| author | haftmann | 
| Tue, 28 Jun 2005 10:24:53 +0200 | |
| changeset 16573 | cc86fd4eeee4 | 
| parent 15695 | f072119afa4e | 
| child 17391 | c6338ed6caf8 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 4 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 5 | |
| 6 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 7 | *) | |
| 8 | ||
| 13914 | 9 | header {* Maps *}
 | 
| 10 | ||
| 15131 | 11 | theory Map | 
| 15140 | 12 | imports List | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 13908 | 15 | types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
 | 
| 14100 | 16 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 17 | |
| 18 | consts | |
| 5300 | 19 | chg_map	:: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
 | 
| 14100 | 20 | map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
 | 
| 15693 | 21 | restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`"  110)
 | 
| 5300 | 22 | dom	:: "('a ~=> 'b) => 'a set"
 | 
| 23 | ran	:: "('a ~=> 'b) => 'b set"
 | |
| 24 | map_of	:: "('a * 'b)list => 'a ~=> 'b"
 | |
| 25 | map_upds:: "('a ~=> 'b) => 'a list => 'b list => 
 | |
| 14180 | 26 | 	    ('a ~=> 'b)"
 | 
| 14100 | 27 | map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
 | 
| 28 | 	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
 | |
| 29 | map_subst::"('a ~=> 'b) => 'b => 'b => 
 | |
| 30 | 	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
 | |
| 13910 | 31 | map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
 | 
| 32 | ||
| 14739 | 33 | syntax | 
| 34 |   fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
 | |
| 35 | translations | |
| 36 | "f o_m m" == "option_map f o m" | |
| 37 | ||
| 14180 | 38 | nonterminals | 
| 39 | maplets maplet | |
| 40 | ||
| 5300 | 41 | syntax | 
| 14180 | 42 | empty :: "'a ~=> 'b" | 
| 43 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | |
| 44 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 45 |   ""         :: "maplet => maplets"             ("_")
 | |
| 46 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 47 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 48 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 49 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 50 | syntax (xsymbols) | 
| 14739 | 51 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 52 | ||
| 53 |   fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55)
 | |
| 54 | ||
| 14180 | 55 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 56 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 57 | ||
| 14100 | 58 |   map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
 | 
| 59 | 				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
 | |
| 60 |   map_subst :: "('a ~=> 'b) => 'b => 'b => 
 | |
| 61 | 	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
 | |
| 62 |  "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
 | |
| 63 | 					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
 | |
| 5300 | 64 | |
| 15693 | 65 | syntax (latex output) | 
| 15695 | 66 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 67 | --"requires amssymb!" | |
| 15693 | 68 | |
| 5300 | 69 | translations | 
| 13890 | 70 | "empty" => "_K None" | 
| 71 | "empty" <= "%x. None" | |
| 5300 | 72 | |
| 14100 | 73 | "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" | 
| 3981 | 74 | |
| 14180 | 75 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 76 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 77 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 78 | "_Map ms" == "_MapUpd empty ms" | |
| 79 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | |
| 80 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 81 | ||
| 3981 | 82 | defs | 
| 13908 | 83 | chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" | 
| 3981 | 84 | |
| 14100 | 85 | map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" | 
| 15693 | 86 | restrict_map_def: "m|`A == %x. if x : A then m x else None" | 
| 14025 | 87 | |
| 88 | map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | |
| 14100 | 89 | map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
 | 
| 90 | map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" | |
| 3981 | 91 | |
| 13908 | 92 | dom_def: "dom(m) == {a. m a ~= None}"
 | 
| 14025 | 93 | ran_def: "ran(m) == {b. EX a. m a = Some b}"
 | 
| 3981 | 94 | |
| 14376 | 95 | map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" | 
| 13910 | 96 | |
| 5183 | 97 | primrec | 
| 98 | "map_of [] = empty" | |
| 5300 | 99 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 100 | ||
| 13908 | 101 | |
| 14100 | 102 | subsection {* @{term empty} *}
 | 
| 13908 | 103 | |
| 13910 | 104 | lemma empty_upd_none[simp]: "empty(x := None) = empty" | 
| 13908 | 105 | apply (rule ext) | 
| 106 | apply (simp (no_asm)) | |
| 107 | done | |
| 13910 | 108 | |
| 13908 | 109 | |
| 110 | (* FIXME: what is this sum_case nonsense?? *) | |
| 13910 | 111 | lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" | 
| 13908 | 112 | apply (rule ext) | 
| 113 | apply (simp (no_asm) split add: sum.split) | |
| 114 | done | |
| 115 | ||
| 14100 | 116 | subsection {* @{term map_upd} *}
 | 
| 13908 | 117 | |
| 118 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 119 | apply (rule ext) | |
| 120 | apply (simp (no_asm_simp)) | |
| 121 | done | |
| 122 | ||
| 13910 | 123 | lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" | 
| 13908 | 124 | apply safe | 
| 14208 | 125 | apply (drule_tac x = k in fun_cong) | 
| 13908 | 126 | apply (simp (no_asm_use)) | 
| 127 | done | |
| 128 | ||
| 14100 | 129 | lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" | 
| 130 | by (drule fun_cong [of _ _ a], auto) | |
| 131 | ||
| 132 | lemma map_upd_Some_unfold: | |
| 133 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | |
| 134 | by auto | |
| 135 | ||
| 15303 | 136 | lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 137 | by fastsimp | |
| 138 | ||
| 13908 | 139 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 140 | apply (unfold image_def) | |
| 141 | apply (simp (no_asm_use) add: full_SetCompr_eq) | |
| 142 | apply (rule finite_subset) | |
| 14208 | 143 | prefer 2 apply assumption | 
| 13908 | 144 | apply auto | 
| 145 | done | |
| 146 | ||
| 147 | ||
| 148 | (* FIXME: what is this sum_case nonsense?? *) | |
| 14100 | 149 | subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
 | 
| 13908 | 150 | |
| 13910 | 151 | lemma sum_case_map_upd_empty[simp]: | 
| 152 | "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" | |
| 13908 | 153 | apply (rule ext) | 
| 154 | apply (simp (no_asm) split add: sum.split) | |
| 155 | done | |
| 156 | ||
| 13910 | 157 | lemma sum_case_empty_map_upd[simp]: | 
| 158 | "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" | |
| 13908 | 159 | apply (rule ext) | 
| 160 | apply (simp (no_asm) split add: sum.split) | |
| 161 | done | |
| 162 | ||
| 13910 | 163 | lemma sum_case_map_upd_map_upd[simp]: | 
| 164 | "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" | |
| 13908 | 165 | apply (rule ext) | 
| 166 | apply (simp (no_asm) split add: sum.split) | |
| 167 | done | |
| 168 | ||
| 169 | ||
| 14100 | 170 | subsection {* @{term chg_map} *}
 | 
| 13908 | 171 | |
| 13910 | 172 | lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" | 
| 14208 | 173 | by (unfold chg_map_def, auto) | 
| 13908 | 174 | |
| 13910 | 175 | lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" | 
| 14208 | 176 | by (unfold chg_map_def, auto) | 
| 13908 | 177 | |
| 14537 | 178 | lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b" | 
| 179 | by (auto simp: chg_map_def split add: option.split) | |
| 180 | ||
| 13908 | 181 | |
| 14100 | 182 | subsection {* @{term map_of} *}
 | 
| 13908 | 183 | |
| 15304 | 184 | lemma map_of_eq_None_iff: | 
| 185 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | |
| 186 | by (induct xys) simp_all | |
| 187 | ||
| 188 | lemma map_of_is_SomeD: | |
| 189 | "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | |
| 190 | apply(induct xys) | |
| 191 | apply simp | |
| 192 | apply(clarsimp split:if_splits) | |
| 193 | done | |
| 194 | ||
| 195 | lemma map_of_eq_Some_iff[simp]: | |
| 196 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | |
| 197 | apply(induct xys) | |
| 198 | apply(simp) | |
| 199 | apply(auto simp:map_of_eq_None_iff[symmetric]) | |
| 200 | done | |
| 201 | ||
| 202 | lemma Some_eq_map_of_iff[simp]: | |
| 203 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | |
| 204 | by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric]) | |
| 205 | ||
| 206 | lemma [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | |
| 207 | \<Longrightarrow> map_of xys x = Some y" | |
| 208 | apply (induct xys) | |
| 209 | apply simp | |
| 210 | apply force | |
| 211 | done | |
| 212 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 213 | lemma map_of_zip_is_None[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 214 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 215 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 216 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 217 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 15251 | 218 | apply (induct xys) | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 219 | apply (simp_all (no_asm) add: image_constant) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 220 | apply (rule finite_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 221 | prefer 2 apply assumption | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 222 | apply auto | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 223 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 224 | |
| 15369 | 225 | lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs" | 
| 15251 | 226 | by (induct "xs", auto) | 
| 13908 | 227 | |
| 15369 | 228 | lemma map_of_mapk_SomeI [rule_format]: | 
| 229 | "inj f ==> map_of t k = Some x --> | |
| 230 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 15251 | 231 | apply (induct "t") | 
| 13908 | 232 | apply (auto simp add: inj_eq) | 
| 233 | done | |
| 234 | ||
| 15369 | 235 | lemma weak_map_of_SomeI [rule_format]: | 
| 236 | "(k, x) : set l --> (\<exists>x. map_of l k = Some x)" | |
| 15251 | 237 | by (induct "l", auto) | 
| 13908 | 238 | |
| 239 | lemma map_of_filter_in: | |
| 240 | "[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" | |
| 241 | apply (rule mp) | |
| 14208 | 242 | prefer 2 apply assumption | 
| 13908 | 243 | apply (erule thin_rl) | 
| 15251 | 244 | apply (induct "xs", auto) | 
| 13908 | 245 | done | 
| 246 | ||
| 247 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" | |
| 15251 | 248 | by (induct "xs", auto) | 
| 13908 | 249 | |
| 250 | ||
| 14100 | 251 | subsection {* @{term option_map} related *}
 | 
| 13908 | 252 | |
| 13910 | 253 | lemma option_map_o_empty[simp]: "option_map f o empty = empty" | 
| 13908 | 254 | apply (rule ext) | 
| 255 | apply (simp (no_asm)) | |
| 256 | done | |
| 257 | ||
| 13910 | 258 | lemma option_map_o_map_upd[simp]: | 
| 259 | "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" | |
| 13908 | 260 | apply (rule ext) | 
| 261 | apply (simp (no_asm)) | |
| 262 | done | |
| 263 | ||
| 264 | ||
| 14100 | 265 | subsection {* @{text "++"} *}
 | 
| 13908 | 266 | |
| 14025 | 267 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 268 | apply (unfold map_add_def) | |
| 13908 | 269 | apply (simp (no_asm)) | 
| 270 | done | |
| 271 | ||
| 14025 | 272 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 273 | apply (unfold map_add_def) | |
| 13908 | 274 | apply (rule ext) | 
| 275 | apply (simp split add: option.split) | |
| 276 | done | |
| 277 | ||
| 14025 | 278 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 279 | apply(rule ext) | |
| 280 | apply(simp add: map_add_def split:option.split) | |
| 281 | done | |
| 282 | ||
| 283 | lemma map_add_Some_iff: | |
| 13908 | 284 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | 
| 14025 | 285 | apply (unfold map_add_def) | 
| 13908 | 286 | apply (simp (no_asm) split add: option.split) | 
| 287 | done | |
| 288 | ||
| 14025 | 289 | lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] | 
| 290 | declare map_add_SomeD [dest!] | |
| 13908 | 291 | |
| 14025 | 292 | lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 14208 | 293 | by (subst map_add_Some_iff, fast) | 
| 13908 | 294 | |
| 14025 | 295 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 296 | apply (unfold map_add_def) | |
| 13908 | 297 | apply (simp (no_asm) split add: option.split) | 
| 298 | done | |
| 299 | ||
| 14025 | 300 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 301 | apply (unfold map_add_def) | |
| 14208 | 302 | apply (rule ext, auto) | 
| 13908 | 303 | done | 
| 304 | ||
| 14186 | 305 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 306 | by(simp add:map_upds_def) | |
| 307 | ||
| 14025 | 308 | lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" | 
| 309 | apply (unfold map_add_def) | |
| 15251 | 310 | apply (induct "xs") | 
| 13908 | 311 | apply (simp (no_asm)) | 
| 312 | apply (rule ext) | |
| 313 | apply (simp (no_asm_simp) split add: option.split) | |
| 314 | done | |
| 315 | ||
| 316 | declare fun_upd_apply [simp del] | |
| 14025 | 317 | lemma finite_range_map_of_map_add: | 
| 318 | "finite (range f) ==> finite (range (f ++ map_of l))" | |
| 15251 | 319 | apply (induct "l", auto) | 
| 13908 | 320 | apply (erule finite_range_updI) | 
| 321 | done | |
| 322 | declare fun_upd_apply [simp] | |
| 323 | ||
| 15304 | 324 | lemma inj_on_map_add_dom[iff]: | 
| 325 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | |
| 326 | by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits) | |
| 327 | ||
| 14100 | 328 | subsection {* @{term restrict_map} *}
 | 
| 329 | ||
| 15693 | 330 | lemma restrict_map_to_empty[simp]: "m|`{} = empty"
 | 
| 14186 | 331 | by(simp add: restrict_map_def) | 
| 332 | ||
| 15693 | 333 | lemma restrict_map_empty[simp]: "empty|`D = empty" | 
| 14186 | 334 | by(simp add: restrict_map_def) | 
| 335 | ||
| 15693 | 336 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 14100 | 337 | by (auto simp: restrict_map_def) | 
| 338 | ||
| 15693 | 339 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 14100 | 340 | by (auto simp: restrict_map_def) | 
| 341 | ||
| 15693 | 342 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 14100 | 343 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 344 | ||
| 15693 | 345 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 14100 | 346 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 347 | ||
| 15693 | 348 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 14100 | 349 | by (rule ext, auto simp: restrict_map_def) | 
| 350 | ||
| 15693 | 351 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 14100 | 352 | by (rule ext, auto simp: restrict_map_def) | 
| 353 | ||
| 14186 | 354 | lemma restrict_fun_upd[simp]: | 
| 15693 | 355 |  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 14186 | 356 | by(simp add: restrict_map_def expand_fun_eq) | 
| 357 | ||
| 358 | lemma fun_upd_None_restrict[simp]: | |
| 15693 | 359 |   "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | 
| 14186 | 360 | by(simp add: restrict_map_def expand_fun_eq) | 
| 361 | ||
| 362 | lemma fun_upd_restrict: | |
| 15693 | 363 |  "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 14186 | 364 | by(simp add: restrict_map_def expand_fun_eq) | 
| 365 | ||
| 366 | lemma fun_upd_restrict_conv[simp]: | |
| 15693 | 367 |  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 14186 | 368 | by(simp add: restrict_map_def expand_fun_eq) | 
| 369 | ||
| 14100 | 370 | |
| 371 | subsection {* @{term map_upds} *}
 | |
| 14025 | 372 | |
| 373 | lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" | |
| 374 | by(simp add:map_upds_def) | |
| 375 | ||
| 376 | lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" | |
| 377 | by(simp add:map_upds_def) | |
| 378 | ||
| 379 | lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 380 | by(simp add:map_upds_def) | |
| 381 | ||
| 14187 | 382 | lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 383 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | |
| 384 | apply(induct xs) | |
| 385 | apply(clarsimp simp add:neq_Nil_conv) | |
| 14208 | 386 | apply (case_tac ys, simp, simp) | 
| 14187 | 387 | done | 
| 388 | ||
| 389 | lemma map_upds_list_update2_drop[simp]: | |
| 390 | "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 391 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 14208 | 392 | apply (induct xs, simp) | 
| 393 | apply (case_tac ys, simp) | |
| 14187 | 394 | apply(simp split:nat.split) | 
| 395 | done | |
| 14025 | 396 | |
| 397 | lemma map_upd_upds_conv_if: "!!x y ys f. | |
| 398 | (f(x|->y))(xs [|->] ys) = | |
| 399 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 400 | else (f(xs [|->] ys))(x|->y))" | |
| 14208 | 401 | apply (induct xs, simp) | 
| 14025 | 402 | apply(case_tac ys) | 
| 403 | apply(auto split:split_if simp:fun_upd_twist) | |
| 404 | done | |
| 405 | ||
| 406 | lemma map_upds_twist [simp]: | |
| 407 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | |
| 408 | apply(insert set_take_subset) | |
| 409 | apply (fastsimp simp add: map_upd_upds_conv_if) | |
| 410 | done | |
| 411 | ||
| 412 | lemma map_upds_apply_nontin[simp]: | |
| 413 | "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" | |
| 14208 | 414 | apply (induct xs, simp) | 
| 14025 | 415 | apply(case_tac ys) | 
| 416 | apply(auto simp: map_upd_upds_conv_if) | |
| 417 | done | |
| 418 | ||
| 14300 | 419 | lemma fun_upds_append_drop[simp]: | 
| 420 | "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | |
| 421 | apply(induct xs) | |
| 422 | apply (simp) | |
| 423 | apply(case_tac ys) | |
| 424 | apply simp_all | |
| 425 | done | |
| 426 | ||
| 427 | lemma fun_upds_append2_drop[simp]: | |
| 428 | "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | |
| 429 | apply(induct xs) | |
| 430 | apply (simp) | |
| 431 | apply(case_tac ys) | |
| 432 | apply simp_all | |
| 433 | done | |
| 434 | ||
| 435 | ||
| 14186 | 436 | lemma restrict_map_upds[simp]: "!!m ys. | 
| 437 | \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 15693 | 438 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | 
| 14208 | 439 | apply (induct xs, simp) | 
| 440 | apply (case_tac ys, simp) | |
| 14186 | 441 | apply(simp add:Diff_insert[symmetric] insert_absorb) | 
| 442 | apply(simp add: map_upd_upds_conv_if) | |
| 443 | done | |
| 444 | ||
| 445 | ||
| 14100 | 446 | subsection {* @{term map_upd_s} *}
 | 
| 447 | ||
| 448 | lemma map_upd_s_apply [simp]: | |
| 449 |   "(m(as{|->}b)) x = (if x : as then Some b else m x)"
 | |
| 450 | by (simp add: map_upd_s_def) | |
| 451 | ||
| 452 | lemma map_subst_apply [simp]: | |
| 453 | "(m(a~>b)) x = (if m x = Some a then Some b else m x)" | |
| 454 | by (simp add: map_subst_def) | |
| 455 | ||
| 456 | subsection {* @{term dom} *}
 | |
| 13908 | 457 | |
| 458 | lemma domI: "m a = Some b ==> a : dom m" | |
| 14208 | 459 | by (unfold dom_def, auto) | 
| 14100 | 460 | (* declare domI [intro]? *) | 
| 13908 | 461 | |
| 15369 | 462 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 14208 | 463 | by (unfold dom_def, auto) | 
| 13908 | 464 | |
| 13910 | 465 | lemma domIff[iff]: "(a : dom m) = (m a ~= None)" | 
| 14208 | 466 | by (unfold dom_def, auto) | 
| 13908 | 467 | declare domIff [simp del] | 
| 468 | ||
| 13910 | 469 | lemma dom_empty[simp]: "dom empty = {}"
 | 
| 13908 | 470 | apply (unfold dom_def) | 
| 471 | apply (simp (no_asm)) | |
| 472 | done | |
| 473 | ||
| 13910 | 474 | lemma dom_fun_upd[simp]: | 
| 475 |  "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | |
| 476 | by (simp add:dom_def) blast | |
| 13908 | 477 | |
| 13937 | 478 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 479 | apply(induct xys) | |
| 480 | apply(auto simp del:fun_upd_apply) | |
| 481 | done | |
| 482 | ||
| 15304 | 483 | lemma dom_map_of_conv_image_fst: | 
| 484 | "dom(map_of xys) = fst ` (set xys)" | |
| 485 | by(force simp: dom_map_of) | |
| 486 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 487 | lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 488 | dom(map_of(zip xs ys)) = set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 489 | by(induct rule: list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 490 | |
| 13908 | 491 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 492 | apply (unfold dom_def) | |
| 15251 | 493 | apply (induct "l") | 
| 13908 | 494 | apply (auto simp add: insert_Collect [symmetric]) | 
| 495 | done | |
| 496 | ||
| 14025 | 497 | lemma dom_map_upds[simp]: | 
| 498 | "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | |
| 14208 | 499 | apply (induct xs, simp) | 
| 500 | apply (case_tac ys, auto) | |
| 14025 | 501 | done | 
| 13910 | 502 | |
| 14025 | 503 | lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" | 
| 14208 | 504 | by (unfold dom_def, auto) | 
| 13910 | 505 | |
| 15691 | 506 | lemma dom_override_on[simp]: | 
| 507 | "dom(override_on f g A) = | |
| 508 |  (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 509 | by(auto simp add: dom_def override_on_def) | |
| 13908 | 510 | |
| 14027 | 511 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 512 | apply(rule ext) | |
| 513 | apply(fastsimp simp:map_add_def split:option.split) | |
| 514 | done | |
| 515 | ||
| 14100 | 516 | subsection {* @{term ran} *}
 | 
| 517 | ||
| 518 | lemma ranI: "m a = Some b ==> b : ran m" | |
| 519 | by (auto simp add: ran_def) | |
| 520 | (* declare ranI [intro]? *) | |
| 13908 | 521 | |
| 13910 | 522 | lemma ran_empty[simp]: "ran empty = {}"
 | 
| 13908 | 523 | apply (unfold ran_def) | 
| 524 | apply (simp (no_asm)) | |
| 525 | done | |
| 526 | ||
| 13910 | 527 | lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 14208 | 528 | apply (unfold ran_def, auto) | 
| 13908 | 529 | apply (subgoal_tac "~ (aa = a) ") | 
| 530 | apply auto | |
| 531 | done | |
| 13910 | 532 | |
| 14100 | 533 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 534 | |
| 13912 | 535 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 13910 | 536 | by(simp add:map_le_def) | 
| 537 | ||
| 14187 | 538 | lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 539 | by(force simp add:map_le_def) | |
| 540 | ||
| 13910 | 541 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 542 | by(fastsimp simp add:map_le_def) | |
| 543 | ||
| 14187 | 544 | lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 545 | by(force simp add:map_le_def) | |
| 546 | ||
| 13910 | 547 | lemma map_le_upds[simp]: | 
| 548 | "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | |
| 14208 | 549 | apply (induct as, simp) | 
| 550 | apply (case_tac bs, auto) | |
| 14025 | 551 | done | 
| 13908 | 552 | |
| 14033 | 553 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 554 | by (fastsimp simp add: map_le_def dom_def) | |
| 555 | ||
| 556 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 557 | by (simp add: map_le_def) | |
| 558 | ||
| 14187 | 559 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 560 | by(force simp add:map_le_def) | |
| 14033 | 561 | |
| 562 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 563 | apply (unfold map_le_def) | |
| 564 | apply (rule ext) | |
| 14208 | 565 | apply (case_tac "x \<in> dom f", simp) | 
| 566 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 14033 | 567 | done | 
| 568 | ||
| 569 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 570 | by (fastsimp simp add: map_le_def) | |
| 571 | ||
| 15304 | 572 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 573 | by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits) | |
| 574 | ||
| 15303 | 575 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 576 | by (fastsimp simp add: map_le_def map_add_def dom_def) | |
| 577 | ||
| 578 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 579 | by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits) | |
| 580 | ||
| 3981 | 581 | end |