| author | aspinall | 
| Fri, 01 Oct 2004 11:51:55 +0200 | |
| changeset 15220 | cc88c8ee4d2f | 
| parent 15140 | 322485b816ac | 
| child 15251 | bb6f072c8d10 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 4 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 5 | |
| 6 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 7 | *) | |
| 8 | ||
| 13914 | 9 | header {* Maps *}
 | 
| 10 | ||
| 15131 | 11 | theory Map | 
| 15140 | 12 | imports List | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 13908 | 15 | types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
 | 
| 14100 | 16 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 17 | |
| 18 | consts | |
| 5300 | 19 | chg_map	:: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
 | 
| 14100 | 20 | map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
 | 
| 21 | restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90)
 | |
| 5300 | 22 | dom	:: "('a ~=> 'b) => 'a set"
 | 
| 23 | ran	:: "('a ~=> 'b) => 'b set"
 | |
| 24 | map_of	:: "('a * 'b)list => 'a ~=> 'b"
 | |
| 25 | map_upds:: "('a ~=> 'b) => 'a list => 'b list => 
 | |
| 14180 | 26 | 	    ('a ~=> 'b)"
 | 
| 14100 | 27 | map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
 | 
| 28 | 	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
 | |
| 29 | map_subst::"('a ~=> 'b) => 'b => 'b => 
 | |
| 30 | 	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
 | |
| 13910 | 31 | map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
 | 
| 32 | ||
| 14739 | 33 | syntax | 
| 34 |   fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
 | |
| 35 | translations | |
| 36 | "f o_m m" == "option_map f o m" | |
| 37 | ||
| 14180 | 38 | nonterminals | 
| 39 | maplets maplet | |
| 40 | ||
| 5300 | 41 | syntax | 
| 14180 | 42 | empty :: "'a ~=> 'b" | 
| 43 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | |
| 44 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 45 |   ""         :: "maplet => maplets"             ("_")
 | |
| 46 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 47 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 48 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 49 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 50 | syntax (xsymbols) | 
| 14739 | 51 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 52 | ||
| 53 |   fun_map_comp :: "('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55)
 | |
| 54 | ||
| 14180 | 55 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 56 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 57 | ||
| 14100 | 58 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90)
 | 
| 59 |   map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
 | |
| 60 | 				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
 | |
| 61 |   map_subst :: "('a ~=> 'b) => 'b => 'b => 
 | |
| 62 | 	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
 | |
| 63 |  "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
 | |
| 64 | 					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
 | |
| 5300 | 65 | |
| 66 | translations | |
| 13890 | 67 | "empty" => "_K None" | 
| 68 | "empty" <= "%x. None" | |
| 5300 | 69 | |
| 14100 | 70 | "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" | 
| 3981 | 71 | |
| 14180 | 72 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 73 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 74 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 75 | "_Map ms" == "_MapUpd empty ms" | |
| 76 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | |
| 77 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 78 | ||
| 3981 | 79 | defs | 
| 13908 | 80 | chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" | 
| 3981 | 81 | |
| 14100 | 82 | map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" | 
| 83 | restrict_map_def: "m|_A == %x. if x : A then m x else None" | |
| 14025 | 84 | |
| 85 | map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | |
| 14100 | 86 | map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
 | 
| 87 | map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" | |
| 3981 | 88 | |
| 13908 | 89 | dom_def: "dom(m) == {a. m a ~= None}"
 | 
| 14025 | 90 | ran_def: "ran(m) == {b. EX a. m a = Some b}"
 | 
| 3981 | 91 | |
| 14376 | 92 | map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" | 
| 13910 | 93 | |
| 5183 | 94 | primrec | 
| 95 | "map_of [] = empty" | |
| 5300 | 96 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 97 | ||
| 13908 | 98 | |
| 14100 | 99 | subsection {* @{term empty} *}
 | 
| 13908 | 100 | |
| 13910 | 101 | lemma empty_upd_none[simp]: "empty(x := None) = empty" | 
| 13908 | 102 | apply (rule ext) | 
| 103 | apply (simp (no_asm)) | |
| 104 | done | |
| 13910 | 105 | |
| 13908 | 106 | |
| 107 | (* FIXME: what is this sum_case nonsense?? *) | |
| 13910 | 108 | lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" | 
| 13908 | 109 | apply (rule ext) | 
| 110 | apply (simp (no_asm) split add: sum.split) | |
| 111 | done | |
| 112 | ||
| 14100 | 113 | subsection {* @{term map_upd} *}
 | 
| 13908 | 114 | |
| 115 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 116 | apply (rule ext) | |
| 117 | apply (simp (no_asm_simp)) | |
| 118 | done | |
| 119 | ||
| 13910 | 120 | lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" | 
| 13908 | 121 | apply safe | 
| 14208 | 122 | apply (drule_tac x = k in fun_cong) | 
| 13908 | 123 | apply (simp (no_asm_use)) | 
| 124 | done | |
| 125 | ||
| 14100 | 126 | lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" | 
| 127 | by (drule fun_cong [of _ _ a], auto) | |
| 128 | ||
| 129 | lemma map_upd_Some_unfold: | |
| 130 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | |
| 131 | by auto | |
| 132 | ||
| 13908 | 133 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 134 | apply (unfold image_def) | |
| 135 | apply (simp (no_asm_use) add: full_SetCompr_eq) | |
| 136 | apply (rule finite_subset) | |
| 14208 | 137 | prefer 2 apply assumption | 
| 13908 | 138 | apply auto | 
| 139 | done | |
| 140 | ||
| 141 | ||
| 142 | (* FIXME: what is this sum_case nonsense?? *) | |
| 14100 | 143 | subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
 | 
| 13908 | 144 | |
| 13910 | 145 | lemma sum_case_map_upd_empty[simp]: | 
| 146 | "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" | |
| 13908 | 147 | apply (rule ext) | 
| 148 | apply (simp (no_asm) split add: sum.split) | |
| 149 | done | |
| 150 | ||
| 13910 | 151 | lemma sum_case_empty_map_upd[simp]: | 
| 152 | "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" | |
| 13908 | 153 | apply (rule ext) | 
| 154 | apply (simp (no_asm) split add: sum.split) | |
| 155 | done | |
| 156 | ||
| 13910 | 157 | lemma sum_case_map_upd_map_upd[simp]: | 
| 158 | "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" | |
| 13908 | 159 | apply (rule ext) | 
| 160 | apply (simp (no_asm) split add: sum.split) | |
| 161 | done | |
| 162 | ||
| 163 | ||
| 14100 | 164 | subsection {* @{term chg_map} *}
 | 
| 13908 | 165 | |
| 13910 | 166 | lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" | 
| 14208 | 167 | by (unfold chg_map_def, auto) | 
| 13908 | 168 | |
| 13910 | 169 | lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" | 
| 14208 | 170 | by (unfold chg_map_def, auto) | 
| 13908 | 171 | |
| 14537 | 172 | lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b" | 
| 173 | by (auto simp: chg_map_def split add: option.split) | |
| 174 | ||
| 13908 | 175 | |
| 14100 | 176 | subsection {* @{term map_of} *}
 | 
| 13908 | 177 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 178 | lemma map_of_zip_is_None[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 179 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 180 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 181 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 182 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 183 | apply (induct_tac xys) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 184 | apply (simp_all (no_asm) add: image_constant) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 185 | apply (rule finite_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 186 | prefer 2 apply assumption | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 187 | apply auto | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 188 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 189 | |
| 13908 | 190 | lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" | 
| 14208 | 191 | by (induct_tac "xs", auto) | 
| 13908 | 192 | |
| 193 | lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> | |
| 194 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 195 | apply (induct_tac "t") | |
| 196 | apply (auto simp add: inj_eq) | |
| 197 | done | |
| 198 | ||
| 199 | lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" | |
| 14208 | 200 | by (induct_tac "l", auto) | 
| 13908 | 201 | |
| 202 | lemma map_of_filter_in: | |
| 203 | "[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" | |
| 204 | apply (rule mp) | |
| 14208 | 205 | prefer 2 apply assumption | 
| 13908 | 206 | apply (erule thin_rl) | 
| 14208 | 207 | apply (induct_tac "xs", auto) | 
| 13908 | 208 | done | 
| 209 | ||
| 210 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" | |
| 14208 | 211 | by (induct_tac "xs", auto) | 
| 13908 | 212 | |
| 213 | ||
| 14100 | 214 | subsection {* @{term option_map} related *}
 | 
| 13908 | 215 | |
| 13910 | 216 | lemma option_map_o_empty[simp]: "option_map f o empty = empty" | 
| 13908 | 217 | apply (rule ext) | 
| 218 | apply (simp (no_asm)) | |
| 219 | done | |
| 220 | ||
| 13910 | 221 | lemma option_map_o_map_upd[simp]: | 
| 222 | "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" | |
| 13908 | 223 | apply (rule ext) | 
| 224 | apply (simp (no_asm)) | |
| 225 | done | |
| 226 | ||
| 227 | ||
| 14100 | 228 | subsection {* @{text "++"} *}
 | 
| 13908 | 229 | |
| 14025 | 230 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 231 | apply (unfold map_add_def) | |
| 13908 | 232 | apply (simp (no_asm)) | 
| 233 | done | |
| 234 | ||
| 14025 | 235 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 236 | apply (unfold map_add_def) | |
| 13908 | 237 | apply (rule ext) | 
| 238 | apply (simp split add: option.split) | |
| 239 | done | |
| 240 | ||
| 14025 | 241 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 242 | apply(rule ext) | |
| 243 | apply(simp add: map_add_def split:option.split) | |
| 244 | done | |
| 245 | ||
| 246 | lemma map_add_Some_iff: | |
| 13908 | 247 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | 
| 14025 | 248 | apply (unfold map_add_def) | 
| 13908 | 249 | apply (simp (no_asm) split add: option.split) | 
| 250 | done | |
| 251 | ||
| 14025 | 252 | lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] | 
| 253 | declare map_add_SomeD [dest!] | |
| 13908 | 254 | |
| 14025 | 255 | lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 14208 | 256 | by (subst map_add_Some_iff, fast) | 
| 13908 | 257 | |
| 14025 | 258 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 259 | apply (unfold map_add_def) | |
| 13908 | 260 | apply (simp (no_asm) split add: option.split) | 
| 261 | done | |
| 262 | ||
| 14025 | 263 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 264 | apply (unfold map_add_def) | |
| 14208 | 265 | apply (rule ext, auto) | 
| 13908 | 266 | done | 
| 267 | ||
| 14186 | 268 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 269 | by(simp add:map_upds_def) | |
| 270 | ||
| 14025 | 271 | lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" | 
| 272 | apply (unfold map_add_def) | |
| 13908 | 273 | apply (induct_tac "xs") | 
| 274 | apply (simp (no_asm)) | |
| 275 | apply (rule ext) | |
| 276 | apply (simp (no_asm_simp) split add: option.split) | |
| 277 | done | |
| 278 | ||
| 279 | declare fun_upd_apply [simp del] | |
| 14025 | 280 | lemma finite_range_map_of_map_add: | 
| 281 | "finite (range f) ==> finite (range (f ++ map_of l))" | |
| 14208 | 282 | apply (induct_tac "l", auto) | 
| 13908 | 283 | apply (erule finite_range_updI) | 
| 284 | done | |
| 285 | declare fun_upd_apply [simp] | |
| 286 | ||
| 14100 | 287 | subsection {* @{term restrict_map} *}
 | 
| 288 | ||
| 14186 | 289 | lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty"
 | 
| 290 | by(simp add: restrict_map_def) | |
| 291 | ||
| 292 | lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty" | |
| 293 | by(simp add: restrict_map_def) | |
| 294 | ||
| 14100 | 295 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" | 
| 296 | by (auto simp: restrict_map_def) | |
| 297 | ||
| 298 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" | |
| 299 | by (auto simp: restrict_map_def) | |
| 300 | ||
| 301 | lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | |
| 302 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | |
| 303 | ||
| 14186 | 304 | lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" | 
| 14100 | 305 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 306 | ||
| 307 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})"
 | |
| 308 | by (rule ext, auto simp: restrict_map_def) | |
| 309 | ||
| 310 | lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" | |
| 311 | by (rule ext, auto simp: restrict_map_def) | |
| 312 | ||
| 14186 | 313 | lemma restrict_fun_upd[simp]: | 
| 314 |  "m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)"
 | |
| 315 | by(simp add: restrict_map_def expand_fun_eq) | |
| 316 | ||
| 317 | lemma fun_upd_None_restrict[simp]: | |
| 318 |   "(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)"
 | |
| 319 | by(simp add: restrict_map_def expand_fun_eq) | |
| 320 | ||
| 321 | lemma fun_upd_restrict: | |
| 322 |  "(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
 | |
| 323 | by(simp add: restrict_map_def expand_fun_eq) | |
| 324 | ||
| 325 | lemma fun_upd_restrict_conv[simp]: | |
| 326 |  "x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
 | |
| 327 | by(simp add: restrict_map_def expand_fun_eq) | |
| 328 | ||
| 14100 | 329 | |
| 330 | subsection {* @{term map_upds} *}
 | |
| 14025 | 331 | |
| 332 | lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" | |
| 333 | by(simp add:map_upds_def) | |
| 334 | ||
| 335 | lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" | |
| 336 | by(simp add:map_upds_def) | |
| 337 | ||
| 338 | lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 339 | by(simp add:map_upds_def) | |
| 340 | ||
| 14187 | 341 | lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 342 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | |
| 343 | apply(induct xs) | |
| 344 | apply(clarsimp simp add:neq_Nil_conv) | |
| 14208 | 345 | apply (case_tac ys, simp, simp) | 
| 14187 | 346 | done | 
| 347 | ||
| 348 | lemma map_upds_list_update2_drop[simp]: | |
| 349 | "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 350 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 14208 | 351 | apply (induct xs, simp) | 
| 352 | apply (case_tac ys, simp) | |
| 14187 | 353 | apply(simp split:nat.split) | 
| 354 | done | |
| 14025 | 355 | |
| 356 | lemma map_upd_upds_conv_if: "!!x y ys f. | |
| 357 | (f(x|->y))(xs [|->] ys) = | |
| 358 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 359 | else (f(xs [|->] ys))(x|->y))" | |
| 14208 | 360 | apply (induct xs, simp) | 
| 14025 | 361 | apply(case_tac ys) | 
| 362 | apply(auto split:split_if simp:fun_upd_twist) | |
| 363 | done | |
| 364 | ||
| 365 | lemma map_upds_twist [simp]: | |
| 366 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | |
| 367 | apply(insert set_take_subset) | |
| 368 | apply (fastsimp simp add: map_upd_upds_conv_if) | |
| 369 | done | |
| 370 | ||
| 371 | lemma map_upds_apply_nontin[simp]: | |
| 372 | "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" | |
| 14208 | 373 | apply (induct xs, simp) | 
| 14025 | 374 | apply(case_tac ys) | 
| 375 | apply(auto simp: map_upd_upds_conv_if) | |
| 376 | done | |
| 377 | ||
| 14300 | 378 | lemma fun_upds_append_drop[simp]: | 
| 379 | "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | |
| 380 | apply(induct xs) | |
| 381 | apply (simp) | |
| 382 | apply(case_tac ys) | |
| 383 | apply simp_all | |
| 384 | done | |
| 385 | ||
| 386 | lemma fun_upds_append2_drop[simp]: | |
| 387 | "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | |
| 388 | apply(induct xs) | |
| 389 | apply (simp) | |
| 390 | apply(case_tac ys) | |
| 391 | apply simp_all | |
| 392 | done | |
| 393 | ||
| 394 | ||
| 14186 | 395 | lemma restrict_map_upds[simp]: "!!m ys. | 
| 396 | \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 397 | \<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)" | |
| 14208 | 398 | apply (induct xs, simp) | 
| 399 | apply (case_tac ys, simp) | |
| 14186 | 400 | apply(simp add:Diff_insert[symmetric] insert_absorb) | 
| 401 | apply(simp add: map_upd_upds_conv_if) | |
| 402 | done | |
| 403 | ||
| 404 | ||
| 14100 | 405 | subsection {* @{term map_upd_s} *}
 | 
| 406 | ||
| 407 | lemma map_upd_s_apply [simp]: | |
| 408 |   "(m(as{|->}b)) x = (if x : as then Some b else m x)"
 | |
| 409 | by (simp add: map_upd_s_def) | |
| 410 | ||
| 411 | lemma map_subst_apply [simp]: | |
| 412 | "(m(a~>b)) x = (if m x = Some a then Some b else m x)" | |
| 413 | by (simp add: map_subst_def) | |
| 414 | ||
| 415 | subsection {* @{term dom} *}
 | |
| 13908 | 416 | |
| 417 | lemma domI: "m a = Some b ==> a : dom m" | |
| 14208 | 418 | by (unfold dom_def, auto) | 
| 14100 | 419 | (* declare domI [intro]? *) | 
| 13908 | 420 | |
| 421 | lemma domD: "a : dom m ==> ? b. m a = Some b" | |
| 14208 | 422 | by (unfold dom_def, auto) | 
| 13908 | 423 | |
| 13910 | 424 | lemma domIff[iff]: "(a : dom m) = (m a ~= None)" | 
| 14208 | 425 | by (unfold dom_def, auto) | 
| 13908 | 426 | declare domIff [simp del] | 
| 427 | ||
| 13910 | 428 | lemma dom_empty[simp]: "dom empty = {}"
 | 
| 13908 | 429 | apply (unfold dom_def) | 
| 430 | apply (simp (no_asm)) | |
| 431 | done | |
| 432 | ||
| 13910 | 433 | lemma dom_fun_upd[simp]: | 
| 434 |  "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | |
| 435 | by (simp add:dom_def) blast | |
| 13908 | 436 | |
| 13937 | 437 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 438 | apply(induct xys) | |
| 439 | apply(auto simp del:fun_upd_apply) | |
| 440 | done | |
| 441 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 442 | lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 443 | dom(map_of(zip xs ys)) = set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 444 | by(induct rule: list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 445 | |
| 13908 | 446 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 447 | apply (unfold dom_def) | |
| 448 | apply (induct_tac "l") | |
| 449 | apply (auto simp add: insert_Collect [symmetric]) | |
| 450 | done | |
| 451 | ||
| 14025 | 452 | lemma dom_map_upds[simp]: | 
| 453 | "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | |
| 14208 | 454 | apply (induct xs, simp) | 
| 455 | apply (case_tac ys, auto) | |
| 14025 | 456 | done | 
| 13910 | 457 | |
| 14025 | 458 | lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" | 
| 14208 | 459 | by (unfold dom_def, auto) | 
| 13910 | 460 | |
| 461 | lemma dom_overwrite[simp]: | |
| 462 |  "dom(f(g|A)) = (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 463 | by(auto simp add: dom_def overwrite_def) | |
| 13908 | 464 | |
| 14027 | 465 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 466 | apply(rule ext) | |
| 467 | apply(fastsimp simp:map_add_def split:option.split) | |
| 468 | done | |
| 469 | ||
| 14100 | 470 | subsection {* @{term ran} *}
 | 
| 471 | ||
| 472 | lemma ranI: "m a = Some b ==> b : ran m" | |
| 473 | by (auto simp add: ran_def) | |
| 474 | (* declare ranI [intro]? *) | |
| 13908 | 475 | |
| 13910 | 476 | lemma ran_empty[simp]: "ran empty = {}"
 | 
| 13908 | 477 | apply (unfold ran_def) | 
| 478 | apply (simp (no_asm)) | |
| 479 | done | |
| 480 | ||
| 13910 | 481 | lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 14208 | 482 | apply (unfold ran_def, auto) | 
| 13908 | 483 | apply (subgoal_tac "~ (aa = a) ") | 
| 484 | apply auto | |
| 485 | done | |
| 13910 | 486 | |
| 14100 | 487 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 488 | |
| 13912 | 489 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 13910 | 490 | by(simp add:map_le_def) | 
| 491 | ||
| 14187 | 492 | lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 493 | by(force simp add:map_le_def) | |
| 494 | ||
| 13910 | 495 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 496 | by(fastsimp simp add:map_le_def) | |
| 497 | ||
| 14187 | 498 | lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 499 | by(force simp add:map_le_def) | |
| 500 | ||
| 13910 | 501 | lemma map_le_upds[simp]: | 
| 502 | "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | |
| 14208 | 503 | apply (induct as, simp) | 
| 504 | apply (case_tac bs, auto) | |
| 14025 | 505 | done | 
| 13908 | 506 | |
| 14033 | 507 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 508 | by (fastsimp simp add: map_le_def dom_def) | |
| 509 | ||
| 510 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 511 | by (simp add: map_le_def) | |
| 512 | ||
| 14187 | 513 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 514 | by(force simp add:map_le_def) | |
| 14033 | 515 | |
| 516 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 517 | apply (unfold map_le_def) | |
| 518 | apply (rule ext) | |
| 14208 | 519 | apply (case_tac "x \<in> dom f", simp) | 
| 520 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 14033 | 521 | done | 
| 522 | ||
| 523 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 524 | by (fastsimp simp add: map_le_def) | |
| 525 | ||
| 3981 | 526 | end |