apply(simp) |
|
199 |
apply(auto simp:map_of_eq_None_iff[symmetric]) |
|
200 |
done |
|
201 |
||
202 |
lemma Some_eq_map_of_iff[simp]: |
|
203 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
|
204 |
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric]) |
|
205 |
||
206 |
lemma [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
|
207 |
\<Longrightarrow> map_of xys x = Some y" |
|
208 |
apply (induct xys) |
|
209 |
apply simp |
|
210 |
apply force |
|
211 |
done |
|
212 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
213 |
lemma map_of_zip_is_None[simp]: |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
214 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
215 |
by (induct rule:list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
216 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
217 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
15251 | 218 |
apply (induct xys) |
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
219 |
apply (simp_all (no_asm) add: image_constant) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
220 |
apply (rule finite_subset) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
221 |
prefer 2 apply assumption |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
222 |
apply auto |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
223 |
done |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
224 |
|
15369 | 225 |
lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs" |
15251 | 226 |
by (induct "xs", auto) |
13908 | 227 |
|
15369 | 228 |
lemma map_of_mapk_SomeI [rule_format]: |
229 |
"inj f ==> map_of t k = Some x --> |
|
230 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
15251 | 231 |
apply (induct "t") |
13908 | 232 |
apply (auto simp add: inj_eq) |
233 |
done |
|
234 |
||
15369 | 235 |
lemma weak_map_of_SomeI [rule_format]: |
236 |
"(k, x) : set l --> (\<exists>x. map_of l k = Some x)" |
|
15251 | 237 |
by (induct "l", auto) |
13908 | 238 |
|
239 |
lemma map_of_filter_in: |
|
240 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
241 |
apply (rule mp) |
|
14208 | 242 |
prefer 2 apply assumption |
13908 | 243 |
apply (erule thin_rl) |
15251 | 244 |
apply (induct "xs", auto) |
13908 | 245 |
done |
246 |
||
247 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
15251 | 248 |
by (induct "xs", auto) |
13908 | 249 |
|
250 |
||
14100 | 251 |
subsection {* @{term option_map} related *} |
13908 | 252 |
|
13910 | 253 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
13908 | 254 |
apply (rule ext) |
255 |
apply (simp (no_asm)) |
|
256 |
done |
|
257 |
||
13910 | 258 |
lemma option_map_o_map_upd[simp]: |
259 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
13908 | 260 |
apply (rule ext) |
261 |
apply (simp (no_asm)) |
|
262 |
done |
|
263 |
||
264 |
||
14100 | 265 |
subsection {* @{text "++"} *} |
13908 | 266 |
|
14025 | 267 |
lemma map_add_empty[simp]: "m ++ empty = m" |
268 |
apply (unfold map_add_def) |
|
13908 | 269 |
apply (simp (no_asm)) |
270 |
done |
|
271 |
||
14025 | 272 |
lemma empty_map_add[simp]: "empty ++ m = m" |
273 |
apply (unfold map_add_def) |
|
13908 | 274 |
apply (rule ext) |
275 |
apply (simp split add: option.split) |
|
276 |
done |
|
277 |
||
14025 | 278 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
279 |
apply(rule ext) |
|
280 |
apply(simp add: map_add_def split:option.split) |
|
281 |
done |
|
282 |
||
283 |
lemma map_add_Some_iff: |
|
13908 | 284 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
14025 | 285 |
apply (unfold map_add_def) |
13908 | 286 |
apply (simp (no_asm) split add: option.split) |
287 |
done |
|
288 |
||
14025 | 289 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
290 |
declare map_add_SomeD [dest!] |
|
13908 | 291 |
|
14025 | 292 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
14208 | 293 |
by (subst map_add_Some_iff, fast) |
13908 | 294 |
|
14025 | 295 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
296 |
apply (unfold map_add_def) |
|
13908 | 297 |
apply (simp (no_asm) split add: option.split) |
298 |
done |
|
299 |
||
14025 | 300 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
301 |
apply (unfold map_add_def) |
|
14208 | 302 |
apply (rule ext, auto) |
13908 | 303 |
done |
304 |
||
14186 | 305 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
306 |
by(simp add:map_upds_def) |
|
307 |
||
14025 | 308 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
309 |
apply (unfold map_add_def) |
|
15251 | 310 |
apply (induct "xs") |
13908 | 311 |
apply (simp (no_asm)) |
312 |
apply (rule ext) |
|
313 |
apply (simp (no_asm_simp) split add: option.split) |
|
314 |
done |
|
315 |
||
316 |
declare fun_upd_apply [simp del] |
|
14025 | 317 |
lemma finite_range_map_of_map_add: |
318 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
15251 | 319 |
apply (induct "l", auto) |
13908 | 320 |
apply (erule finite_range_updI) |
321 |
done |
|
322 |
declare fun_upd_apply [simp] |
|
323 |
||
15304 | 324 |
lemma inj_on_map_add_dom[iff]: |
325 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
|
326 |
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits) |
|
327 |
||
14100 | 328 |
subsection {* @{term restrict_map} *} |
329 |
||
15693 | 330 |
lemma restrict_map_to_empty[simp]: "m|`{} = empty" |
14186 | 331 |
by(simp add: restrict_map_def) |
332 |
||
15693 | 333 |
lemma restrict_map_empty[simp]: "empty|`D = empty" |
14186 | 334 |
by(simp add: restrict_map_def) |
335 |
||
15693 | 336 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
14100 | 337 |
by (auto simp: restrict_map_def) |
338 |
||
15693 | 339 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
14100 | 340 |
by (auto simp: restrict_map_def) |
341 |
||
15693 | 342 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
14100 | 343 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
344 |
||
15693 | 345 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
14100 | 346 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
347 |
||
15693 | 348 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
14100 | 349 |
by (rule ext, auto simp: restrict_map_def) |
350 |
||
15693 | 351 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
14100 | 352 |
by (rule ext, auto simp: restrict_map_def) |
353 |
||
14186 | 354 |
lemma restrict_fun_upd[simp]: |
15693 | 355 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
14186 | 356 |
by(simp add: restrict_map_def expand_fun_eq) |
357 |
||
358 |
lemma fun_upd_None_restrict[simp]: |
|
15693 | 359 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
14186 | 360 |
by(simp add: restrict_map_def expand_fun_eq) |
361 |
||
362 |
lemma fun_upd_restrict: |
|
15693 | 363 |
"(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
14186 | 364 |
by(simp add: restrict_map_def expand_fun_eq) |
365 |
||
366 |
lemma fun_upd_restrict_conv[simp]: |
|
15693 | 367 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
14186 | 368 |
by(simp add: restrict_map_def expand_fun_eq) |
369 |
||
14100 | 370 |
|
371 |
subsection {* @{term map_upds} *} |
|
14025 | 372 |
|
373 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
374 |
by(simp add:map_upds_def) |
|
375 |
||
376 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
377 |
by(simp add:map_upds_def) |
|
378 |
||
379 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
380 |
by(simp add:map_upds_def) |
|
381 |
||
14187 | 382 |
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
383 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
384 |
apply(induct xs) |
|
385 |
apply(clarsimp simp add:neq_Nil_conv) |
|
14208 | 386 |
apply (case_tac ys, simp, simp) |
14187 | 387 |
done |
388 |
||
389 |
lemma map_upds_list_update2_drop[simp]: |
|
390 |
"\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
391 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
14208 | 392 |
apply (induct xs, simp) |
393 |
apply (case_tac ys, simp) |
|
14187 | 394 |
apply(simp split:nat.split) |
395 |
done |
|
14025 | 396 |
|
397 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
398 |
(f(x|->y))(xs [|->] ys) = |
|
399 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
400 |
else (f(xs [|->] ys))(x|->y))" |
|
14208 | 401 |
apply (induct xs, simp) |
14025 | 402 |
apply(case_tac ys) |
403 |
apply(auto split:split_if simp:fun_upd_twist) |
|
404 |
done |
|
405 |
||
406 |
lemma map_upds_twist [simp]: |
|
407 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
408 |
apply(insert set_take_subset) |
|
409 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
410 |
done |
|
411 |
||
412 |
lemma map_upds_apply_nontin[simp]: |
|
413 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
14208 | 414 |
apply (induct xs, simp) |
14025 | 415 |
apply(case_tac ys) |
416 |
apply(auto simp: map_upd_upds_conv_if) |
|
417 |
done |
|
418 |
||
14300 | 419 |
lemma fun_upds_append_drop[simp]: |
420 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
|
421 |
apply(induct xs) |
|
422 |
apply (simp) |
|
423 |
apply(case_tac ys) |
|
424 |
apply simp_all |
|
425 |
done |
|
426 |
||
427 |
lemma fun_upds_append2_drop[simp]: |
|
428 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
|
429 |
apply(induct xs) |
|
430 |
apply (simp) |
|
431 |
apply(case_tac ys) |
|
432 |
apply simp_all |
|
433 |
done |
|
434 |
||
435 |
||
14186 | 436 |
lemma restrict_map_upds[simp]: "!!m ys. |
437 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
15693 | 438 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
14208 | 439 |
apply (induct xs, simp) |
440 |
apply (case_tac ys, simp) |
|
14186 | 441 |
apply(simp add:Diff_insert[symmetric] insert_absorb) |
442 |
apply(simp add: map_upd_upds_conv_if) |
|
443 |
done |
|
444 |
||
445 |
||
14100 | 446 |
subsection {* @{term map_upd_s} *} |
447 |
||
448 |
lemma map_upd_s_apply [simp]: |
|
449 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)" |
|
450 |
by (simp add: map_upd_s_def) |
|
451 |
||
452 |
lemma map_subst_apply [simp]: |
|
453 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
454 |
by (simp add: map_subst_def) |
|
455 |
||
456 |
subsection {* @{term dom} *} |
|
13908 | 457 |
|
458 |
lemma domI: "m a = Some b ==> a : dom m" |
|
14208 | 459 |
by (unfold dom_def, auto) |
14100 | 460 |
(* declare domI [intro]? *) |
13908 | 461 |
|
15369 | 462 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
14208 | 463 |
by (unfold dom_def, auto) |
13908 | 464 |
|
13910 | 465 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
14208 | 466 |
by (unfold dom_def, auto) |
13908 | 467 |
declare domIff [simp del] |
468 |
||
13910 | 469 |
lemma dom_empty[simp]: "dom empty = {}" |
13908 | 470 |
apply (unfold dom_def) |
471 |
apply (simp (no_asm)) |
|
472 |
done |
|
473 |
||
13910 | 474 |
lemma dom_fun_upd[simp]: |
475 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
476 |
by (simp add:dom_def) blast |
|
13908 | 477 |
|
13937 | 478 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
479 |
apply(induct xys) |
|
480 |
apply(auto simp del:fun_upd_apply) |
|
481 |
done |
|
482 |
||
15304 | 483 |
lemma dom_map_of_conv_image_fst: |
484 |
"dom(map_of xys) = fst ` (set xys)" |
|
485 |
by(force simp: dom_map_of) |
|
486 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
487 |
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
488 |
dom(map_of(zip xs ys)) = set xs" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
489 |
by(induct rule: list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
490 |
|
13908 | 491 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
492 |
apply (unfold dom_def) |
|
15251 | 493 |
apply (induct "l") |
13908 | 494 |
apply (auto simp add: insert_Collect [symmetric]) |
495 |
done |
|
496 |
||
14025 | 497 |
lemma dom_map_upds[simp]: |
498 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
14208 | 499 |
apply (induct xs, simp) |
500 |
apply (case_tac ys, auto) |
|
14025 | 501 |
done |
13910 | 502 |
|
14025 | 503 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
14208 | 504 |
by (unfold dom_def, auto) |
13910 | 505 |
|
15691 | 506 |
lemma dom_override_on[simp]: |
507 |
"dom(override_on f g A) = |
|
508 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
509 |
by(auto simp add: dom_def override_on_def) |
|
13908 | 510 |
|
14027 | 511 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
512 |
apply(rule ext) |
|
513 |
apply(fastsimp simp:map_add_def split:option.split) |
|
514 |
done |
|
515 |
||
14100 | 516 |
subsection {* @{term ran} *} |
517 |
||
518 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
519 |
by (auto simp add: ran_def) |
|
520 |
(* declare ranI [intro]? *) |
|
13908 | 521 |
|
13910 | 522 |
lemma ran_empty[simp]: "ran empty = {}" |
13908 | 523 |
apply (unfold ran_def) |
524 |
apply (simp (no_asm)) |
|
525 |
done |
|
526 |
||
13910 | 527 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
14208 | 528 |
apply (unfold ran_def, auto) |
13908 | 529 |
apply (subgoal_tac "~ (aa = a) ") |
530 |
apply auto |
|
531 |
done |
|
13910 | 532 |
|
14100 | 533 |
subsection {* @{text "map_le"} *} |
13910 | 534 |
|
13912 | 535 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
13910 | 536 |
by(simp add:map_le_def) |
537 |
||
14187 | 538 |
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
539 |
by(force simp add:map_le_def) |
|
540 |
||
13910 | 541 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
542 |
by(fastsimp simp add:map_le_def) |
|
543 |
||
14187 | 544 |
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
545 |
by(force simp add:map_le_def) |
|
546 |
||
13910 | 547 |
lemma map_le_upds[simp]: |
548 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
14208 | 549 |
apply (induct as, simp) |
550 |
apply (case_tac bs, auto) |
|
14025 | 551 |
done |
13908 | 552 |
|
14033 | 553 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
554 |
by (fastsimp simp add: map_le_def dom_def) |
|
555 |
||
556 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
557 |
by (simp add: map_le_def) |
|
558 |
||
14187 | 559 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
560 |
by(force simp add:map_le_def) |
|
14033 | 561 |
|
562 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
563 |
apply (unfold map_le_def) |
|
564 |
apply (rule ext) |
|
14208 | 565 |
apply (case_tac "x \<in> dom f", simp) |
566 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
14033 | 567 |
done |
568 |
||
569 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
570 |
by (fastsimp simp add: map_le_def) |
|
571 |
||
15304 | 572 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
573 |
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits) |
|
574 |
||
15303 | 575 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
576 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
|
577 |
||
578 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
579 |
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits) |
|
580 |
||
3981 | 581 |
end |