| author | nipkow | 
| Tue, 11 Oct 2022 10:45:42 +0200 | |
| changeset 76259 | d1c26efb7a47 | 
| parent 69913 | ca515cf61651 | 
| child 80129 | 601ff5c7cad5 | 
| permissions | -rw-r--r-- | 
| 19494 | 1 | theory Nominal | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
63167diff
changeset | 2 | imports "HOL-Library.Infinite_Set" "HOL-Library.Old_Datatype" | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 3 | keywords | 
| 69913 | 4 | "atom_decl" :: thy_decl and | 
| 5 | "nominal_datatype" :: thy_defn and | |
| 6 | "equivariance" :: thy_decl and | |
| 7 | "nominal_primrec" "nominal_inductive" "nominal_inductive2" :: thy_goal_defn and | |
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 8 | "avoids" | 
| 44689 | 9 | begin | 
| 17870 | 10 | |
| 61260 | 11 | declare [[typedef_overloaded]] | 
| 12 | ||
| 13 | ||
| 63167 | 14 | section \<open>Permutations\<close> | 
| 17870 | 15 | (*======================*) | 
| 16 | ||
| 41798 | 17 | type_synonym | 
| 17870 | 18 |   'x prm = "('x \<times> 'x) list"
 | 
| 19 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 20 | (* polymorphic constants for permutation and swapping *) | 
| 17870 | 21 | consts | 
| 69597 | 22 | perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) | 
| 17870 | 23 |   swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
 | 
| 24 | ||
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 25 | (* a "private" copy of the option type used in the abstraction function *) | 
| 58310 | 26 | datatype 'a noption = nSome 'a | nNone | 
| 58238 | 27 | |
| 28 | datatype_compat noption | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 29 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 30 | (* a "private" copy of the product type used in the nominal induct method *) | 
| 58310 | 31 | datatype ('a, 'b) nprod = nPair 'a 'b
 | 
| 58238 | 32 | |
| 33 | datatype_compat nprod | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 34 | |
| 24544 | 35 | (* an auxiliary constant for the decision procedure involving *) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 36 | (* permutations (to avoid loops when using perm-compositions) *) | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 37 | definition | 
| 44683 | 38 | "perm_aux pi x = pi\<bullet>x" | 
| 19477 | 39 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 40 | (* overloaded permutation operations *) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 41 | overloading | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 42 |   perm_fun    \<equiv> "perm :: 'x prm \<Rightarrow> ('a\<Rightarrow>'b) \<Rightarrow> ('a\<Rightarrow>'b)"   (unchecked)
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 43 | perm_bool \<equiv> "perm :: 'x prm \<Rightarrow> bool \<Rightarrow> bool" (unchecked) | 
| 45961 | 44 | perm_set \<equiv> "perm :: 'x prm \<Rightarrow> 'a set \<Rightarrow> 'a set" (unchecked) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 45 | perm_unit \<equiv> "perm :: 'x prm \<Rightarrow> unit \<Rightarrow> unit" (unchecked) | 
| 44689 | 46 |   perm_prod   \<equiv> "perm :: 'x prm \<Rightarrow> ('a\<times>'b) \<Rightarrow> ('a\<times>'b)"    (unchecked)
 | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 47 | perm_list \<equiv> "perm :: 'x prm \<Rightarrow> 'a list \<Rightarrow> 'a list" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 48 | perm_option \<equiv> "perm :: 'x prm \<Rightarrow> 'a option \<Rightarrow> 'a option" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 49 | perm_char \<equiv> "perm :: 'x prm \<Rightarrow> char \<Rightarrow> char" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 50 | perm_nat \<equiv> "perm :: 'x prm \<Rightarrow> nat \<Rightarrow> nat" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 51 | perm_int \<equiv> "perm :: 'x prm \<Rightarrow> int \<Rightarrow> int" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 52 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 53 | perm_noption \<equiv> "perm :: 'x prm \<Rightarrow> 'a noption \<Rightarrow> 'a noption" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 54 |   perm_nprod   \<equiv> "perm :: 'x prm \<Rightarrow> ('a, 'b) nprod \<Rightarrow> ('a, 'b) nprod" (unchecked)
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 55 | begin | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 56 | |
| 44838 | 57 | definition perm_fun :: "'x prm \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
 | 
| 44833 | 58 | "perm_fun pi f = (\<lambda>x. pi \<bullet> f (rev pi \<bullet> x))" | 
| 44683 | 59 | |
| 44689 | 60 | definition perm_bool :: "'x prm \<Rightarrow> bool \<Rightarrow> bool" where | 
| 44833 | 61 | "perm_bool pi b = b" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 62 | |
| 45961 | 63 | definition perm_set :: "'x prm \<Rightarrow> 'a set \<Rightarrow> 'a set" where | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 64 |   "perm_set pi X = {pi \<bullet> x | x. x \<in> X}"
 | 
| 45961 | 65 | |
| 44683 | 66 | primrec perm_unit :: "'x prm \<Rightarrow> unit \<Rightarrow> unit" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 67 | "perm_unit pi () = ()" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 68 | |
| 44683 | 69 | primrec perm_prod :: "'x prm \<Rightarrow> ('a\<times>'b) \<Rightarrow> ('a\<times>'b)" where
 | 
| 44833 | 70 | "perm_prod pi (x, y) = (pi\<bullet>x, pi\<bullet>y)" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 71 | |
| 44683 | 72 | primrec perm_list :: "'x prm \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 73 | nil_eqvt: "perm_list pi [] = []" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 74 | | cons_eqvt: "perm_list pi (x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 75 | |
| 44683 | 76 | primrec perm_option :: "'x prm \<Rightarrow> 'a option \<Rightarrow> 'a option" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 77 | some_eqvt: "perm_option pi (Some x) = Some (pi\<bullet>x)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 78 | | none_eqvt: "perm_option pi None = None" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 79 | |
| 44683 | 80 | definition perm_char :: "'x prm \<Rightarrow> char \<Rightarrow> char" where | 
| 44833 | 81 | "perm_char pi c = c" | 
| 44683 | 82 | |
| 83 | definition perm_nat :: "'x prm \<Rightarrow> nat \<Rightarrow> nat" where | |
| 44833 | 84 | "perm_nat pi i = i" | 
| 44683 | 85 | |
| 86 | definition perm_int :: "'x prm \<Rightarrow> int \<Rightarrow> int" where | |
| 44833 | 87 | "perm_int pi i = i" | 
| 44683 | 88 | |
| 89 | primrec perm_noption :: "'x prm \<Rightarrow> 'a noption \<Rightarrow> 'a noption" where | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 90 | nsome_eqvt: "perm_noption pi (nSome x) = nSome (pi\<bullet>x)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 91 | | nnone_eqvt: "perm_noption pi nNone = nNone" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 92 | |
| 44683 | 93 | primrec perm_nprod :: "'x prm \<Rightarrow> ('a, 'b) nprod \<Rightarrow> ('a, 'b) nprod" where
 | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 94 | "perm_nprod pi (nPair x y) = nPair (pi\<bullet>x) (pi\<bullet>y)" | 
| 44683 | 95 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 96 | end | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 97 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 98 | (* permutations on booleans *) | 
| 44689 | 99 | lemmas perm_bool = perm_bool_def | 
| 100 | ||
| 101 | lemma true_eqvt [simp]: | |
| 102 | "pi \<bullet> True \<longleftrightarrow> True" | |
| 103 | by (simp add: perm_bool_def) | |
| 104 | ||
| 105 | lemma false_eqvt [simp]: | |
| 106 | "pi \<bullet> False \<longleftrightarrow> False" | |
| 107 | by (simp add: perm_bool_def) | |
| 18264 | 108 | |
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 109 | lemma perm_boolI: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 110 | assumes a: "P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 111 | shows "pi\<bullet>P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 112 | using a by (simp add: perm_bool) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 113 | |
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 114 | lemma perm_boolE: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 115 | assumes a: "pi\<bullet>P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 116 | shows "P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 117 | using a by (simp add: perm_bool) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 118 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 119 | lemma if_eqvt: | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 120 | fixes pi::"'a prm" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 121 | shows "pi\<bullet>(if b then c1 else c2) = (if (pi\<bullet>b) then (pi\<bullet>c1) else (pi\<bullet>c2))" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 122 | by (simp add: perm_fun_def) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 123 | |
| 22514 | 124 | lemma imp_eqvt: | 
| 125 | shows "pi\<bullet>(A\<longrightarrow>B) = ((pi\<bullet>A)\<longrightarrow>(pi\<bullet>B))" | |
| 126 | by (simp add: perm_bool) | |
| 127 | ||
| 128 | lemma conj_eqvt: | |
| 129 | shows "pi\<bullet>(A\<and>B) = ((pi\<bullet>A)\<and>(pi\<bullet>B))" | |
| 130 | by (simp add: perm_bool) | |
| 131 | ||
| 132 | lemma disj_eqvt: | |
| 133 | shows "pi\<bullet>(A\<or>B) = ((pi\<bullet>A)\<or>(pi\<bullet>B))" | |
| 134 | by (simp add: perm_bool) | |
| 135 | ||
| 136 | lemma neg_eqvt: | |
| 137 | shows "pi\<bullet>(\<not> A) = (\<not> (pi\<bullet>A))" | |
| 138 | by (simp add: perm_bool) | |
| 139 | ||
| 26806 | 140 | (* permutation on sets *) | 
| 141 | lemma empty_eqvt: | |
| 142 |   shows "pi\<bullet>{} = {}"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 143 | by (simp add: perm_set_def) | 
| 26806 | 144 | |
| 145 | lemma union_eqvt: | |
| 146 | shows "(pi\<bullet>(X\<union>Y)) = (pi\<bullet>X) \<union> (pi\<bullet>Y)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 147 | by (auto simp add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 148 | |
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 149 | lemma insert_eqvt: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 150 | shows "pi\<bullet>(insert x X) = insert (pi\<bullet>x) (pi\<bullet>X)" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 151 | by (auto simp add: perm_set_def) | 
| 26806 | 152 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 153 | (* permutations on products *) | 
| 26806 | 154 | lemma fst_eqvt: | 
| 155 | "pi\<bullet>(fst x) = fst (pi\<bullet>x)" | |
| 156 | by (cases x) simp | |
| 157 | ||
| 158 | lemma snd_eqvt: | |
| 159 | "pi\<bullet>(snd x) = snd (pi\<bullet>x)" | |
| 160 | by (cases x) simp | |
| 161 | ||
| 162 | (* permutation on lists *) | |
| 163 | lemma append_eqvt: | |
| 164 | fixes pi :: "'x prm" | |
| 165 | and l1 :: "'a list" | |
| 166 | and l2 :: "'a list" | |
| 167 | shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)" | |
| 168 | by (induct l1) auto | |
| 169 | ||
| 170 | lemma rev_eqvt: | |
| 171 | fixes pi :: "'x prm" | |
| 172 | and l :: "'a list" | |
| 173 | shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)" | |
| 174 | by (induct l) (simp_all add: append_eqvt) | |
| 175 | ||
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 176 | lemma set_eqvt: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 177 | fixes pi :: "'x prm" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 178 | and xs :: "'a list" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 179 | shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 180 | by (induct xs) (auto simp add: empty_eqvt insert_eqvt) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 181 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 182 | (* permutation on characters and strings *) | 
| 23050 | 183 | lemma perm_string: | 
| 184 | fixes s::"string" | |
| 185 | shows "pi\<bullet>s = s" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 186 | by (induct s)(auto simp add: perm_char_def) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 187 | |
| 17870 | 188 | |
| 63167 | 189 | section \<open>permutation equality\<close> | 
| 17870 | 190 | (*==============================*) | 
| 191 | ||
| 69597 | 192 | definition prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (\<open> _ \<triangleq> _ \<close> [80,80] 80) where | 
| 44683 | 193 | "pi1 \<triangleq> pi2 \<longleftrightarrow> (\<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a)" | 
| 17870 | 194 | |
| 63167 | 195 | section \<open>Support, Freshness and Supports\<close> | 
| 17870 | 196 | (*========================================*) | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 197 | definition supp :: "'a \<Rightarrow> ('x set)" where  
 | 
| 44683 | 198 |    "supp x = {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
 | 
| 17870 | 199 | |
| 69597 | 200 | definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where | 
| 44683 | 201 | "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" | 
| 17870 | 202 | |
| 69597 | 203 | definition supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl \<open>supports\<close> 80) where | 
| 44683 | 204 | "S supports x \<longleftrightarrow> (\<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x))" | 
| 17870 | 205 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 206 | (* lemmas about supp *) | 
| 17870 | 207 | lemma supp_fresh_iff: | 
| 208 | fixes x :: "'a" | |
| 209 |   shows "(supp x) = {a::'x. \<not>a\<sharp>x}"
 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 210 | by (simp add: fresh_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 211 | |
| 17870 | 212 | lemma supp_unit: | 
| 213 |   shows "supp () = {}"
 | |
| 214 | by (simp add: supp_def) | |
| 215 | ||
| 18264 | 216 | lemma supp_set_empty: | 
| 217 |   shows "supp {} = {}"
 | |
| 26806 | 218 | by (force simp add: supp_def empty_eqvt) | 
| 18264 | 219 | |
| 17870 | 220 | lemma supp_prod: | 
| 221 | fixes x :: "'a" | |
| 222 | and y :: "'b" | |
| 223 | shows "(supp (x,y)) = (supp x)\<union>(supp y)" | |
| 224 | by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) | |
| 225 | ||
| 18600 | 226 | lemma supp_nprod: | 
| 227 | fixes x :: "'a" | |
| 228 | and y :: "'b" | |
| 229 | shows "(supp (nPair x y)) = (supp x)\<union>(supp y)" | |
| 230 | by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) | |
| 231 | ||
| 17870 | 232 | lemma supp_list_nil: | 
| 233 |   shows "supp [] = {}"
 | |
| 44696 | 234 | by (simp add: supp_def) | 
| 17870 | 235 | |
| 236 | lemma supp_list_cons: | |
| 237 | fixes x :: "'a" | |
| 238 | and xs :: "'a list" | |
| 239 | shows "supp (x#xs) = (supp x)\<union>(supp xs)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 240 | by (auto simp add: supp_def Collect_imp_eq Collect_neg_eq) | 
| 17870 | 241 | |
| 242 | lemma supp_list_append: | |
| 243 | fixes xs :: "'a list" | |
| 244 | and ys :: "'a list" | |
| 245 | shows "supp (xs@ys) = (supp xs)\<union>(supp ys)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 246 | by (induct xs) (auto simp add: supp_list_nil supp_list_cons) | 
| 17870 | 247 | |
| 248 | lemma supp_list_rev: | |
| 249 | fixes xs :: "'a list" | |
| 250 | shows "supp (rev xs) = (supp xs)" | |
| 251 | by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil) | |
| 252 | ||
| 253 | lemma supp_bool: | |
| 254 | fixes x :: "bool" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 255 |   shows "supp x = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 256 | by (cases "x") (simp_all add: supp_def) | 
| 17870 | 257 | |
| 258 | lemma supp_some: | |
| 259 | fixes x :: "'a" | |
| 260 | shows "supp (Some x) = (supp x)" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 261 | by (simp add: supp_def) | 
| 17870 | 262 | |
| 263 | lemma supp_none: | |
| 264 | fixes x :: "'a" | |
| 265 |   shows "supp (None) = {}"
 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 266 | by (simp add: supp_def) | 
| 17870 | 267 | |
| 268 | lemma supp_int: | |
| 269 | fixes i::"int" | |
| 270 |   shows "supp (i) = {}"
 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 271 | by (simp add: supp_def perm_int_def) | 
| 17870 | 272 | |
| 20388 | 273 | lemma supp_nat: | 
| 274 | fixes n::"nat" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 275 |   shows "(supp n) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 276 | by (simp add: supp_def perm_nat_def) | 
| 20388 | 277 | |
| 18627 | 278 | lemma supp_char: | 
| 279 | fixes c::"char" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 280 |   shows "(supp c) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 281 | by (simp add: supp_def perm_char_def) | 
| 18627 | 282 | |
| 283 | lemma supp_string: | |
| 284 | fixes s::"string" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 285 |   shows "(supp s) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 286 | by (simp add: supp_def perm_string) | 
| 18627 | 287 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 288 | (* lemmas about freshness *) | 
| 18264 | 289 | lemma fresh_set_empty: | 
| 290 |   shows "a\<sharp>{}"
 | |
| 291 | by (simp add: fresh_def supp_set_empty) | |
| 292 | ||
| 19858 | 293 | lemma fresh_unit: | 
| 294 | shows "a\<sharp>()" | |
| 295 | by (simp add: fresh_def supp_unit) | |
| 296 | ||
| 17870 | 297 | lemma fresh_prod: | 
| 298 | fixes a :: "'x" | |
| 299 | and x :: "'a" | |
| 300 | and y :: "'b" | |
| 301 | shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)" | |
| 302 | by (simp add: fresh_def supp_prod) | |
| 303 | ||
| 304 | lemma fresh_list_nil: | |
| 305 | fixes a :: "'x" | |
| 18264 | 306 | shows "a\<sharp>[]" | 
| 17870 | 307 | by (simp add: fresh_def supp_list_nil) | 
| 308 | ||
| 309 | lemma fresh_list_cons: | |
| 310 | fixes a :: "'x" | |
| 311 | and x :: "'a" | |
| 312 | and xs :: "'a list" | |
| 313 | shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)" | |
| 314 | by (simp add: fresh_def supp_list_cons) | |
| 315 | ||
| 316 | lemma fresh_list_append: | |
| 317 | fixes a :: "'x" | |
| 318 | and xs :: "'a list" | |
| 319 | and ys :: "'a list" | |
| 320 | shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)" | |
| 321 | by (simp add: fresh_def supp_list_append) | |
| 322 | ||
| 323 | lemma fresh_list_rev: | |
| 324 | fixes a :: "'x" | |
| 325 | and xs :: "'a list" | |
| 326 | shows "a\<sharp>(rev xs) = a\<sharp>xs" | |
| 327 | by (simp add: fresh_def supp_list_rev) | |
| 328 | ||
| 329 | lemma fresh_none: | |
| 330 | fixes a :: "'x" | |
| 331 | shows "a\<sharp>None" | |
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 332 | by (simp add: fresh_def supp_none) | 
| 17870 | 333 | |
| 334 | lemma fresh_some: | |
| 335 | fixes a :: "'x" | |
| 336 | and x :: "'a" | |
| 337 | shows "a\<sharp>(Some x) = a\<sharp>x" | |
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 338 | by (simp add: fresh_def supp_some) | 
| 17870 | 339 | |
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 340 | lemma fresh_int: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 341 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 342 | and i :: "int" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 343 | shows "a\<sharp>i" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 344 | by (simp add: fresh_def supp_int) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 345 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 346 | lemma fresh_nat: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 347 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 348 | and n :: "nat" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 349 | shows "a\<sharp>n" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 350 | by (simp add: fresh_def supp_nat) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 351 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 352 | lemma fresh_char: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 353 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 354 | and c :: "char" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 355 | shows "a\<sharp>c" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 356 | by (simp add: fresh_def supp_char) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 357 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 358 | lemma fresh_string: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 359 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 360 | and s :: "string" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 361 | shows "a\<sharp>s" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 362 | by (simp add: fresh_def supp_string) | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 363 | |
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 364 | lemma fresh_bool: | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 365 | fixes a :: "'x" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 366 | and b :: "bool" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 367 | shows "a\<sharp>b" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 368 | by (simp add: fresh_def supp_bool) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 369 | |
| 63167 | 370 | text \<open>Normalization of freshness results; cf.\ \<open>nominal_induct\<close>\<close> | 
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 371 | lemma fresh_unit_elim: | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 372 | shows "(a\<sharp>() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 18294 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 373 | by (simp add: fresh_def supp_unit) | 
| 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 374 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 375 | lemma fresh_prod_elim: | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 376 | shows "(a\<sharp>(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>x \<Longrightarrow> a\<sharp>y \<Longrightarrow> PROP C)" | 
| 18294 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 377 | by rule (simp_all add: fresh_prod) | 
| 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 378 | |
| 21405 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 379 | (* this rule needs to be added before the fresh_prodD is *) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 380 | (* added to the simplifier with mksimps *) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 381 | lemma [simp]: | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 382 | shows "a\<sharp>x1 \<Longrightarrow> a\<sharp>x2 \<Longrightarrow> a\<sharp>(x1,x2)" | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 383 | by (simp add: fresh_prod) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 384 | |
| 21318 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 385 | lemma fresh_prodD: | 
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 386 | shows "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 387 | and "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>y" | 
| 21318 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 388 | by (simp_all add: fresh_prod) | 
| 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 389 | |
| 63167 | 390 | ML \<open> | 
| 69597 | 391 |   val mksimps_pairs = (\<^const_name>\<open>Nominal.fresh\<close>, @{thms fresh_prodD}) :: mksimps_pairs;
 | 
| 63167 | 392 | \<close> | 
| 393 | declaration \<open>fn _ => | |
| 45625 
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
 wenzelm parents: 
44838diff
changeset | 394 | Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs)) | 
| 63167 | 395 | \<close> | 
| 396 | ||
| 397 | section \<open>Abstract Properties for Permutations and Atoms\<close> | |
| 17870 | 398 | (*=========================================================*) | 
| 399 | ||
| 400 | (* properties for being a permutation type *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 401 | definition | 
| 17870 | 402 |   "pt TYPE('a) TYPE('x) \<equiv> 
 | 
| 403 | (\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> | |
| 404 | (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 405 | (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)" | 
| 17870 | 406 | |
| 407 | (* properties for being an atom type *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 408 | definition | 
| 17870 | 409 |   "at TYPE('x) \<equiv> 
 | 
| 410 | (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and> | |
| 411 | (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> | |
| 412 | (\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> | |
| 413 | (infinite (UNIV::'x set))" | |
| 414 | ||
| 415 | (* property of two atom-types being disjoint *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 416 | definition | 
| 17870 | 417 |   "disjoint TYPE('x) TYPE('y) \<equiv> 
 | 
| 418 | (\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> | |
| 419 | (\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)" | |
| 420 | ||
| 421 | (* composition property of two permutation on a type 'a *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 422 | definition | 
| 17870 | 423 |   "cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> 
 | 
| 424 | (\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" | |
| 425 | ||
| 426 | (* property of having finite support *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 427 | definition | 
| 17870 | 428 |   "fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
 | 
| 429 | ||
| 63167 | 430 | section \<open>Lemmas about the atom-type properties\<close> | 
| 17870 | 431 | (*==============================================*) | 
| 432 | ||
| 433 | lemma at1: | |
| 434 | fixes x::"'x" | |
| 435 |   assumes a: "at TYPE('x)"
 | |
| 436 | shows "([]::'x prm)\<bullet>x = x" | |
| 437 | using a by (simp add: at_def) | |
| 438 | ||
| 439 | lemma at2: | |
| 440 | fixes a ::"'x" | |
| 441 | and b ::"'x" | |
| 442 | and x ::"'x" | |
| 443 | and pi::"'x prm" | |
| 444 |   assumes a: "at TYPE('x)"
 | |
| 445 | shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)" | |
| 446 | using a by (simp only: at_def) | |
| 447 | ||
| 448 | lemma at3: | |
| 449 | fixes a ::"'x" | |
| 450 | and b ::"'x" | |
| 451 | and c ::"'x" | |
| 452 |   assumes a: "at TYPE('x)"
 | |
| 453 | shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))" | |
| 454 | using a by (simp only: at_def) | |
| 455 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 456 | (* rules to calculate simple permutations *) | 
| 17870 | 457 | lemmas at_calc = at2 at1 at3 | 
| 458 | ||
| 22610 | 459 | lemma at_swap_simps: | 
| 460 | fixes a ::"'x" | |
| 461 | and b ::"'x" | |
| 462 |   assumes a: "at TYPE('x)"
 | |
| 463 | shows "[(a,b)]\<bullet>a = b" | |
| 464 | and "[(a,b)]\<bullet>b = a" | |
| 27374 | 465 | and "\<lbrakk>a\<noteq>c; b\<noteq>c\<rbrakk> \<Longrightarrow> [(a,b)]\<bullet>c = c" | 
| 22610 | 466 | using a by (simp_all add: at_calc) | 
| 467 | ||
| 17870 | 468 | lemma at4: | 
| 469 |   assumes a: "at TYPE('x)"
 | |
| 470 | shows "infinite (UNIV::'x set)" | |
| 471 | using a by (simp add: at_def) | |
| 472 | ||
| 473 | lemma at_append: | |
| 474 | fixes pi1 :: "'x prm" | |
| 475 | and pi2 :: "'x prm" | |
| 476 | and c :: "'x" | |
| 477 |   assumes at: "at TYPE('x)" 
 | |
| 478 | shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)" | |
| 479 | proof (induct pi1) | |
| 480 | case Nil show ?case by (simp add: at1[OF at]) | |
| 481 | next | |
| 482 | case (Cons x xs) | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 483 | have "(xs@pi2)\<bullet>c = xs\<bullet>(pi2\<bullet>c)" by fact | 
| 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 484 | also have "(x#xs)@pi2 = x#(xs@pi2)" by simp | 
| 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 485 | ultimately show ?case by (cases "x", simp add: at2[OF at]) | 
| 17870 | 486 | qed | 
| 487 | ||
| 488 | lemma at_swap: | |
| 489 | fixes a :: "'x" | |
| 490 | and b :: "'x" | |
| 491 | and c :: "'x" | |
| 492 |   assumes at: "at TYPE('x)" 
 | |
| 493 | shows "swap (a,b) (swap (a,b) c) = c" | |
| 494 | by (auto simp add: at3[OF at]) | |
| 495 | ||
| 496 | lemma at_rev_pi: | |
| 497 | fixes pi :: "'x prm" | |
| 498 | and c :: "'x" | |
| 499 |   assumes at: "at TYPE('x)"
 | |
| 500 | shows "(rev pi)\<bullet>(pi\<bullet>c) = c" | |
| 501 | proof(induct pi) | |
| 502 | case Nil show ?case by (simp add: at1[OF at]) | |
| 503 | next | |
| 504 | case (Cons x xs) thus ?case | |
| 505 | by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at]) | |
| 506 | qed | |
| 507 | ||
| 508 | lemma at_pi_rev: | |
| 509 | fixes pi :: "'x prm" | |
| 510 | and x :: "'x" | |
| 511 |   assumes at: "at TYPE('x)"
 | |
| 512 | shows "pi\<bullet>((rev pi)\<bullet>x) = x" | |
| 513 | by (rule at_rev_pi[OF at, of "rev pi" _,simplified]) | |
| 514 | ||
| 515 | lemma at_bij1: | |
| 516 | fixes pi :: "'x prm" | |
| 517 | and x :: "'x" | |
| 518 | and y :: "'x" | |
| 519 |   assumes at: "at TYPE('x)"
 | |
| 520 | and a: "(pi\<bullet>x) = y" | |
| 521 | shows "x=(rev pi)\<bullet>y" | |
| 522 | proof - | |
| 523 | from a have "y=(pi\<bullet>x)" by (rule sym) | |
| 524 | thus ?thesis by (simp only: at_rev_pi[OF at]) | |
| 525 | qed | |
| 526 | ||
| 527 | lemma at_bij2: | |
| 528 | fixes pi :: "'x prm" | |
| 529 | and x :: "'x" | |
| 530 | and y :: "'x" | |
| 531 |   assumes at: "at TYPE('x)"
 | |
| 532 | and a: "((rev pi)\<bullet>x) = y" | |
| 533 | shows "x=pi\<bullet>y" | |
| 534 | proof - | |
| 535 | from a have "y=((rev pi)\<bullet>x)" by (rule sym) | |
| 536 | thus ?thesis by (simp only: at_pi_rev[OF at]) | |
| 537 | qed | |
| 538 | ||
| 539 | lemma at_bij: | |
| 540 | fixes pi :: "'x prm" | |
| 541 | and x :: "'x" | |
| 542 | and y :: "'x" | |
| 543 |   assumes at: "at TYPE('x)"
 | |
| 544 | shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" | |
| 545 | proof | |
| 546 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 547 | hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) | |
| 548 | thus "x=y" by (simp only: at_rev_pi[OF at]) | |
| 549 | next | |
| 550 | assume "x=y" | |
| 551 | thus "pi\<bullet>x = pi\<bullet>y" by simp | |
| 552 | qed | |
| 553 | ||
| 554 | lemma at_supp: | |
| 555 | fixes x :: "'x" | |
| 556 |   assumes at: "at TYPE('x)"
 | |
| 557 |   shows "supp x = {x}"
 | |
| 29903 | 558 | by(auto simp: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at] at4[OF at]) | 
| 17870 | 559 | |
| 560 | lemma at_fresh: | |
| 561 | fixes a :: "'x" | |
| 562 | and b :: "'x" | |
| 563 |   assumes at: "at TYPE('x)"
 | |
| 564 | shows "(a\<sharp>b) = (a\<noteq>b)" | |
| 565 | by (simp add: at_supp[OF at] fresh_def) | |
| 566 | ||
| 26766 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 567 | lemma at_prm_fresh1: | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 568 | fixes c :: "'x" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 569 | and pi:: "'x prm" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 570 |   assumes at: "at TYPE('x)"
 | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 571 | and a: "c\<sharp>pi" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 572 | shows "\<forall>(a,b)\<in>set pi. c\<noteq>a \<and> c\<noteq>b" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 573 | using a by (induct pi) (auto simp add: fresh_list_cons fresh_prod at_fresh[OF at]) | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 574 | |
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 575 | lemma at_prm_fresh2: | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 576 | fixes c :: "'x" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 577 | and pi:: "'x prm" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 578 |   assumes at: "at TYPE('x)"
 | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 579 | and a: "\<forall>(a,b)\<in>set pi. c\<noteq>a \<and> c\<noteq>b" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 580 | shows "pi\<bullet>c = c" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 581 | using a by(induct pi) (auto simp add: at1[OF at] at2[OF at] at3[OF at]) | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 582 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 583 | lemma at_prm_fresh: | 
| 17870 | 584 | fixes c :: "'x" | 
| 585 | and pi:: "'x prm" | |
| 586 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 587 | and a: "c\<sharp>pi" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 588 | shows "pi\<bullet>c = c" | 
| 26766 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 589 | by (rule at_prm_fresh2[OF at], rule at_prm_fresh1[OF at, OF a]) | 
| 17870 | 590 | |
| 591 | lemma at_prm_rev_eq: | |
| 592 | fixes pi1 :: "'x prm" | |
| 593 | and pi2 :: "'x prm" | |
| 594 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 595 | shows "((rev pi1) \<triangleq> (rev pi2)) = (pi1 \<triangleq> pi2)" | 
| 17870 | 596 | proof (simp add: prm_eq_def, auto) | 
| 597 | fix x | |
| 598 | assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" | |
| 599 | hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp | |
| 600 | hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at]) | |
| 601 | hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at]) | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 602 | thus "pi1\<bullet>x = pi2\<bullet>x" by simp | 
| 17870 | 603 | next | 
| 604 | fix x | |
| 605 | assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x" | |
| 606 | hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp | |
| 607 | hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at]) | |
| 608 | hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at]) | |
| 609 | thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp | |
| 610 | qed | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 611 | |
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 612 | lemma at_prm_eq_append: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 613 | fixes pi1 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 614 | and pi2 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 615 | and pi3 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 616 |   assumes at: "at TYPE('x)"
 | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 617 | and a: "pi1 \<triangleq> pi2" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 618 | shows "(pi3@pi1) \<triangleq> (pi3@pi2)" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 619 | using a by (simp add: prm_eq_def at_append[OF at] at_bij[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 620 | |
| 19325 | 621 | lemma at_prm_eq_append': | 
| 622 | fixes pi1 :: "'x prm" | |
| 623 | and pi2 :: "'x prm" | |
| 624 | and pi3 :: "'x prm" | |
| 625 |   assumes at: "at TYPE('x)"
 | |
| 626 | and a: "pi1 \<triangleq> pi2" | |
| 627 | shows "(pi1@pi3) \<triangleq> (pi2@pi3)" | |
| 628 | using a by (simp add: prm_eq_def at_append[OF at]) | |
| 629 | ||
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 630 | lemma at_prm_eq_trans: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 631 | fixes pi1 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 632 | and pi2 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 633 | and pi3 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 634 | assumes a1: "pi1 \<triangleq> pi2" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 635 | and a2: "pi2 \<triangleq> pi3" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 636 | shows "pi1 \<triangleq> pi3" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 637 | using a1 a2 by (auto simp add: prm_eq_def) | 
| 17870 | 638 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 639 | lemma at_prm_eq_refl: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 640 | fixes pi :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 641 | shows "pi \<triangleq> pi" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 642 | by (simp add: prm_eq_def) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 643 | |
| 17870 | 644 | lemma at_prm_rev_eq1: | 
| 645 | fixes pi1 :: "'x prm" | |
| 646 | and pi2 :: "'x prm" | |
| 647 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 648 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1) \<triangleq> (rev pi2)" | 
| 17870 | 649 | by (simp add: at_prm_rev_eq[OF at]) | 
| 650 | ||
| 651 | lemma at_ds1: | |
| 652 | fixes a :: "'x" | |
| 653 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 654 | shows "[(a,a)] \<triangleq> []" | 
| 17870 | 655 | by (force simp add: prm_eq_def at_calc[OF at]) | 
| 656 | ||
| 657 | lemma at_ds2: | |
| 658 | fixes pi :: "'x prm" | |
| 659 | and a :: "'x" | |
| 660 | and b :: "'x" | |
| 661 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 662 | shows "([(a,b)]@pi) \<triangleq> (pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)])" | 
| 17870 | 663 | by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] | 
| 664 | at_rev_pi[OF at] at_calc[OF at]) | |
| 665 | ||
| 666 | lemma at_ds3: | |
| 667 | fixes a :: "'x" | |
| 668 | and b :: "'x" | |
| 669 | and c :: "'x" | |
| 670 |   assumes at: "at TYPE('x)"
 | |
| 671 | and a: "distinct [a,b,c]" | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 672 | shows "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" | 
| 17870 | 673 | using a by (force simp add: prm_eq_def at_calc[OF at]) | 
| 674 | ||
| 675 | lemma at_ds4: | |
| 676 | fixes a :: "'x" | |
| 677 | and b :: "'x" | |
| 678 | and pi :: "'x prm" | |
| 679 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 680 | shows "(pi@[(a,(rev pi)\<bullet>b)]) \<triangleq> ([(pi\<bullet>a,b)]@pi)" | 
| 17870 | 681 | by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] | 
| 682 | at_pi_rev[OF at] at_rev_pi[OF at]) | |
| 683 | ||
| 684 | lemma at_ds5: | |
| 685 | fixes a :: "'x" | |
| 686 | and b :: "'x" | |
| 687 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 688 | shows "[(a,b)] \<triangleq> [(b,a)]" | 
| 17870 | 689 | by (force simp add: prm_eq_def at_calc[OF at]) | 
| 690 | ||
| 19164 | 691 | lemma at_ds5': | 
| 692 | fixes a :: "'x" | |
| 693 | and b :: "'x" | |
| 694 |   assumes at: "at TYPE('x)"
 | |
| 695 | shows "[(a,b),(b,a)] \<triangleq> []" | |
| 696 | by (force simp add: prm_eq_def at_calc[OF at]) | |
| 697 | ||
| 17870 | 698 | lemma at_ds6: | 
| 699 | fixes a :: "'x" | |
| 700 | and b :: "'x" | |
| 701 | and c :: "'x" | |
| 702 |   assumes at: "at TYPE('x)"
 | |
| 703 | and a: "distinct [a,b,c]" | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 704 | shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]" | 
| 17870 | 705 | using a by (force simp add: prm_eq_def at_calc[OF at]) | 
| 706 | ||
| 707 | lemma at_ds7: | |
| 708 | fixes pi :: "'x prm" | |
| 709 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 710 | shows "((rev pi)@pi) \<triangleq> []" | 
| 17870 | 711 | by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at]) | 
| 712 | ||
| 713 | lemma at_ds8_aux: | |
| 714 | fixes pi :: "'x prm" | |
| 715 | and a :: "'x" | |
| 716 | and b :: "'x" | |
| 717 | and c :: "'x" | |
| 718 |   assumes at: "at TYPE('x)"
 | |
| 719 | shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)" | |
| 720 | by (force simp add: at_calc[OF at] at_bij[OF at]) | |
| 721 | ||
| 722 | lemma at_ds8: | |
| 723 | fixes pi1 :: "'x prm" | |
| 724 | and pi2 :: "'x prm" | |
| 725 | and a :: "'x" | |
| 726 | and b :: "'x" | |
| 727 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 728 | shows "(pi1@pi2) \<triangleq> ((pi1\<bullet>pi2)@pi1)" | 
| 17870 | 729 | apply(induct_tac pi2) | 
| 730 | apply(simp add: prm_eq_def) | |
| 731 | apply(auto simp add: prm_eq_def) | |
| 732 | apply(simp add: at2[OF at]) | |
| 733 | apply(drule_tac x="aa" in spec) | |
| 734 | apply(drule sym) | |
| 735 | apply(simp) | |
| 736 | apply(simp add: at_append[OF at]) | |
| 737 | apply(simp add: at2[OF at]) | |
| 738 | apply(simp add: at_ds8_aux[OF at]) | |
| 739 | done | |
| 740 | ||
| 741 | lemma at_ds9: | |
| 742 | fixes pi1 :: "'x prm" | |
| 743 | and pi2 :: "'x prm" | |
| 744 | and a :: "'x" | |
| 745 | and b :: "'x" | |
| 746 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 747 | shows " ((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" | 
| 17870 | 748 | apply(induct_tac pi2) | 
| 749 | apply(simp add: prm_eq_def) | |
| 750 | apply(auto simp add: prm_eq_def) | |
| 751 | apply(simp add: at_append[OF at]) | |
| 752 | apply(simp add: at2[OF at] at1[OF at]) | |
| 753 | apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec) | |
| 754 | apply(drule sym) | |
| 755 | apply(simp) | |
| 756 | apply(simp add: at_ds8_aux[OF at]) | |
| 757 | apply(simp add: at_rev_pi[OF at]) | |
| 758 | done | |
| 759 | ||
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 760 | lemma at_ds10: | 
| 19132 | 761 | fixes pi :: "'x prm" | 
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 762 | and a :: "'x" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 763 | and b :: "'x" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 764 |   assumes at: "at TYPE('x)"
 | 
| 19132 | 765 | and a: "b\<sharp>(rev pi)" | 
| 766 | shows "([(pi\<bullet>a,b)]@pi) \<triangleq> (pi@[(a,b)])" | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 767 | using a | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 768 | apply - | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 769 | apply(rule at_prm_eq_trans) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 770 | apply(rule at_ds2[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 771 | apply(simp add: at_prm_fresh[OF at] at_rev_pi[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 772 | apply(rule at_prm_eq_refl) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 773 | done | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 774 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 775 | \<comment> \<open>there always exists an atom that is not being in a finite set\<close> | 
| 17870 | 776 | lemma ex_in_inf: | 
| 777 | fixes A::"'x set" | |
| 778 |   assumes at: "at TYPE('x)"
 | |
| 779 | and fs: "finite A" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 780 | obtains c::"'x" where "c\<notin>A" | 
| 17870 | 781 | proof - | 
| 782 | from fs at4[OF at] have "infinite ((UNIV::'x set) - A)" | |
| 783 | by (simp add: Diff_infinite_finite) | |
| 784 |   hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:)
 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 785 | then obtain c::"'x" where "c\<in>((UNIV::'x set) - A)" by force | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 786 | then have "c\<notin>A" by simp | 
| 41550 | 787 | then show ?thesis .. | 
| 17870 | 788 | qed | 
| 789 | ||
| 63167 | 790 | text \<open>there always exists a fresh name for an object with finite support\<close> | 
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 791 | lemma at_exists_fresh': | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 792 | fixes x :: "'a" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 793 |   assumes at: "at TYPE('x)"
 | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 794 | and fs: "finite ((supp x)::'x set)" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 795 | shows "\<exists>c::'x. c\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 796 | by (auto simp add: fresh_def intro: ex_in_inf[OF at, OF fs]) | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 797 | |
| 17870 | 798 | lemma at_exists_fresh: | 
| 799 | fixes x :: "'a" | |
| 800 |   assumes at: "at TYPE('x)"
 | |
| 801 | and fs: "finite ((supp x)::'x set)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 802 | obtains c::"'x" where "c\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 803 | by (auto intro: ex_in_inf[OF at, OF fs] simp add: fresh_def) | 
| 17870 | 804 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 805 | lemma at_finite_select: | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 806 | fixes S::"'a set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 807 |   assumes a: "at TYPE('a)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 808 | and b: "finite S" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 809 | shows "\<exists>x. x \<notin> S" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 810 | using a b | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 811 | apply(drule_tac S="UNIV::'a set" in Diff_infinite_finite) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 812 | apply(simp add: at_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 813 |   apply(subgoal_tac "UNIV - S \<noteq> {}")
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 814 | apply(simp only: ex_in_conv [symmetric]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 815 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 816 | apply(rule notI) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 817 | apply(simp) | 
| 18657 | 818 | done | 
| 819 | ||
| 19140 | 820 | lemma at_different: | 
| 19132 | 821 |   assumes at: "at TYPE('x)"
 | 
| 19140 | 822 | shows "\<exists>(b::'x). a\<noteq>b" | 
| 19132 | 823 | proof - | 
| 19140 | 824 | have "infinite (UNIV::'x set)" by (rule at4[OF at]) | 
| 825 |   hence inf2: "infinite (UNIV-{a})" by (rule infinite_remove)
 | |
| 19132 | 826 |   have "(UNIV-{a}) \<noteq> ({}::'x set)" 
 | 
| 827 | proof (rule_tac ccontr, drule_tac notnotD) | |
| 828 |     assume "UNIV-{a} = ({}::'x set)"
 | |
| 829 |     with inf2 have "infinite ({}::'x set)" by simp
 | |
| 19869 | 830 | then show "False" by auto | 
| 19132 | 831 | qed | 
| 832 |   hence "\<exists>(b::'x). b\<in>(UNIV-{a})" by blast
 | |
| 833 |   then obtain b::"'x" where mem2: "b\<in>(UNIV-{a})" by blast
 | |
| 19140 | 834 | from mem2 have "a\<noteq>b" by blast | 
| 835 | then show "\<exists>(b::'x). a\<noteq>b" by blast | |
| 19132 | 836 | qed | 
| 837 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 838 | \<comment> \<open>the at-props imply the pt-props\<close> | 
| 17870 | 839 | lemma at_pt_inst: | 
| 840 |   assumes at: "at TYPE('x)"
 | |
| 841 |   shows "pt TYPE('x) TYPE('x)"
 | |
| 842 | apply(auto simp only: pt_def) | |
| 843 | apply(simp only: at1[OF at]) | |
| 844 | apply(simp only: at_append[OF at]) | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 845 | apply(simp only: prm_eq_def) | 
| 17870 | 846 | done | 
| 847 | ||
| 63167 | 848 | section \<open>finite support properties\<close> | 
| 17870 | 849 | (*===================================*) | 
| 850 | ||
| 851 | lemma fs1: | |
| 852 | fixes x :: "'a" | |
| 853 |   assumes a: "fs TYPE('a) TYPE('x)"
 | |
| 854 | shows "finite ((supp x)::'x set)" | |
| 855 | using a by (simp add: fs_def) | |
| 856 | ||
| 857 | lemma fs_at_inst: | |
| 858 | fixes a :: "'x" | |
| 859 |   assumes at: "at TYPE('x)"
 | |
| 860 |   shows "fs TYPE('x) TYPE('x)"
 | |
| 861 | apply(simp add: fs_def) | |
| 862 | apply(simp add: at_supp[OF at]) | |
| 863 | done | |
| 864 | ||
| 865 | lemma fs_unit_inst: | |
| 866 |   shows "fs TYPE(unit) TYPE('x)"
 | |
| 867 | apply(simp add: fs_def) | |
| 868 | apply(simp add: supp_unit) | |
| 869 | done | |
| 870 | ||
| 871 | lemma fs_prod_inst: | |
| 872 |   assumes fsa: "fs TYPE('a) TYPE('x)"
 | |
| 873 |   and     fsb: "fs TYPE('b) TYPE('x)"
 | |
| 874 |   shows "fs TYPE('a\<times>'b) TYPE('x)"
 | |
| 875 | apply(unfold fs_def) | |
| 876 | apply(auto simp add: supp_prod) | |
| 877 | apply(rule fs1[OF fsa]) | |
| 878 | apply(rule fs1[OF fsb]) | |
| 879 | done | |
| 880 | ||
| 18600 | 881 | lemma fs_nprod_inst: | 
| 882 |   assumes fsa: "fs TYPE('a) TYPE('x)"
 | |
| 883 |   and     fsb: "fs TYPE('b) TYPE('x)"
 | |
| 884 |   shows "fs TYPE(('a,'b) nprod) TYPE('x)"
 | |
| 885 | apply(unfold fs_def, rule allI) | |
| 886 | apply(case_tac x) | |
| 887 | apply(auto simp add: supp_nprod) | |
| 888 | apply(rule fs1[OF fsa]) | |
| 889 | apply(rule fs1[OF fsb]) | |
| 890 | done | |
| 891 | ||
| 17870 | 892 | lemma fs_list_inst: | 
| 893 |   assumes fs: "fs TYPE('a) TYPE('x)"
 | |
| 894 |   shows "fs TYPE('a list) TYPE('x)"
 | |
| 895 | apply(simp add: fs_def, rule allI) | |
| 896 | apply(induct_tac x) | |
| 897 | apply(simp add: supp_list_nil) | |
| 898 | apply(simp add: supp_list_cons) | |
| 899 | apply(rule fs1[OF fs]) | |
| 900 | done | |
| 901 | ||
| 18431 | 902 | lemma fs_option_inst: | 
| 903 |   assumes fs: "fs TYPE('a) TYPE('x)"
 | |
| 904 |   shows "fs TYPE('a option) TYPE('x)"
 | |
| 17870 | 905 | apply(simp add: fs_def, rule allI) | 
| 18431 | 906 | apply(case_tac x) | 
| 907 | apply(simp add: supp_none) | |
| 908 | apply(simp add: supp_some) | |
| 909 | apply(rule fs1[OF fs]) | |
| 17870 | 910 | done | 
| 911 | ||
| 63167 | 912 | section \<open>Lemmas about the permutation properties\<close> | 
| 17870 | 913 | (*=================================================*) | 
| 914 | ||
| 915 | lemma pt1: | |
| 916 | fixes x::"'a" | |
| 917 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 918 | shows "([]::'x prm)\<bullet>x = x" | |
| 919 | using a by (simp add: pt_def) | |
| 920 | ||
| 921 | lemma pt2: | |
| 922 | fixes pi1::"'x prm" | |
| 923 | and pi2::"'x prm" | |
| 924 | and x ::"'a" | |
| 925 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 926 | shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)" | |
| 927 | using a by (simp add: pt_def) | |
| 928 | ||
| 929 | lemma pt3: | |
| 930 | fixes pi1::"'x prm" | |
| 931 | and pi2::"'x prm" | |
| 932 | and x ::"'a" | |
| 933 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 934 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x" | 
| 17870 | 935 | using a by (simp add: pt_def) | 
| 936 | ||
| 937 | lemma pt3_rev: | |
| 938 | fixes pi1::"'x prm" | |
| 939 | and pi2::"'x prm" | |
| 940 | and x ::"'a" | |
| 941 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 942 |   and     at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 943 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" | 
| 17870 | 944 | by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at]) | 
| 945 | ||
| 63167 | 946 | section \<open>composition properties\<close> | 
| 17870 | 947 | (* ============================== *) | 
| 948 | lemma cp1: | |
| 949 | fixes pi1::"'x prm" | |
| 950 | and pi2::"'y prm" | |
| 951 | and x ::"'a" | |
| 952 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 953 | shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)" | |
| 954 | using cp by (simp add: cp_def) | |
| 955 | ||
| 956 | lemma cp_pt_inst: | |
| 957 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 958 |   and     at: "at TYPE('x)"
 | |
| 959 |   shows "cp TYPE('a) TYPE('x) TYPE('x)"
 | |
| 960 | apply(auto simp add: cp_def pt2[OF pt,symmetric]) | |
| 961 | apply(rule pt3[OF pt]) | |
| 962 | apply(rule at_ds8[OF at]) | |
| 963 | done | |
| 964 | ||
| 63167 | 965 | section \<open>disjointness properties\<close> | 
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 966 | (*=================================*) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 967 | lemma dj_perm_forget: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 968 | fixes pi::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 969 | and x ::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 970 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 971 | shows "pi\<bullet>x=x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 972 | using dj by (simp_all add: disjoint_def) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 973 | |
| 28371 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 974 | lemma dj_perm_set_forget: | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 975 | fixes pi::"'y prm" | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 976 | and x ::"'x set" | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 977 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 44833 | 978 | shows "pi\<bullet>x=x" | 
| 45961 | 979 | using dj by (simp_all add: perm_set_def disjoint_def) | 
| 28371 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 980 | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 981 | lemma dj_perm_perm_forget: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 982 | fixes pi1::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 983 | and pi2::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 984 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 985 | shows "pi2\<bullet>pi1=pi1" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 986 | using dj by (induct pi1, auto simp add: disjoint_def) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 987 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 988 | lemma dj_cp: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 989 | fixes pi1::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 990 | and pi2::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 991 | and x ::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 992 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 993 |   and     dj: "disjoint TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 994 | shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 995 | by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 996 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 997 | lemma dj_supp: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 998 | fixes a::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 999 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1000 |   shows "(supp a) = ({}::'y set)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1001 | apply(simp add: supp_def dj_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1002 | done | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1003 | |
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1004 | lemma at_fresh_ineq: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1005 | fixes a :: "'x" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1006 | and b :: "'y" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1007 |   assumes dj: "disjoint TYPE('y) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1008 | shows "a\<sharp>b" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1009 | by (simp add: fresh_def dj_supp[OF dj]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1010 | |
| 63167 | 1011 | section \<open>permutation type instances\<close> | 
| 17870 | 1012 | (* ===================================*) | 
| 1013 | ||
| 44696 | 1014 | lemma pt_fun_inst: | 
| 1015 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1016 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1017 |   and     at:  "at TYPE('x)"
 | |
| 1018 |   shows  "pt TYPE('a\<Rightarrow>'b) TYPE('x)"
 | |
| 1019 | apply(auto simp only: pt_def) | |
| 1020 | apply(simp_all add: perm_fun_def) | |
| 1021 | apply(simp add: pt1[OF pta] pt1[OF ptb]) | |
| 1022 | apply(simp add: pt2[OF pta] pt2[OF ptb]) | |
| 1023 | apply(subgoal_tac "(rev pi1) \<triangleq> (rev pi2)")(*A*) | |
| 1024 | apply(simp add: pt3[OF pta] pt3[OF ptb]) | |
| 1025 | (*A*) | |
| 1026 | apply(simp add: at_prm_rev_eq[OF at]) | |
| 1027 | done | |
| 1028 | ||
| 1029 | lemma pt_bool_inst: | |
| 1030 |   shows  "pt TYPE(bool) TYPE('x)"
 | |
| 1031 | by (simp add: pt_def perm_bool_def) | |
| 1032 | ||
| 1033 | lemma pt_set_inst: | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1034 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1035 |   shows  "pt TYPE('a set) TYPE('x)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1036 | apply(simp add: pt_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1037 | apply(simp_all add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1038 | apply(simp add: pt1[OF pt]) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1039 | apply(force simp add: pt2[OF pt] pt3[OF pt]) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1040 | done | 
| 44696 | 1041 | |
| 1042 | lemma pt_unit_inst: | |
| 44833 | 1043 |   shows "pt TYPE(unit) TYPE('x)"
 | 
| 44696 | 1044 | by (simp add: pt_def) | 
| 1045 | ||
| 1046 | lemma pt_prod_inst: | |
| 1047 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1048 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1049 |   shows  "pt TYPE('a \<times> 'b) TYPE('x)"
 | |
| 1050 | apply(auto simp add: pt_def) | |
| 1051 | apply(rule pt1[OF pta]) | |
| 1052 | apply(rule pt1[OF ptb]) | |
| 1053 | apply(rule pt2[OF pta]) | |
| 1054 | apply(rule pt2[OF ptb]) | |
| 1055 | apply(rule pt3[OF pta],assumption) | |
| 1056 | apply(rule pt3[OF ptb],assumption) | |
| 1057 | done | |
| 1058 | ||
| 17870 | 1059 | lemma pt_list_nil: | 
| 1060 | fixes xs :: "'a list" | |
| 1061 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 1062 | shows "([]::'x prm)\<bullet>xs = xs" | |
| 1063 | apply(induct_tac xs) | |
| 1064 | apply(simp_all add: pt1[OF pt]) | |
| 1065 | done | |
| 1066 | ||
| 1067 | lemma pt_list_append: | |
| 1068 | fixes pi1 :: "'x prm" | |
| 1069 | and pi2 :: "'x prm" | |
| 1070 | and xs :: "'a list" | |
| 1071 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 1072 | shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)" | |
| 1073 | apply(induct_tac xs) | |
| 1074 | apply(simp_all add: pt2[OF pt]) | |
| 1075 | done | |
| 1076 | ||
| 1077 | lemma pt_list_prm_eq: | |
| 1078 | fixes pi1 :: "'x prm" | |
| 1079 | and pi2 :: "'x prm" | |
| 1080 | and xs :: "'a list" | |
| 1081 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1082 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs" | 
| 17870 | 1083 | apply(induct_tac xs) | 
| 1084 | apply(simp_all add: prm_eq_def pt3[OF pt]) | |
| 1085 | done | |
| 1086 | ||
| 1087 | lemma pt_list_inst: | |
| 1088 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1089 |   shows  "pt TYPE('a list) TYPE('x)"
 | |
| 1090 | apply(auto simp only: pt_def) | |
| 1091 | apply(rule pt_list_nil[OF pt]) | |
| 1092 | apply(rule pt_list_append[OF pt]) | |
| 1093 | apply(rule pt_list_prm_eq[OF pt],assumption) | |
| 1094 | done | |
| 1095 | ||
| 1096 | lemma pt_option_inst: | |
| 1097 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1098 |   shows  "pt TYPE('a option) TYPE('x)"
 | |
| 1099 | apply(auto simp only: pt_def) | |
| 1100 | apply(case_tac "x") | |
| 1101 | apply(simp_all add: pt1[OF pta]) | |
| 1102 | apply(case_tac "x") | |
| 1103 | apply(simp_all add: pt2[OF pta]) | |
| 1104 | apply(case_tac "x") | |
| 1105 | apply(simp_all add: pt3[OF pta]) | |
| 1106 | done | |
| 1107 | ||
| 1108 | lemma pt_noption_inst: | |
| 1109 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 18579 
002d371401f5
changed the name of the type "nOption" to "noption".
 urbanc parents: 
18578diff
changeset | 1110 |   shows  "pt TYPE('a noption) TYPE('x)"
 | 
| 17870 | 1111 | apply(auto simp only: pt_def) | 
| 1112 | apply(case_tac "x") | |
| 1113 | apply(simp_all add: pt1[OF pta]) | |
| 1114 | apply(case_tac "x") | |
| 1115 | apply(simp_all add: pt2[OF pta]) | |
| 1116 | apply(case_tac "x") | |
| 1117 | apply(simp_all add: pt3[OF pta]) | |
| 1118 | done | |
| 1119 | ||
| 44696 | 1120 | lemma pt_nprod_inst: | 
| 1121 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1122 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1123 |   shows  "pt TYPE(('a,'b) nprod) TYPE('x)"
 | |
| 1124 | apply(auto simp add: pt_def) | |
| 1125 | apply(case_tac x) | |
| 1126 | apply(simp add: pt1[OF pta] pt1[OF ptb]) | |
| 1127 | apply(case_tac x) | |
| 1128 | apply(simp add: pt2[OF pta] pt2[OF ptb]) | |
| 1129 | apply(case_tac x) | |
| 1130 | apply(simp add: pt3[OF pta] pt3[OF ptb]) | |
| 1131 | done | |
| 24544 | 1132 | |
| 63167 | 1133 | section \<open>further lemmas for permutation types\<close> | 
| 17870 | 1134 | (*==============================================*) | 
| 1135 | ||
| 1136 | lemma pt_rev_pi: | |
| 1137 | fixes pi :: "'x prm" | |
| 1138 | and x :: "'a" | |
| 1139 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1140 |   and     at: "at TYPE('x)"
 | |
| 1141 | shows "(rev pi)\<bullet>(pi\<bullet>x) = x" | |
| 1142 | proof - | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1143 | have "((rev pi)@pi) \<triangleq> ([]::'x prm)" by (simp add: at_ds7[OF at]) | 
| 17870 | 1144 | hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) | 
| 1145 | thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt]) | |
| 1146 | qed | |
| 1147 | ||
| 1148 | lemma pt_pi_rev: | |
| 1149 | fixes pi :: "'x prm" | |
| 1150 | and x :: "'a" | |
| 1151 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1152 |   and     at: "at TYPE('x)"
 | |
| 1153 | shows "pi\<bullet>((rev pi)\<bullet>x) = x" | |
| 1154 | by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified]) | |
| 1155 | ||
| 1156 | lemma pt_bij1: | |
| 1157 | fixes pi :: "'x prm" | |
| 1158 | and x :: "'a" | |
| 1159 | and y :: "'a" | |
| 1160 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1161 |   and     at: "at TYPE('x)"
 | |
| 1162 | and a: "(pi\<bullet>x) = y" | |
| 1163 | shows "x=(rev pi)\<bullet>y" | |
| 1164 | proof - | |
| 1165 | from a have "y=(pi\<bullet>x)" by (rule sym) | |
| 1166 | thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at]) | |
| 1167 | qed | |
| 1168 | ||
| 1169 | lemma pt_bij2: | |
| 1170 | fixes pi :: "'x prm" | |
| 1171 | and x :: "'a" | |
| 1172 | and y :: "'a" | |
| 1173 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1174 |   and     at: "at TYPE('x)"
 | |
| 1175 | and a: "x = (rev pi)\<bullet>y" | |
| 1176 | shows "(pi\<bullet>x)=y" | |
| 1177 | using a by (simp add: pt_pi_rev[OF pt, OF at]) | |
| 1178 | ||
| 1179 | lemma pt_bij: | |
| 1180 | fixes pi :: "'x prm" | |
| 1181 | and x :: "'a" | |
| 1182 | and y :: "'a" | |
| 1183 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1184 |   and     at: "at TYPE('x)"
 | |
| 1185 | shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" | |
| 1186 | proof | |
| 1187 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 1188 | hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) | |
| 1189 | thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at]) | |
| 1190 | next | |
| 1191 | assume "x=y" | |
| 1192 | thus "pi\<bullet>x = pi\<bullet>y" by simp | |
| 1193 | qed | |
| 1194 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1195 | lemma pt_eq_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1196 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1197 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1198 | and y :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1199 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1200 |   and     at: "at TYPE('x)"
 | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1201 | shows "pi\<bullet>(x=y) = (pi\<bullet>x = pi\<bullet>y)" | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1202 | using pt at | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1203 | by (auto simp add: pt_bij perm_bool) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1204 | |
| 17870 | 1205 | lemma pt_bij3: | 
| 1206 | fixes pi :: "'x prm" | |
| 1207 | and x :: "'a" | |
| 1208 | and y :: "'a" | |
| 1209 | assumes a: "x=y" | |
| 1210 | shows "(pi\<bullet>x = pi\<bullet>y)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1211 | using a by simp | 
| 17870 | 1212 | |
| 1213 | lemma pt_bij4: | |
| 1214 | fixes pi :: "'x prm" | |
| 1215 | and x :: "'a" | |
| 1216 | and y :: "'a" | |
| 1217 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1218 |   and     at: "at TYPE('x)"
 | |
| 1219 | and a: "pi\<bullet>x = pi\<bullet>y" | |
| 1220 | shows "x = y" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1221 | using a by (simp add: pt_bij[OF pt, OF at]) | 
| 17870 | 1222 | |
| 1223 | lemma pt_swap_bij: | |
| 1224 | fixes a :: "'x" | |
| 1225 | and b :: "'x" | |
| 1226 | and x :: "'a" | |
| 1227 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1228 |   and     at: "at TYPE('x)"
 | |
| 1229 | shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x" | |
| 1230 | by (rule pt_bij2[OF pt, OF at], simp) | |
| 1231 | ||
| 19164 | 1232 | lemma pt_swap_bij': | 
| 1233 | fixes a :: "'x" | |
| 1234 | and b :: "'x" | |
| 1235 | and x :: "'a" | |
| 1236 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1237 |   and     at: "at TYPE('x)"
 | |
| 1238 | shows "[(a,b)]\<bullet>([(b,a)]\<bullet>x) = x" | |
| 1239 | apply(simp add: pt2[OF pt,symmetric]) | |
| 1240 | apply(rule trans) | |
| 1241 | apply(rule pt3[OF pt]) | |
| 1242 | apply(rule at_ds5'[OF at]) | |
| 1243 | apply(rule pt1[OF pt]) | |
| 1244 | done | |
| 1245 | ||
| 24571 | 1246 | lemma pt_swap_bij'': | 
| 1247 | fixes a :: "'x" | |
| 1248 | and x :: "'a" | |
| 1249 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1250 |   and     at: "at TYPE('x)"
 | |
| 1251 | shows "[(a,a)]\<bullet>x = x" | |
| 1252 | apply(rule trans) | |
| 1253 | apply(rule pt3[OF pt]) | |
| 1254 | apply(rule at_ds1[OF at]) | |
| 1255 | apply(rule pt1[OF pt]) | |
| 1256 | done | |
| 1257 | ||
| 26806 | 1258 | lemma supp_singleton: | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1259 |   shows "supp {x} = supp x"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1260 | by (force simp add: supp_def perm_set_def) | 
| 26806 | 1261 | |
| 1262 | lemma fresh_singleton: | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1263 |   shows "a\<sharp>{x} = a\<sharp>x"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1264 | by (simp add: fresh_def supp_singleton) | 
| 26806 | 1265 | |
| 17870 | 1266 | lemma pt_set_bij1: | 
| 1267 | fixes pi :: "'x prm" | |
| 1268 | and x :: "'a" | |
| 1269 | and X :: "'a set" | |
| 1270 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1271 |   and     at: "at TYPE('x)"
 | |
| 1272 | shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1273 | by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | 
| 17870 | 1274 | |
| 1275 | lemma pt_set_bij1a: | |
| 1276 | fixes pi :: "'x prm" | |
| 1277 | and x :: "'a" | |
| 1278 | and X :: "'a set" | |
| 1279 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1280 |   and     at: "at TYPE('x)"
 | |
| 1281 | shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1282 | by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | 
| 17870 | 1283 | |
| 1284 | lemma pt_set_bij: | |
| 1285 | fixes pi :: "'x prm" | |
| 1286 | and x :: "'a" | |
| 1287 | and X :: "'a set" | |
| 1288 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1289 |   and     at: "at TYPE('x)"
 | |
| 1290 | shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1291 | by (simp add: perm_set_def pt_bij[OF pt, OF at]) | 
| 17870 | 1292 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1293 | lemma pt_in_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1294 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1295 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1296 | and X :: "'a set" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1297 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1298 |   and     at: "at TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1299 | shows "pi\<bullet>(x\<in>X)=((pi\<bullet>x)\<in>(pi\<bullet>X))" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1300 | using assms | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1301 | by (auto simp add: pt_set_bij perm_bool) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1302 | |
| 17870 | 1303 | lemma pt_set_bij2: | 
| 1304 | fixes pi :: "'x prm" | |
| 1305 | and x :: "'a" | |
| 1306 | and X :: "'a set" | |
| 1307 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1308 |   and     at: "at TYPE('x)"
 | |
| 1309 | and a: "x\<in>X" | |
| 1310 | shows "(pi\<bullet>x)\<in>(pi\<bullet>X)" | |
| 1311 | using a by (simp add: pt_set_bij[OF pt, OF at]) | |
| 1312 | ||
| 18264 | 1313 | lemma pt_set_bij2a: | 
| 1314 | fixes pi :: "'x prm" | |
| 1315 | and x :: "'a" | |
| 1316 | and X :: "'a set" | |
| 1317 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1318 |   and     at: "at TYPE('x)"
 | |
| 1319 | and a: "x\<in>((rev pi)\<bullet>X)" | |
| 1320 | shows "(pi\<bullet>x)\<in>X" | |
| 1321 | using a by (simp add: pt_set_bij1[OF pt, OF at]) | |
| 1322 | ||
| 26773 | 1323 | (* FIXME: is this lemma needed anywhere? *) | 
| 17870 | 1324 | lemma pt_set_bij3: | 
| 1325 | fixes pi :: "'x prm" | |
| 1326 | and x :: "'a" | |
| 1327 | and X :: "'a set" | |
| 1328 | shows "pi\<bullet>(x\<in>X) = (x\<in>X)" | |
| 26773 | 1329 | by (simp add: perm_bool) | 
| 17870 | 1330 | |
| 18159 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1331 | lemma pt_subseteq_eqvt: | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1332 | fixes pi :: "'x prm" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1333 | and Y :: "'a set" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1334 | and X :: "'a set" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1335 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1336 |   and     at: "at TYPE('x)"
 | 
| 26090 | 1337 | shows "(pi\<bullet>(X\<subseteq>Y)) = ((pi\<bullet>X)\<subseteq>(pi\<bullet>Y))" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1338 | by (auto simp add: perm_set_def perm_bool pt_bij[OF pt, OF at]) | 
| 18159 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1339 | |
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1340 | lemma pt_set_diff_eqvt: | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1341 | fixes X::"'a set" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1342 | and Y::"'a set" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1343 | and pi::"'x prm" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1344 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1345 |   and     at: "at TYPE('x)"
 | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1346 | shows "pi\<bullet>(X - Y) = (pi\<bullet>X) - (pi\<bullet>Y)" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1347 | by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) | 
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1348 | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1349 | lemma pt_Collect_eqvt: | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1350 | fixes pi::"'x prm" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1351 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1352 |   and     at: "at TYPE('x)"
 | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1353 |   shows "pi\<bullet>{x::'a. P x} = {x. P ((rev pi)\<bullet>x)}"
 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1354 | apply(auto simp add: perm_set_def pt_rev_pi[OF pt, OF at]) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1355 | apply(rule_tac x="(rev pi)\<bullet>x" in exI) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1356 | apply(simp add: pt_pi_rev[OF pt, OF at]) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1357 | done | 
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1358 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 1359 | \<comment> \<open>some helper lemmas for the pt_perm_supp_ineq lemma\<close> | 
| 17870 | 1360 | lemma Collect_permI: | 
| 1361 | fixes pi :: "'x prm" | |
| 1362 | and x :: "'a" | |
| 1363 | assumes a: "\<forall>x. (P1 x = P2 x)" | |
| 1364 |   shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}"
 | |
| 1365 | using a by force | |
| 1366 | ||
| 1367 | lemma Infinite_cong: | |
| 1368 | assumes a: "X = Y" | |
| 1369 | shows "infinite X = infinite Y" | |
| 1370 | using a by (simp) | |
| 1371 | ||
| 1372 | lemma pt_set_eq_ineq: | |
| 1373 | fixes pi :: "'y prm" | |
| 1374 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1375 |   and     at: "at TYPE('y)"
 | |
| 1376 |   shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}"
 | |
| 1377 | by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | |
| 1378 | ||
| 1379 | lemma pt_inject_on_ineq: | |
| 1380 | fixes X :: "'y set" | |
| 1381 | and pi :: "'x prm" | |
| 1382 |   assumes pt: "pt TYPE('y) TYPE('x)"
 | |
| 1383 |   and     at: "at TYPE('x)"
 | |
| 1384 | shows "inj_on (perm pi) X" | |
| 1385 | proof (unfold inj_on_def, intro strip) | |
| 1386 | fix x::"'y" and y::"'y" | |
| 1387 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 1388 | thus "x=y" by (simp add: pt_bij[OF pt, OF at]) | |
| 1389 | qed | |
| 1390 | ||
| 1391 | lemma pt_set_finite_ineq: | |
| 1392 | fixes X :: "'x set" | |
| 1393 | and pi :: "'y prm" | |
| 1394 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1395 |   and     at: "at TYPE('y)"
 | |
| 1396 | shows "finite (pi\<bullet>X) = finite X" | |
| 1397 | proof - | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1398 | have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def) | 
| 17870 | 1399 | show ?thesis | 
| 1400 | proof (rule iffI) | |
| 1401 | assume "finite (pi\<bullet>X)" | |
| 1402 | hence "finite (perm pi ` X)" using image by (simp) | |
| 1403 | thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD) | |
| 1404 | next | |
| 1405 | assume "finite X" | |
| 1406 | hence "finite (perm pi ` X)" by (rule finite_imageI) | |
| 1407 | thus "finite (pi\<bullet>X)" using image by (simp) | |
| 1408 | qed | |
| 1409 | qed | |
| 1410 | ||
| 1411 | lemma pt_set_infinite_ineq: | |
| 1412 | fixes X :: "'x set" | |
| 1413 | and pi :: "'y prm" | |
| 1414 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1415 |   and     at: "at TYPE('y)"
 | |
| 1416 | shows "infinite (pi\<bullet>X) = infinite X" | |
| 1417 | using pt at by (simp add: pt_set_finite_ineq) | |
| 1418 | ||
| 1419 | lemma pt_perm_supp_ineq: | |
| 1420 | fixes pi :: "'x prm" | |
| 1421 | and x :: "'a" | |
| 1422 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1423 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1424 |   and     at:  "at TYPE('x)"
 | |
| 1425 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1426 | shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS") | |
| 1427 | proof - | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1428 |   have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def)
 | 
| 17870 | 1429 |   also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" 
 | 
| 1430 | proof (rule Collect_permI, rule allI, rule iffI) | |
| 1431 | fix a | |
| 1432 |     assume "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}"
 | |
| 1433 |     hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1434 |     thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x  \<noteq> x}" by (simp add: perm_set_def)
 | 
| 17870 | 1435 | next | 
| 1436 | fix a | |
| 1437 |     assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1438 |     hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def)
 | 
| 17870 | 1439 |     thus "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}" 
 | 
| 1440 | by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) | |
| 1441 | qed | |
| 1442 |   also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" 
 | |
| 1443 | by (simp add: pt_set_eq_ineq[OF ptb, OF at]) | |
| 1444 |   also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}"
 | |
| 1445 | by (simp add: pt_bij[OF pta, OF at]) | |
| 1446 |   also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}"
 | |
| 1447 | proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong) | |
| 1448 | fix a::"'y" and b::"'y" | |
| 1449 | have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)" | |
| 1450 | by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at]) | |
| 1451 | thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp | |
| 1452 | qed | |
| 1453 | finally show "?LHS = ?RHS" by (simp add: supp_def) | |
| 1454 | qed | |
| 1455 | ||
| 1456 | lemma pt_perm_supp: | |
| 1457 | fixes pi :: "'x prm" | |
| 1458 | and x :: "'a" | |
| 1459 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1460 |   and     at: "at TYPE('x)"
 | |
| 1461 | shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)" | |
| 1462 | apply(rule pt_perm_supp_ineq) | |
| 1463 | apply(rule pt) | |
| 1464 | apply(rule at_pt_inst) | |
| 1465 | apply(rule at)+ | |
| 1466 | apply(rule cp_pt_inst) | |
| 1467 | apply(rule pt) | |
| 1468 | apply(rule at) | |
| 1469 | done | |
| 1470 | ||
| 1471 | lemma pt_supp_finite_pi: | |
| 1472 | fixes pi :: "'x prm" | |
| 1473 | and x :: "'a" | |
| 1474 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1475 |   and     at: "at TYPE('x)"
 | |
| 1476 | and f: "finite ((supp x)::'x set)" | |
| 1477 | shows "finite ((supp (pi\<bullet>x))::'x set)" | |
| 1478 | apply(simp add: pt_perm_supp[OF pt, OF at, symmetric]) | |
| 1479 | apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at]) | |
| 1480 | apply(rule f) | |
| 1481 | done | |
| 1482 | ||
| 1483 | lemma pt_fresh_left_ineq: | |
| 1484 | fixes pi :: "'x prm" | |
| 1485 | and x :: "'a" | |
| 1486 | and a :: "'y" | |
| 1487 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1488 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1489 |   and     at:  "at TYPE('x)"
 | |
| 1490 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1491 | shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" | |
| 1492 | apply(simp add: fresh_def) | |
| 1493 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | |
| 1494 | apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1495 | done | |
| 1496 | ||
| 1497 | lemma pt_fresh_right_ineq: | |
| 1498 | fixes pi :: "'x prm" | |
| 1499 | and x :: "'a" | |
| 1500 | and a :: "'y" | |
| 1501 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1502 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1503 |   and     at:  "at TYPE('x)"
 | |
| 1504 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1505 | shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" | |
| 1506 | apply(simp add: fresh_def) | |
| 1507 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | |
| 1508 | apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1509 | done | |
| 1510 | ||
| 1511 | lemma pt_fresh_bij_ineq: | |
| 1512 | fixes pi :: "'x prm" | |
| 1513 | and x :: "'a" | |
| 1514 | and a :: "'y" | |
| 1515 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1516 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1517 |   and     at:  "at TYPE('x)"
 | |
| 1518 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1519 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" | |
| 1520 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1521 | apply(simp add: pt_rev_pi[OF ptb, OF at]) | |
| 1522 | done | |
| 1523 | ||
| 1524 | lemma pt_fresh_left: | |
| 1525 | fixes pi :: "'x prm" | |
| 1526 | and x :: "'a" | |
| 1527 | and a :: "'x" | |
| 1528 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1529 |   and     at: "at TYPE('x)"
 | |
| 1530 | shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" | |
| 1531 | apply(rule pt_fresh_left_ineq) | |
| 1532 | apply(rule pt) | |
| 1533 | apply(rule at_pt_inst) | |
| 1534 | apply(rule at)+ | |
| 1535 | apply(rule cp_pt_inst) | |
| 1536 | apply(rule pt) | |
| 1537 | apply(rule at) | |
| 1538 | done | |
| 1539 | ||
| 1540 | lemma pt_fresh_right: | |
| 1541 | fixes pi :: "'x prm" | |
| 1542 | and x :: "'a" | |
| 1543 | and a :: "'x" | |
| 1544 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1545 |   and     at: "at TYPE('x)"
 | |
| 1546 | shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" | |
| 1547 | apply(rule pt_fresh_right_ineq) | |
| 1548 | apply(rule pt) | |
| 1549 | apply(rule at_pt_inst) | |
| 1550 | apply(rule at)+ | |
| 1551 | apply(rule cp_pt_inst) | |
| 1552 | apply(rule pt) | |
| 1553 | apply(rule at) | |
| 1554 | done | |
| 1555 | ||
| 1556 | lemma pt_fresh_bij: | |
| 1557 | fixes pi :: "'x prm" | |
| 1558 | and x :: "'a" | |
| 1559 | and a :: "'x" | |
| 1560 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1561 |   and     at: "at TYPE('x)"
 | |
| 1562 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" | |
| 1563 | apply(rule pt_fresh_bij_ineq) | |
| 1564 | apply(rule pt) | |
| 1565 | apply(rule at_pt_inst) | |
| 1566 | apply(rule at)+ | |
| 1567 | apply(rule cp_pt_inst) | |
| 1568 | apply(rule pt) | |
| 1569 | apply(rule at) | |
| 1570 | done | |
| 1571 | ||
| 1572 | lemma pt_fresh_bij1: | |
| 1573 | fixes pi :: "'x prm" | |
| 1574 | and x :: "'a" | |
| 1575 | and a :: "'x" | |
| 1576 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1577 |   and     at: "at TYPE('x)"
 | |
| 1578 | and a: "a\<sharp>x" | |
| 1579 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" | |
| 1580 | using a by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 1581 | ||
| 19566 | 1582 | lemma pt_fresh_bij2: | 
| 1583 | fixes pi :: "'x prm" | |
| 1584 | and x :: "'a" | |
| 1585 | and a :: "'x" | |
| 1586 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1587 |   and     at: "at TYPE('x)"
 | |
| 1588 | and a: "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" | |
| 1589 | shows "a\<sharp>x" | |
| 1590 | using a by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 1591 | ||
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1592 | lemma pt_fresh_eqvt: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1593 | fixes pi :: "'x prm" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1594 | and x :: "'a" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1595 | and a :: "'x" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1596 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1597 |   and     at: "at TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1598 | shows "pi\<bullet>(a\<sharp>x) = (pi\<bullet>a)\<sharp>(pi\<bullet>x)" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1599 | by (simp add: perm_bool pt_fresh_bij[OF pt, OF at]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1600 | |
| 17870 | 1601 | lemma pt_perm_fresh1: | 
| 1602 | fixes a :: "'x" | |
| 1603 | and b :: "'x" | |
| 1604 | and x :: "'a" | |
| 1605 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1606 |   and     at: "at TYPE ('x)"
 | |
| 1607 | and a1: "\<not>(a\<sharp>x)" | |
| 1608 | and a2: "b\<sharp>x" | |
| 1609 | shows "[(a,b)]\<bullet>x \<noteq> x" | |
| 1610 | proof | |
| 1611 | assume neg: "[(a,b)]\<bullet>x = x" | |
| 1612 | from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def) | |
| 1613 | from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def) | |
| 1614 | from a1' a2' have a3: "a\<noteq>b" by force | |
| 1615 | from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))" | |
| 1616 | by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at]) | |
| 19325 | 1617 | hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_calc[OF at]) | 
| 17870 | 1618 | hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at]) | 
| 1619 | with a2' neg show False by simp | |
| 1620 | qed | |
| 1621 | ||
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1622 | (* the next two lemmas are needed in the proof *) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1623 | (* of the structural induction principle *) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1624 | lemma pt_fresh_aux: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1625 | fixes a::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1626 | and b::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1627 | and c::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1628 | and x::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1629 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1630 |   and     at: "at TYPE ('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1631 | assumes a1: "c\<noteq>a" and a2: "a\<sharp>x" and a3: "c\<sharp>x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1632 | shows "c\<sharp>([(a,b)]\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1633 | using a1 a2 a3 by (simp_all add: pt_fresh_left[OF pt, OF at] at_calc[OF at]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1634 | |
| 22786 | 1635 | lemma pt_fresh_perm_app: | 
| 1636 | fixes pi :: "'x prm" | |
| 1637 | and a :: "'x" | |
| 1638 | and x :: "'y" | |
| 1639 |   assumes pt: "pt TYPE('y) TYPE('x)"
 | |
| 1640 |   and     at: "at TYPE('x)"
 | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1641 | and h1: "a\<sharp>pi" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1642 | and h2: "a\<sharp>x" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1643 | shows "a\<sharp>(pi\<bullet>x)" | 
| 22786 | 1644 | using assms | 
| 1645 | proof - | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1646 | have "a\<sharp>(rev pi)"using h1 by (simp add: fresh_list_rev) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1647 | then have "(rev pi)\<bullet>a = a" by (simp add: at_prm_fresh[OF at]) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1648 | then have "((rev pi)\<bullet>a)\<sharp>x" using h2 by simp | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1649 | thus "a\<sharp>(pi\<bullet>x)" by (simp add: pt_fresh_right[OF pt, OF at]) | 
| 22786 | 1650 | qed | 
| 1651 | ||
| 1652 | lemma pt_fresh_perm_app_ineq: | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1653 | fixes pi::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1654 | and c::"'y" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1655 | and x::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1656 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1657 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1658 |   and     at:  "at TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1659 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1660 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1661 | assumes a: "c\<sharp>x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1662 | shows "c\<sharp>(pi\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1663 | using a by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1664 | |
| 22535 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1665 | lemma pt_fresh_eqvt_ineq: | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1666 | fixes pi::"'x prm" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1667 | and c::"'y" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1668 | and x::"'a" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1669 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1670 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1671 |   and     at:  "at TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1672 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1673 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1674 | shows "pi\<bullet>(c\<sharp>x) = (pi\<bullet>c)\<sharp>(pi\<bullet>x)" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1675 | by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj] perm_bool) | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1676 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 1677 | \<comment> \<open>the co-set of a finite set is infinte\<close> | 
| 17870 | 1678 | lemma finite_infinite: | 
| 1679 |   assumes a: "finite {b::'x. P b}"
 | |
| 1680 | and b: "infinite (UNIV::'x set)" | |
| 1681 |   shows "infinite {b. \<not>P b}"
 | |
| 27687 | 1682 | proof - | 
| 1683 |   from a b have "infinite (UNIV - {b::'x. P b})" by (simp add: Diff_infinite_finite)
 | |
| 1684 | moreover | |
| 1685 |   have "{b::'x. \<not>P b} = UNIV - {b::'x. P b}" by auto
 | |
| 1686 |   ultimately show "infinite {b::'x. \<not>P b}" by simp
 | |
| 1687 | qed | |
| 17870 | 1688 | |
| 1689 | lemma pt_fresh_fresh: | |
| 1690 | fixes x :: "'a" | |
| 1691 | and a :: "'x" | |
| 1692 | and b :: "'x" | |
| 1693 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1694 |   and     at: "at TYPE ('x)"
 | |
| 1695 | and a1: "a\<sharp>x" and a2: "b\<sharp>x" | |
| 1696 | shows "[(a,b)]\<bullet>x=x" | |
| 1697 | proof (cases "a=b") | |
| 19325 | 1698 | assume "a=b" | 
| 1699 | hence "[(a,b)] \<triangleq> []" by (simp add: at_ds1[OF at]) | |
| 17870 | 1700 | hence "[(a,b)]\<bullet>x=([]::'x prm)\<bullet>x" by (rule pt3[OF pt]) | 
| 1701 | thus ?thesis by (simp only: pt1[OF pt]) | |
| 1702 | next | |
| 1703 | assume c2: "a\<noteq>b" | |
| 1704 |   from a1 have f1: "finite {c. [(a,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
 | |
| 1705 |   from a2 have f2: "finite {c. [(b,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
 | |
| 1706 |   from f1 and f2 have f3: "finite {c. perm [(a,c)] x \<noteq> x \<or> perm [(b,c)] x \<noteq> x}" 
 | |
| 1707 | by (force simp only: Collect_disj_eq) | |
| 1708 |   have "infinite {c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}" 
 | |
| 1709 | by (simp add: finite_infinite[OF f3,OF at4[OF at], simplified]) | |
| 1710 |   hence "infinite ({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" 
 | |
| 1711 | by (force dest: Diff_infinite_finite) | |
| 29903 | 1712 |   hence "({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b}) \<noteq> {}"
 | 
| 44683 | 1713 | by (metis finite_set set_empty2) | 
| 17870 | 1714 |   hence "\<exists>c. c\<in>({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" by (force)
 | 
| 1715 | then obtain c | |
| 1716 | where eq1: "[(a,c)]\<bullet>x = x" | |
| 1717 | and eq2: "[(b,c)]\<bullet>x = x" | |
| 1718 | and ineq: "a\<noteq>c \<and> b\<noteq>c" | |
| 1719 | by (force) | |
| 1720 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>x)) = x" by simp | |
| 1721 | hence eq3: "[(a,c),(b,c),(a,c)]\<bullet>x = x" by (simp add: pt2[OF pt,symmetric]) | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1722 | from c2 ineq have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" by (simp add: at_ds3[OF at]) | 
| 17870 | 1723 | hence "[(a,c),(b,c),(a,c)]\<bullet>x = [(a,b)]\<bullet>x" by (rule pt3[OF pt]) | 
| 1724 | thus ?thesis using eq3 by simp | |
| 1725 | qed | |
| 1726 | ||
| 26773 | 1727 | lemma pt_pi_fresh_fresh: | 
| 1728 | fixes x :: "'a" | |
| 1729 | and pi :: "'x prm" | |
| 1730 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1731 |   and     at: "at TYPE ('x)"
 | |
| 1732 | and a: "\<forall>(a,b)\<in>set pi. a\<sharp>x \<and> b\<sharp>x" | |
| 1733 | shows "pi\<bullet>x=x" | |
| 1734 | using a | |
| 1735 | proof (induct pi) | |
| 1736 | case Nil | |
| 1737 | show "([]::'x prm)\<bullet>x = x" by (rule pt1[OF pt]) | |
| 1738 | next | |
| 1739 | case (Cons ab pi) | |
| 1740 | have a: "\<forall>(a,b)\<in>set (ab#pi). a\<sharp>x \<and> b\<sharp>x" by fact | |
| 1741 | have ih: "(\<forall>(a,b)\<in>set pi. a\<sharp>x \<and> b\<sharp>x) \<Longrightarrow> pi\<bullet>x=x" by fact | |
| 1742 | obtain a b where e: "ab=(a,b)" by (cases ab) (auto) | |
| 1743 | from a have a': "a\<sharp>x" "b\<sharp>x" using e by auto | |
| 1744 | have "(ab#pi)\<bullet>x = ([(a,b)]@pi)\<bullet>x" using e by simp | |
| 1745 | also have "\<dots> = [(a,b)]\<bullet>(pi\<bullet>x)" by (simp only: pt2[OF pt]) | |
| 1746 | also have "\<dots> = [(a,b)]\<bullet>x" using ih a by simp | |
| 1747 | also have "\<dots> = x" using a' by (simp add: pt_fresh_fresh[OF pt, OF at]) | |
| 1748 | finally show "(ab#pi)\<bullet>x = x" by simp | |
| 1749 | qed | |
| 1750 | ||
| 17870 | 1751 | lemma pt_perm_compose: | 
| 1752 | fixes pi1 :: "'x prm" | |
| 1753 | and pi2 :: "'x prm" | |
| 1754 | and x :: "'a" | |
| 1755 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1756 |   and     at: "at TYPE('x)"
 | |
| 1757 | shows "pi2\<bullet>(pi1\<bullet>x) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>x)" | |
| 1758 | proof - | |
| 23393 | 1759 | have "(pi2@pi1) \<triangleq> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8 [OF at]) | 
| 17870 | 1760 | hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt]) | 
| 1761 | thus ?thesis by (simp add: pt2[OF pt]) | |
| 1762 | qed | |
| 1763 | ||
| 19045 | 1764 | lemma pt_perm_compose': | 
| 1765 | fixes pi1 :: "'x prm" | |
| 1766 | and pi2 :: "'x prm" | |
| 1767 | and x :: "'a" | |
| 1768 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1769 |   and     at: "at TYPE('x)"
 | |
| 1770 | shows "(pi2\<bullet>pi1)\<bullet>x = pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x))" | |
| 1771 | proof - | |
| 1772 | have "pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x)) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>((rev pi2)\<bullet>x))" | |
| 1773 | by (rule pt_perm_compose[OF pt, OF at]) | |
| 1774 | also have "\<dots> = (pi2\<bullet>pi1)\<bullet>x" by (simp add: pt_pi_rev[OF pt, OF at]) | |
| 1775 | finally have "pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x)) = (pi2\<bullet>pi1)\<bullet>x" by simp | |
| 1776 | thus ?thesis by simp | |
| 1777 | qed | |
| 1778 | ||
| 17870 | 1779 | lemma pt_perm_compose_rev: | 
| 1780 | fixes pi1 :: "'x prm" | |
| 1781 | and pi2 :: "'x prm" | |
| 1782 | and x :: "'a" | |
| 1783 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1784 |   and     at: "at TYPE('x)"
 | |
| 1785 | shows "(rev pi2)\<bullet>((rev pi1)\<bullet>x) = (rev pi1)\<bullet>(rev (pi1\<bullet>pi2)\<bullet>x)" | |
| 1786 | proof - | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1787 | have "((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" by (rule at_ds9[OF at]) | 
| 17870 | 1788 | hence "((rev pi2)@(rev pi1))\<bullet>x = ((rev pi1)@(rev (pi1\<bullet>pi2)))\<bullet>x" by (rule pt3[OF pt]) | 
| 1789 | thus ?thesis by (simp add: pt2[OF pt]) | |
| 1790 | qed | |
| 1791 | ||
| 63167 | 1792 | section \<open>equivariance for some connectives\<close> | 
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1793 | lemma pt_all_eqvt: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1794 | fixes pi :: "'x prm" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1795 | and x :: "'a" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1796 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1797 |   and     at: "at TYPE('x)"
 | 
| 22715 
381e6c45f13b
improved the equivariance lemmas for the quantifiers; had to export the lemma eqvt_force_add and eqvt_force_del in the thmdecls
 urbanc parents: 
22714diff
changeset | 1798 | shows "pi\<bullet>(\<forall>(x::'a). P x) = (\<forall>(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | 
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1799 | apply(auto simp add: perm_bool perm_fun_def) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1800 | apply(drule_tac x="pi\<bullet>x" in spec) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1801 | apply(simp add: pt_rev_pi[OF pt, OF at]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1802 | done | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1803 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1804 | lemma pt_ex_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1805 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1806 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1807 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1808 |   and     at: "at TYPE('x)"
 | 
| 22715 
381e6c45f13b
improved the equivariance lemmas for the quantifiers; had to export the lemma eqvt_force_add and eqvt_force_del in the thmdecls
 urbanc parents: 
22714diff
changeset | 1809 | shows "pi\<bullet>(\<exists>(x::'a). P x) = (\<exists>(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1810 | apply(auto simp add: perm_bool perm_fun_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1811 | apply(rule_tac x="pi\<bullet>x" in exI) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1812 | apply(simp add: pt_rev_pi[OF pt, OF at]) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1813 | done | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1814 | |
| 28011 | 1815 | lemma pt_ex1_eqvt: | 
| 1816 | fixes pi :: "'x prm" | |
| 1817 | and x :: "'a" | |
| 1818 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1819 |   and     at: "at TYPE('x)"
 | |
| 1820 | shows "(pi\<bullet>(\<exists>!x. P (x::'a))) = (\<exists>!x. pi\<bullet>(P (rev pi\<bullet>x)))" | |
| 1821 | unfolding Ex1_def | |
| 1822 | by (simp add: pt_ex_eqvt[OF pt at] conj_eqvt pt_all_eqvt[OF pt at] | |
| 1823 | imp_eqvt pt_eq_eqvt[OF pt at] pt_pi_rev[OF pt at]) | |
| 1824 | ||
| 1825 | lemma pt_the_eqvt: | |
| 1826 | fixes pi :: "'x prm" | |
| 1827 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1828 |   and     at: "at TYPE('x)"
 | |
| 1829 | and unique: "\<exists>!x. P x" | |
| 1830 | shows "pi\<bullet>(THE(x::'a). P x) = (THE(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | |
| 1831 | apply(rule the1_equality [symmetric]) | |
| 1832 | apply(simp add: pt_ex1_eqvt[OF pt at,symmetric]) | |
| 1833 | apply(simp add: perm_bool unique) | |
| 1834 | apply(simp add: perm_bool pt_rev_pi [OF pt at]) | |
| 1835 | apply(rule theI'[OF unique]) | |
| 1836 | done | |
| 1837 | ||
| 63167 | 1838 | section \<open>facts about supports\<close> | 
| 17870 | 1839 | (*==============================*) | 
| 1840 | ||
| 1841 | lemma supports_subset: | |
| 1842 | fixes x :: "'a" | |
| 1843 | and S1 :: "'x set" | |
| 1844 | and S2 :: "'x set" | |
| 1845 | assumes a: "S1 supports x" | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 1846 | and b: "S1 \<subseteq> S2" | 
| 17870 | 1847 | shows "S2 supports x" | 
| 1848 | using a b | |
| 22808 | 1849 | by (force simp add: supports_def) | 
| 17870 | 1850 | |
| 1851 | lemma supp_is_subset: | |
| 1852 | fixes S :: "'x set" | |
| 1853 | and x :: "'a" | |
| 1854 | assumes a1: "S supports x" | |
| 1855 | and a2: "finite S" | |
| 1856 | shows "(supp x)\<subseteq>S" | |
| 1857 | proof (rule ccontr) | |
| 1858 | assume "\<not>(supp x \<subseteq> S)" | |
| 1859 | hence "\<exists>a. a\<in>(supp x) \<and> a\<notin>S" by force | |
| 1860 | then obtain a where b1: "a\<in>supp x" and b2: "a\<notin>S" by force | |
| 22808 | 1861 | from a1 b2 have "\<forall>b. (b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x = x))" by (unfold supports_def, force) | 
| 19216 | 1862 |   hence "{b. [(a,b)]\<bullet>x \<noteq> x}\<subseteq>S" by force
 | 
| 17870 | 1863 |   with a2 have "finite {b. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: finite_subset)
 | 
| 1864 | hence "a\<notin>(supp x)" by (unfold supp_def, auto) | |
| 1865 | with b1 show False by simp | |
| 1866 | qed | |
| 1867 | ||
| 18264 | 1868 | lemma supp_supports: | 
| 1869 | fixes x :: "'a" | |
| 1870 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1871 |   and      at: "at TYPE ('x)"
 | |
| 1872 | shows "((supp x)::'x set) supports x" | |
| 22808 | 1873 | proof (unfold supports_def, intro strip) | 
| 18264 | 1874 | fix a b | 
| 1875 | assume "(a::'x)\<notin>(supp x) \<and> (b::'x)\<notin>(supp x)" | |
| 1876 | hence "a\<sharp>x" and "b\<sharp>x" by (auto simp add: fresh_def) | |
| 1877 | thus "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pt, OF at]) | |
| 1878 | qed | |
| 1879 | ||
| 17870 | 1880 | lemma supports_finite: | 
| 1881 | fixes S :: "'x set" | |
| 1882 | and x :: "'a" | |
| 1883 | assumes a1: "S supports x" | |
| 1884 | and a2: "finite S" | |
| 1885 | shows "finite ((supp x)::'x set)" | |
| 1886 | proof - | |
| 1887 | have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1888 | thus ?thesis using a2 by (simp add: finite_subset) | |
| 1889 | qed | |
| 1890 | ||
| 1891 | lemma supp_is_inter: | |
| 1892 | fixes x :: "'a" | |
| 1893 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1894 |   and      at: "at TYPE ('x)"
 | |
| 1895 |   and      fs: "fs TYPE('a) TYPE('x)"
 | |
| 60585 | 1896 |   shows "((supp x)::'x set) = (\<Inter>{S. finite S \<and> S supports x})"
 | 
| 17870 | 1897 | proof (rule equalityI) | 
| 60585 | 1898 |   show "((supp x)::'x set) \<subseteq> (\<Inter>{S. finite S \<and> S supports x})"
 | 
| 17870 | 1899 | proof (clarify) | 
| 1900 | fix S c | |
| 1901 | assume b: "c\<in>((supp x)::'x set)" and "finite (S::'x set)" and "S supports x" | |
| 1902 | hence "((supp x)::'x set)\<subseteq>S" by (simp add: supp_is_subset) | |
| 1903 | with b show "c\<in>S" by force | |
| 1904 | qed | |
| 1905 | next | |
| 60585 | 1906 |   show "(\<Inter>{S. finite S \<and> S supports x}) \<subseteq> ((supp x)::'x set)"
 | 
| 17870 | 1907 | proof (clarify, simp) | 
| 1908 | fix c | |
| 1909 | assume d: "\<forall>(S::'x set). finite S \<and> S supports x \<longrightarrow> c\<in>S" | |
| 1910 | have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at]) | |
| 1911 | with d fs1[OF fs] show "c\<in>supp x" by force | |
| 1912 | qed | |
| 1913 | qed | |
| 1914 | ||
| 1915 | lemma supp_is_least_supports: | |
| 1916 | fixes S :: "'x set" | |
| 1917 | and x :: "'a" | |
| 1918 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1919 |   and      at: "at TYPE ('x)"
 | |
| 1920 | and a1: "S supports x" | |
| 1921 | and a2: "finite S" | |
| 19477 | 1922 | and a3: "\<forall>S'. (S' supports x) \<longrightarrow> S\<subseteq>S'" | 
| 17870 | 1923 | shows "S = (supp x)" | 
| 1924 | proof (rule equalityI) | |
| 1925 | show "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1926 | next | |
| 19477 | 1927 | have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at]) | 
| 1928 | with a3 show "S\<subseteq>supp x" by force | |
| 17870 | 1929 | qed | 
| 1930 | ||
| 1931 | lemma supports_set: | |
| 1932 | fixes S :: "'x set" | |
| 1933 | and X :: "'a set" | |
| 1934 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1935 |   and      at: "at TYPE ('x)"
 | |
| 1936 | and a: "\<forall>x\<in>X. (\<forall>(a::'x) (b::'x). a\<notin>S\<and>b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x)\<in>X)" | |
| 1937 | shows "S supports X" | |
| 1938 | using a | |
| 22808 | 1939 | apply(auto simp add: supports_def) | 
| 17870 | 1940 | apply(simp add: pt_set_bij1a[OF pt, OF at]) | 
| 1941 | apply(force simp add: pt_swap_bij[OF pt, OF at]) | |
| 1942 | apply(simp add: pt_set_bij1a[OF pt, OF at]) | |
| 1943 | done | |
| 1944 | ||
| 1945 | lemma supports_fresh: | |
| 1946 | fixes S :: "'x set" | |
| 1947 | and a :: "'x" | |
| 1948 | and x :: "'a" | |
| 1949 | assumes a1: "S supports x" | |
| 1950 | and a2: "finite S" | |
| 1951 | and a3: "a\<notin>S" | |
| 1952 | shows "a\<sharp>x" | |
| 1953 | proof (simp add: fresh_def) | |
| 1954 | have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1955 | thus "a\<notin>(supp x)" using a3 by force | |
| 1956 | qed | |
| 1957 | ||
| 1958 | lemma at_fin_set_supports: | |
| 1959 | fixes X::"'x set" | |
| 1960 |   assumes at: "at TYPE('x)"
 | |
| 1961 | shows "X supports X" | |
| 19329 | 1962 | proof - | 
| 26806 | 1963 | have "\<forall>a b. a\<notin>X \<and> b\<notin>X \<longrightarrow> [(a,b)]\<bullet>X = X" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1964 | by (auto simp add: perm_set_def at_calc[OF at]) | 
| 22808 | 1965 | then show ?thesis by (simp add: supports_def) | 
| 17870 | 1966 | qed | 
| 1967 | ||
| 19329 | 1968 | lemma infinite_Collection: | 
| 1969 | assumes a1:"infinite X" | |
| 1970 | and a2:"\<forall>b\<in>X. P(b)" | |
| 1971 |   shows "infinite {b\<in>X. P(b)}"
 | |
| 1972 | using a1 a2 | |
| 1973 | apply auto | |
| 1974 |   apply (subgoal_tac "infinite (X - {b\<in>X. P b})")
 | |
| 26806 | 1975 | apply (simp add: set_diff_eq) | 
| 19329 | 1976 | apply (simp add: Diff_infinite_finite) | 
| 1977 | done | |
| 1978 | ||
| 17870 | 1979 | lemma at_fin_set_supp: | 
| 19329 | 1980 | fixes X::"'x set" | 
| 17870 | 1981 |   assumes at: "at TYPE('x)"
 | 
| 1982 | and fs: "finite X" | |
| 1983 | shows "(supp X) = X" | |
| 19329 | 1984 | proof (rule subset_antisym) | 
| 1985 | show "(supp X) \<subseteq> X" using at_fin_set_supports[OF at] using fs by (simp add: supp_is_subset) | |
| 1986 | next | |
| 1987 | have inf: "infinite (UNIV-X)" using at4[OF at] fs by (auto simp add: Diff_infinite_finite) | |
| 1988 |   { fix a::"'x"
 | |
| 1989 | assume asm: "a\<in>X" | |
| 26806 | 1990 | hence "\<forall>b\<in>(UNIV-X). [(a,b)]\<bullet>X\<noteq>X" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1991 | by (auto simp add: perm_set_def at_calc[OF at]) | 
| 19329 | 1992 |     with inf have "infinite {b\<in>(UNIV-X). [(a,b)]\<bullet>X\<noteq>X}" by (rule infinite_Collection)
 | 
| 1993 |     hence "infinite {b. [(a,b)]\<bullet>X\<noteq>X}" by (rule_tac infinite_super, auto)
 | |
| 1994 | hence "a\<in>(supp X)" by (simp add: supp_def) | |
| 1995 | } | |
| 1996 | then show "X\<subseteq>(supp X)" by blast | |
| 17870 | 1997 | qed | 
| 1998 | ||
| 25950 | 1999 | lemma at_fin_set_fresh: | 
| 2000 | fixes X::"'x set" | |
| 2001 |   assumes at: "at TYPE('x)"
 | |
| 2002 | and fs: "finite X" | |
| 2003 | shows "(x \<sharp> X) = (x \<notin> X)" | |
| 2004 | by (simp add: at_fin_set_supp fresh_def at fs) | |
| 2005 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2006 | |
| 63167 | 2007 | section \<open>Permutations acting on Functions\<close> | 
| 17870 | 2008 | (*==========================================*) | 
| 2009 | ||
| 2010 | lemma pt_fun_app_eq: | |
| 2011 | fixes f :: "'a\<Rightarrow>'b" | |
| 2012 | and x :: "'a" | |
| 2013 | and pi :: "'x prm" | |
| 2014 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2015 |   and     at: "at TYPE('x)"
 | |
| 2016 | shows "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" | |
| 2017 | by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at]) | |
| 2018 | ||
| 2019 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 2020 | \<comment> \<open>sometimes pt_fun_app_eq does too much; this lemma 'corrects it'\<close> | 
| 17870 | 2021 | lemma pt_perm: | 
| 2022 | fixes x :: "'a" | |
| 2023 | and pi1 :: "'x prm" | |
| 2024 | and pi2 :: "'x prm" | |
| 2025 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2026 |   and     at: "at TYPE ('x)"
 | |
| 2027 | shows "(pi1\<bullet>perm pi2)(pi1\<bullet>x) = pi1\<bullet>(pi2\<bullet>x)" | |
| 2028 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2029 | ||
| 2030 | ||
| 2031 | lemma pt_fun_eq: | |
| 2032 | fixes f :: "'a\<Rightarrow>'b" | |
| 2033 | and pi :: "'x prm" | |
| 2034 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2035 |   and     at: "at TYPE('x)"
 | |
| 2036 | shows "(pi\<bullet>f = f) = (\<forall> x. pi\<bullet>(f x) = f (pi\<bullet>x))" (is "?LHS = ?RHS") | |
| 2037 | proof | |
| 2038 | assume a: "?LHS" | |
| 2039 | show "?RHS" | |
| 2040 | proof | |
| 2041 | fix x | |
| 2042 | have "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2043 | also have "\<dots> = f (pi\<bullet>x)" using a by simp | |
| 2044 | finally show "pi\<bullet>(f x) = f (pi\<bullet>x)" by simp | |
| 2045 | qed | |
| 2046 | next | |
| 2047 | assume b: "?RHS" | |
| 2048 | show "?LHS" | |
| 2049 | proof (rule ccontr) | |
| 2050 | assume "(pi\<bullet>f) \<noteq> f" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2051 | hence "\<exists>x. (pi\<bullet>f) x \<noteq> f x" by (simp add: fun_eq_iff) | 
| 19477 | 2052 | then obtain x where b1: "(pi\<bullet>f) x \<noteq> f x" by force | 
| 2053 | from b have "pi\<bullet>(f ((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" by force | |
| 2054 | hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" | |
| 17870 | 2055 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | 
| 19477 | 2056 | hence "(pi\<bullet>f) x = f x" by (simp add: pt_pi_rev[OF pt, OF at]) | 
| 17870 | 2057 | with b1 show "False" by simp | 
| 2058 | qed | |
| 2059 | qed | |
| 2060 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 2061 | \<comment> \<open>two helper lemmas for the equivariance of functions\<close> | 
| 17870 | 2062 | lemma pt_swap_eq_aux: | 
| 2063 | fixes y :: "'a" | |
| 2064 | and pi :: "'x prm" | |
| 2065 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2066 | and a: "\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y" | |
| 2067 | shows "pi\<bullet>y = y" | |
| 2068 | proof(induct pi) | |
| 24544 | 2069 | case Nil show ?case by (simp add: pt1[OF pt]) | 
| 2070 | next | |
| 2071 | case (Cons x xs) | |
| 2072 | have ih: "xs\<bullet>y = y" by fact | |
| 2073 | obtain a b where p: "x=(a,b)" by force | |
| 2074 | have "((a,b)#xs)\<bullet>y = ([(a,b)]@xs)\<bullet>y" by simp | |
| 2075 | also have "\<dots> = [(a,b)]\<bullet>(xs\<bullet>y)" by (simp only: pt2[OF pt]) | |
| 2076 | finally show ?case using a ih p by simp | |
| 2077 | qed | |
| 17870 | 2078 | |
| 2079 | lemma pt_swap_eq: | |
| 2080 | fixes y :: "'a" | |
| 2081 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2082 | shows "(\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y) = (\<forall>pi::'x prm. pi\<bullet>y = y)" | |
| 2083 | by (force intro: pt_swap_eq_aux[OF pt]) | |
| 2084 | ||
| 2085 | lemma pt_eqvt_fun1a: | |
| 2086 | fixes f :: "'a\<Rightarrow>'b" | |
| 2087 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2088 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2089 |   and     at:  "at TYPE('x)"
 | |
| 2090 |   and     a:   "((supp f)::'x set)={}"
 | |
| 2091 | shows "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2092 | proof (intro strip) | |
| 2093 | fix pi | |
| 2094 | have "\<forall>a b. a\<notin>((supp f)::'x set) \<and> b\<notin>((supp f)::'x set) \<longrightarrow> (([(a,b)]\<bullet>f) = f)" | |
| 2095 | by (intro strip, fold fresh_def, | |
| 2096 | simp add: pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at],OF at]) | |
| 2097 | with a have "\<forall>(a::'x) (b::'x). ([(a,b)]\<bullet>f) = f" by force | |
| 2098 | hence "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2099 | by (simp add: pt_swap_eq[OF pt_fun_inst[OF pta, OF ptb, OF at]]) | |
| 2100 | thus "(pi::'x prm)\<bullet>f = f" by simp | |
| 2101 | qed | |
| 2102 | ||
| 2103 | lemma pt_eqvt_fun1b: | |
| 2104 | fixes f :: "'a\<Rightarrow>'b" | |
| 2105 | assumes a: "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2106 |   shows "((supp f)::'x set)={}"
 | |
| 2107 | using a by (simp add: supp_def) | |
| 2108 | ||
| 2109 | lemma pt_eqvt_fun1: | |
| 2110 | fixes f :: "'a\<Rightarrow>'b" | |
| 2111 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2112 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2113 |   and     at: "at TYPE('x)"
 | |
| 2114 |   shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm). pi\<bullet>f = f)" (is "?LHS = ?RHS")
 | |
| 2115 | by (rule iffI, simp add: pt_eqvt_fun1a[OF pta, OF ptb, OF at], simp add: pt_eqvt_fun1b) | |
| 2116 | ||
| 2117 | lemma pt_eqvt_fun2a: | |
| 2118 | fixes f :: "'a\<Rightarrow>'b" | |
| 2119 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2120 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2121 |   and     at: "at TYPE('x)"
 | |
| 2122 |   assumes a: "((supp f)::'x set)={}"
 | |
| 2123 | shows "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" | |
| 2124 | proof (intro strip) | |
| 2125 | fix pi x | |
| 2126 | from a have b: "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_eqvt_fun1[OF pta, OF ptb, OF at]) | |
| 2127 | have "(pi::'x prm)\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) | |
| 2128 | with b show "(pi::'x prm)\<bullet>(f x) = f (pi\<bullet>x)" by force | |
| 2129 | qed | |
| 2130 | ||
| 2131 | lemma pt_eqvt_fun2b: | |
| 2132 | fixes f :: "'a\<Rightarrow>'b" | |
| 2133 |   assumes pt1: "pt TYPE('a) TYPE('x)"
 | |
| 2134 |   and     pt2: "pt TYPE('b) TYPE('x)"
 | |
| 2135 |   and     at: "at TYPE('x)"
 | |
| 2136 | assumes a: "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" | |
| 2137 |   shows "((supp f)::'x set)={}"
 | |
| 2138 | proof - | |
| 2139 | from a have "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_fun_eq[OF pt1, OF at, symmetric]) | |
| 2140 | thus ?thesis by (simp add: supp_def) | |
| 2141 | qed | |
| 2142 | ||
| 2143 | lemma pt_eqvt_fun2: | |
| 2144 | fixes f :: "'a\<Rightarrow>'b" | |
| 2145 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2146 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2147 |   and     at: "at TYPE('x)"
 | |
| 2148 |   shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x))" 
 | |
| 2149 | by (rule iffI, | |
| 2150 | simp add: pt_eqvt_fun2a[OF pta, OF ptb, OF at], | |
| 2151 | simp add: pt_eqvt_fun2b[OF pta, OF ptb, OF at]) | |
| 2152 | ||
| 2153 | lemma pt_supp_fun_subset: | |
| 2154 | fixes f :: "'a\<Rightarrow>'b" | |
| 2155 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2156 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2157 |   and     at: "at TYPE('x)" 
 | |
| 2158 | and f1: "finite ((supp f)::'x set)" | |
| 2159 | and f2: "finite ((supp x)::'x set)" | |
| 2160 | shows "supp (f x) \<subseteq> (((supp f)\<union>(supp x))::'x set)" | |
| 2161 | proof - | |
| 2162 | have s1: "((supp f)\<union>((supp x)::'x set)) supports (f x)" | |
| 22808 | 2163 | proof (simp add: supports_def, fold fresh_def, auto) | 
| 17870 | 2164 | fix a::"'x" and b::"'x" | 
| 2165 | assume "a\<sharp>f" and "b\<sharp>f" | |
| 2166 | hence a1: "[(a,b)]\<bullet>f = f" | |
| 2167 | by (rule pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at], OF at]) | |
| 2168 | assume "a\<sharp>x" and "b\<sharp>x" | |
| 2169 | hence a2: "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pta, OF at]) | |
| 2170 | from a1 a2 show "[(a,b)]\<bullet>(f x) = (f x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) | |
| 2171 | qed | |
| 2172 | from f1 f2 have "finite ((supp f)\<union>((supp x)::'x set))" by force | |
| 2173 | with s1 show ?thesis by (rule supp_is_subset) | |
| 2174 | qed | |
| 2175 | ||
| 2176 | lemma pt_empty_supp_fun_subset: | |
| 2177 | fixes f :: "'a\<Rightarrow>'b" | |
| 2178 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2179 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2180 |   and     at:  "at TYPE('x)" 
 | |
| 2181 |   and     e:   "(supp f)=({}::'x set)"
 | |
| 2182 | shows "supp (f x) \<subseteq> ((supp x)::'x set)" | |
| 2183 | proof (unfold supp_def, auto) | |
| 2184 | fix a::"'x" | |
| 2185 |   assume a1: "finite {b. [(a, b)]\<bullet>x \<noteq> x}"
 | |
| 2186 |   assume "infinite {b. [(a, b)]\<bullet>(f x) \<noteq> f x}"
 | |
| 2187 |   hence a2: "infinite {b. f ([(a, b)]\<bullet>x) \<noteq> f x}" using e
 | |
| 2188 | by (simp add: pt_eqvt_fun2[OF pta, OF ptb, OF at]) | |
| 2189 |   have a3: "{b. f ([(a,b)]\<bullet>x) \<noteq> f x}\<subseteq>{b. [(a,b)]\<bullet>x \<noteq> x}" by force
 | |
| 2190 | from a1 a2 a3 show False by (force dest: finite_subset) | |
| 2191 | qed | |
| 2192 | ||
| 63167 | 2193 | section \<open>Facts about the support of finite sets of finitely supported things\<close> | 
| 18264 | 2194 | (*=============================================================================*) | 
| 2195 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 2196 | definition X_to_Un_supp :: "('a set) \<Rightarrow> 'x set" where
 | 
| 18264 | 2197 | "X_to_Un_supp X \<equiv> \<Union>x\<in>X. ((supp x)::'x set)" | 
| 2198 | ||
| 2199 | lemma UNION_f_eqvt: | |
| 2200 |   fixes X::"('a set)"
 | |
| 2201 | and f::"'a \<Rightarrow> 'x set" | |
| 2202 | and pi::"'x prm" | |
| 2203 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2204 |   and     at: "at TYPE('x)"
 | |
| 2205 | shows "pi\<bullet>(\<Union>x\<in>X. f x) = (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)" | |
| 2206 | proof - | |
| 2207 |   have pt_x: "pt TYPE('x) TYPE('x)" by (force intro: at_pt_inst at)
 | |
| 2208 | show ?thesis | |
| 18351 | 2209 | proof (rule equalityI) | 
| 2210 | show "pi\<bullet>(\<Union>x\<in>X. f x) \<subseteq> (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2211 | apply(auto simp add: perm_set_def) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2212 | apply(rule_tac x="pi\<bullet>xb" in exI) | 
| 18351 | 2213 | apply(rule conjI) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2214 | apply(rule_tac x="xb" in exI) | 
| 18351 | 2215 | apply(simp) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2216 | apply(subgoal_tac "(pi\<bullet>f) (pi\<bullet>xb) = pi\<bullet>(f xb)")(*A*) | 
| 18351 | 2217 | apply(simp) | 
| 2218 | apply(rule pt_set_bij2[OF pt_x, OF at]) | |
| 2219 | apply(assumption) | |
| 2220 | (*A*) | |
| 2221 | apply(rule sym) | |
| 2222 | apply(rule pt_fun_app_eq[OF pt, OF at]) | |
| 2223 | done | |
| 2224 | next | |
| 2225 | show "(\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x) \<subseteq> pi\<bullet>(\<Union>x\<in>X. f x)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2226 | apply(auto simp add: perm_set_def) | 
| 18351 | 2227 | apply(rule_tac x="(rev pi)\<bullet>x" in exI) | 
| 2228 | apply(rule conjI) | |
| 2229 | apply(simp add: pt_pi_rev[OF pt_x, OF at]) | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2230 | apply(rule_tac x="xb" in bexI) | 
| 18351 | 2231 | apply(simp add: pt_set_bij1[OF pt_x, OF at]) | 
| 2232 | apply(simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2233 | apply(assumption) | |
| 2234 | done | |
| 2235 | qed | |
| 18264 | 2236 | qed | 
| 2237 | ||
| 2238 | lemma X_to_Un_supp_eqvt: | |
| 2239 |   fixes X::"('a set)"
 | |
| 2240 | and pi::"'x prm" | |
| 2241 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2242 |   and     at: "at TYPE('x)"
 | |
| 2243 | shows "pi\<bullet>(X_to_Un_supp X) = ((X_to_Un_supp (pi\<bullet>X))::'x set)" | |
| 2244 | apply(simp add: X_to_Un_supp_def) | |
| 45961 | 2245 | apply(simp add: UNION_f_eqvt[OF pt, OF at] perm_fun_def) | 
| 18264 | 2246 | apply(simp add: pt_perm_supp[OF pt, OF at]) | 
| 2247 | apply(simp add: pt_pi_rev[OF pt, OF at]) | |
| 2248 | done | |
| 2249 | ||
| 2250 | lemma Union_supports_set: | |
| 2251 |   fixes X::"('a set)"
 | |
| 2252 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2253 |   and     at: "at TYPE('x)"
 | |
| 2254 | shows "(\<Union>x\<in>X. ((supp x)::'x set)) supports X" | |
| 22808 | 2255 | apply(simp add: supports_def fresh_def[symmetric]) | 
| 18264 | 2256 | apply(rule allI)+ | 
| 2257 | apply(rule impI) | |
| 2258 | apply(erule conjE) | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2259 | apply(simp add: perm_set_def) | 
| 18264 | 2260 | apply(auto) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2261 | apply(subgoal_tac "[(a,b)]\<bullet>xa = xa")(*A*) | 
| 18264 | 2262 | apply(simp) | 
| 2263 | apply(rule pt_fresh_fresh[OF pt, OF at]) | |
| 2264 | apply(force) | |
| 2265 | apply(force) | |
| 2266 | apply(rule_tac x="x" in exI) | |
| 2267 | apply(simp) | |
| 2268 | apply(rule sym) | |
| 2269 | apply(rule pt_fresh_fresh[OF pt, OF at]) | |
| 2270 | apply(force)+ | |
| 2271 | done | |
| 2272 | ||
| 2273 | lemma Union_of_fin_supp_sets: | |
| 2274 |   fixes X::"('a set)"
 | |
| 2275 |   assumes fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2276 | and fi: "finite X" | |
| 2277 | shows "finite (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 2278 | using fi by (induct, auto simp add: fs1[OF fs]) | |
| 2279 | ||
| 2280 | lemma Union_included_in_supp: | |
| 2281 |   fixes X::"('a set)"
 | |
| 2282 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2283 |   and     at: "at TYPE('x)"
 | |
| 2284 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2285 | and fi: "finite X" | |
| 2286 | shows "(\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> supp X" | |
| 2287 | proof - | |
| 2288 | have "supp ((X_to_Un_supp X)::'x set) \<subseteq> ((supp X)::'x set)" | |
| 2289 | apply(rule pt_empty_supp_fun_subset) | |
| 45961 | 2290 | apply(force intro: pt_set_inst at_pt_inst pt at)+ | 
| 18264 | 2291 | apply(rule pt_eqvt_fun2b) | 
| 45961 | 2292 | apply(force intro: pt_set_inst at_pt_inst pt at)+ | 
| 18351 | 2293 | apply(rule allI)+ | 
| 18264 | 2294 | apply(rule X_to_Un_supp_eqvt[OF pt, OF at]) | 
| 2295 | done | |
| 2296 | hence "supp (\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> ((supp X)::'x set)" by (simp add: X_to_Un_supp_def) | |
| 2297 | moreover | |
| 2298 | have "supp (\<Union>x\<in>X. ((supp x)::'x set)) = (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 2299 | apply(rule at_fin_set_supp[OF at]) | |
| 2300 | apply(rule Union_of_fin_supp_sets[OF fs, OF fi]) | |
| 2301 | done | |
| 2302 | ultimately show ?thesis by force | |
| 2303 | qed | |
| 2304 | ||
| 2305 | lemma supp_of_fin_sets: | |
| 2306 |   fixes X::"('a set)"
 | |
| 2307 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2308 |   and     at: "at TYPE('x)"
 | |
| 2309 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2310 | and fi: "finite X" | |
| 2311 | shows "(supp X) = (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 18351 | 2312 | apply(rule equalityI) | 
| 18264 | 2313 | apply(rule supp_is_subset) | 
| 2314 | apply(rule Union_supports_set[OF pt, OF at]) | |
| 2315 | apply(rule Union_of_fin_supp_sets[OF fs, OF fi]) | |
| 2316 | apply(rule Union_included_in_supp[OF pt, OF at, OF fs, OF fi]) | |
| 2317 | done | |
| 2318 | ||
| 2319 | lemma supp_fin_union: | |
| 2320 |   fixes X::"('a set)"
 | |
| 2321 |   and   Y::"('a set)"
 | |
| 2322 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2323 |   and     at: "at TYPE('x)"
 | |
| 2324 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2325 | and f1: "finite X" | |
| 2326 | and f2: "finite Y" | |
| 2327 | shows "(supp (X\<union>Y)) = (supp X)\<union>((supp Y)::'x set)" | |
| 2328 | using f1 f2 by (force simp add: supp_of_fin_sets[OF pt, OF at, OF fs]) | |
| 2329 | ||
| 2330 | lemma supp_fin_insert: | |
| 2331 |   fixes X::"('a set)"
 | |
| 2332 | and x::"'a" | |
| 2333 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2334 |   and     at: "at TYPE('x)"
 | |
| 2335 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2336 | and f: "finite X" | |
| 2337 | shows "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)" | |
| 2338 | proof - | |
| 2339 |   have "(supp (insert x X)) = ((supp ({x}\<union>(X::'a set)))::'x set)" by simp
 | |
| 2340 |   also have "\<dots> = (supp {x})\<union>(supp X)"
 | |
| 2341 | by (rule supp_fin_union[OF pt, OF at, OF fs], simp_all add: f) | |
| 2342 | finally show "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2343 | by (simp add: supp_singleton) | 
| 18264 | 2344 | qed | 
| 2345 | ||
| 2346 | lemma fresh_fin_union: | |
| 2347 |   fixes X::"('a set)"
 | |
| 2348 |   and   Y::"('a set)"
 | |
| 2349 | and a::"'x" | |
| 2350 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2351 |   and     at: "at TYPE('x)"
 | |
| 2352 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2353 | and f1: "finite X" | |
| 2354 | and f2: "finite Y" | |
| 2355 | shows "a\<sharp>(X\<union>Y) = (a\<sharp>X \<and> a\<sharp>Y)" | |
| 2356 | apply(simp add: fresh_def) | |
| 2357 | apply(simp add: supp_fin_union[OF pt, OF at, OF fs, OF f1, OF f2]) | |
| 2358 | done | |
| 2359 | ||
| 2360 | lemma fresh_fin_insert: | |
| 2361 |   fixes X::"('a set)"
 | |
| 2362 | and x::"'a" | |
| 2363 | and a::"'x" | |
| 2364 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2365 |   and     at: "at TYPE('x)"
 | |
| 2366 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2367 | and f: "finite X" | |
| 2368 | shows "a\<sharp>(insert x X) = (a\<sharp>x \<and> a\<sharp>X)" | |
| 2369 | apply(simp add: fresh_def) | |
| 2370 | apply(simp add: supp_fin_insert[OF pt, OF at, OF fs, OF f]) | |
| 2371 | done | |
| 2372 | ||
| 2373 | lemma fresh_fin_insert1: | |
| 2374 |   fixes X::"('a set)"
 | |
| 2375 | and x::"'a" | |
| 2376 | and a::"'x" | |
| 2377 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2378 |   and     at: "at TYPE('x)"
 | |
| 2379 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2380 | and f: "finite X" | |
| 2381 | and a1: "a\<sharp>x" | |
| 2382 | and a2: "a\<sharp>X" | |
| 2383 | shows "a\<sharp>(insert x X)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2384 | using a1 a2 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2385 | by (simp add: fresh_fin_insert[OF pt, OF at, OF fs, OF f]) | 
| 18264 | 2386 | |
| 2387 | lemma pt_list_set_supp: | |
| 2388 | fixes xs :: "'a list" | |
| 2389 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2390 |   and     at: "at TYPE('x)"
 | |
| 2391 |   and     fs: "fs TYPE('a) TYPE('x)"
 | |
| 2392 | shows "supp (set xs) = ((supp xs)::'x set)" | |
| 2393 | proof - | |
| 2394 | have "supp (set xs) = (\<Union>x\<in>(set xs). ((supp x)::'x set))" | |
| 2395 | by (rule supp_of_fin_sets[OF pt, OF at, OF fs], rule finite_set) | |
| 2396 | also have "(\<Union>x\<in>(set xs). ((supp x)::'x set)) = (supp xs)" | |
| 2397 | proof(induct xs) | |
| 2398 | case Nil show ?case by (simp add: supp_list_nil) | |
| 2399 | next | |
| 2400 | case (Cons h t) thus ?case by (simp add: supp_list_cons) | |
| 2401 | qed | |
| 2402 | finally show ?thesis by simp | |
| 2403 | qed | |
| 2404 | ||
| 2405 | lemma pt_list_set_fresh: | |
| 2406 | fixes a :: "'x" | |
| 2407 | and xs :: "'a list" | |
| 2408 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2409 |   and     at: "at TYPE('x)"
 | |
| 2410 |   and     fs: "fs TYPE('a) TYPE('x)"
 | |
| 2411 | shows "a\<sharp>(set xs) = a\<sharp>xs" | |
| 2412 | by (simp add: fresh_def pt_list_set_supp[OF pt, OF at, OF fs]) | |
| 26847 | 2413 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2414 | |
| 63167 | 2415 | section \<open>generalisation of freshness to lists and sets of atoms\<close> | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2416 | (*================================================================*) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2417 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2418 | consts | 
| 69597 | 2419 | fresh_star :: "'b \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp>* _\<close> [100,100] 100) | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2420 | |
| 62145 | 2421 | overloading fresh_star_set \<equiv> "fresh_star :: 'b set \<Rightarrow> 'a \<Rightarrow> bool" | 
| 2422 | begin | |
| 2423 | definition fresh_star_set: "xs\<sharp>*c \<equiv> \<forall>x::'b\<in>xs. x\<sharp>(c::'a)" | |
| 2424 | end | |
| 2425 | ||
| 2426 | overloading frsh_star_list \<equiv> "fresh_star :: 'b list \<Rightarrow> 'a \<Rightarrow> bool" | |
| 2427 | begin | |
| 2428 | definition fresh_star_list: "xs\<sharp>*c \<equiv> \<forall>x::'b\<in>set xs. x\<sharp>(c::'a)" | |
| 2429 | end | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2430 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2431 | lemmas fresh_star_def = fresh_star_list fresh_star_set | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2432 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2433 | lemma fresh_star_prod_set: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2434 | fixes xs::"'a set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2435 | shows "xs\<sharp>*(a,b) = (xs\<sharp>*a \<and> xs\<sharp>*b)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2436 | by (auto simp add: fresh_star_def fresh_prod) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2437 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2438 | lemma fresh_star_prod_list: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2439 | fixes xs::"'a list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2440 | shows "xs\<sharp>*(a,b) = (xs\<sharp>*a \<and> xs\<sharp>*b)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2441 | by (auto simp add: fresh_star_def fresh_prod) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2442 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2443 | lemmas fresh_star_prod = fresh_star_prod_list fresh_star_prod_set | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2444 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2445 | lemma fresh_star_set_eq: "set xs \<sharp>* c = xs \<sharp>* c" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2446 | by (simp add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2447 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2448 | lemma fresh_star_Un_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2449 | "((S \<union> T) \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (S \<sharp>* c \<Longrightarrow> T \<sharp>* c \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2450 | apply rule | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2451 | apply (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2452 | apply (erule meta_mp) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2453 | apply blast | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2454 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2455 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2456 | lemma fresh_star_insert_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2457 | "(insert x S \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (x \<sharp> c \<Longrightarrow> S \<sharp>* c \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2458 | by rule (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2459 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2460 | lemma fresh_star_empty_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2461 |   "({} \<sharp>* c \<Longrightarrow> PROP C) \<equiv> PROP C"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2462 | by (simp add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2463 | |
| 63167 | 2464 | text \<open>Normalization of freshness results; see \ \<open>nominal_induct\<close>\<close> | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2465 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2466 | lemma fresh_star_unit_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2467 | shows "((a::'a set)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2468 | and "((b::'a list)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2469 | by (simp_all add: fresh_star_def fresh_def supp_unit) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2470 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2471 | lemma fresh_star_prod_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2472 | shows "((a::'a set)\<sharp>*(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>*x \<Longrightarrow> a\<sharp>*y \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2473 | and "((b::'a list)\<sharp>*(x,y) \<Longrightarrow> PROP C) \<equiv> (b\<sharp>*x \<Longrightarrow> b\<sharp>*y \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2474 | by (rule, simp_all add: fresh_star_prod)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2475 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2476 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2477 | lemma pt_fresh_star_bij_ineq: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2478 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2479 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2480 | and a :: "'y set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2481 | and b :: "'y list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2482 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2483 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2484 |   and     at:  "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2485 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2486 | shows "(pi\<bullet>a)\<sharp>*(pi\<bullet>x) = a\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2487 | and "(pi\<bullet>b)\<sharp>*(pi\<bullet>x) = b\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2488 | apply(unfold fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2489 | apply(auto) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2490 | apply(drule_tac x="pi\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2491 | apply(erule pt_set_bij2[OF ptb, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2492 | apply(simp add: fresh_star_def pt_fresh_bij_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2493 | apply(drule_tac x="(rev pi)\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2494 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2495 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2496 | apply(drule_tac x="pi\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2497 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2498 | apply(simp add: set_eqvt pt_rev_pi[OF pt_list_inst[OF ptb], OF at]) | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2499 | apply(simp add: pt_fresh_bij_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2500 | apply(drule_tac x="(rev pi)\<bullet>xa" in bspec) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2501 | apply(simp add: pt_set_bij1[OF ptb, OF at] set_eqvt) | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2502 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2503 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2504 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2505 | lemma pt_fresh_star_bij: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2506 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2507 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2508 | and a :: "'x set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2509 | and b :: "'x list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2510 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2511 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2512 | shows "(pi\<bullet>a)\<sharp>*(pi\<bullet>x) = a\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2513 | and "(pi\<bullet>b)\<sharp>*(pi\<bullet>x) = b\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2514 | apply(rule pt_fresh_star_bij_ineq(1)) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2515 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2516 | apply(rule at_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2517 | apply(rule at)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2518 | apply(rule cp_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2519 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2520 | apply(rule at) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2521 | apply(rule pt_fresh_star_bij_ineq(2)) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2522 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2523 | apply(rule at_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2524 | apply(rule at)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2525 | apply(rule cp_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2526 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2527 | apply(rule at) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2528 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2529 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2530 | lemma pt_fresh_star_eqvt: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2531 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2532 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2533 | and a :: "'x set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2534 | and b :: "'x list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2535 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2536 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2537 | shows "pi\<bullet>(a\<sharp>*x) = (pi\<bullet>a)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2538 | and "pi\<bullet>(b\<sharp>*x) = (pi\<bullet>b)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2539 | by (simp_all add: perm_bool pt_fresh_star_bij[OF pt, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2540 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2541 | lemma pt_fresh_star_eqvt_ineq: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2542 | fixes pi::"'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2543 | and a::"'y set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2544 | and b::"'y list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2545 | and x::"'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2546 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2547 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2548 |   and     at:  "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2549 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2550 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2551 | shows "pi\<bullet>(a\<sharp>*x) = (pi\<bullet>a)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2552 | and "pi\<bullet>(b\<sharp>*x) = (pi\<bullet>b)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2553 | by (simp_all add: pt_fresh_star_bij_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj] perm_bool) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2554 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2555 | lemma pt_freshs_freshs: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2556 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2557 |   and at: "at TYPE ('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2558 | and pi: "set (pi::'x prm) \<subseteq> Xs \<times> Ys" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2559 | and Xs: "Xs \<sharp>* (x::'a)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2560 | and Ys: "Ys \<sharp>* x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2561 | shows "pi\<bullet>x = x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2562 | using pi | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2563 | proof (induct pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2564 | case Nil | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2565 | show ?case by (simp add: pt1 [OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2566 | next | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2567 | case (Cons p pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2568 | obtain a b where p: "p = (a, b)" by (cases p) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2569 | with Cons Xs Ys have "a \<sharp> x" "b \<sharp> x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2570 | by (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2571 | with Cons p show ?case | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2572 | by (simp add: pt_fresh_fresh [OF pt at] | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2573 | pt2 [OF pt, of "[(a, b)]" pi, simplified]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2574 | qed | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2575 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2576 | lemma pt_fresh_star_pi: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2577 | fixes x::"'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2578 | and pi::"'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2579 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2580 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2581 | and a: "((supp x)::'x set)\<sharp>* pi" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2582 | shows "pi\<bullet>x = x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2583 | using a | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2584 | apply(induct pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2585 | apply(auto simp add: fresh_star_def fresh_list_cons fresh_prod pt1[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2586 | apply(subgoal_tac "((a,b)#pi)\<bullet>x = ([(a,b)]@pi)\<bullet>x") | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2587 | apply(simp only: pt2[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2588 | apply(rule pt_fresh_fresh[OF pt at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2589 | apply(simp add: fresh_def at_supp[OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2590 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2591 | apply(simp add: fresh_def at_supp[OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2592 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2593 | apply(simp add: pt2[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2594 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2595 | |
| 63167 | 2596 | section \<open>Infrastructure lemmas for strong rule inductions\<close> | 
| 26847 | 2597 | (*==========================================================*) | 
| 2598 | ||
| 63167 | 2599 | text \<open> | 
| 26847 | 2600 | For every set of atoms, there is another set of atoms | 
| 2601 | avoiding a finitely supported c and there is a permutation | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2602 | which 'translates' between both sets. | 
| 63167 | 2603 | \<close> | 
| 32638 | 2604 | |
| 26847 | 2605 | lemma at_set_avoiding_aux: | 
| 2606 | fixes Xs::"'a set" | |
| 2607 | and As::"'a set" | |
| 2608 |   assumes at: "at TYPE('a)"
 | |
| 2609 | and b: "Xs \<subseteq> As" | |
| 2610 | and c: "finite As" | |
| 2611 | and d: "finite ((supp c)::'a set)" | |
| 32638 | 2612 |   shows "\<exists>(pi::'a prm). (pi\<bullet>Xs)\<sharp>*c \<and> (pi\<bullet>Xs) \<inter> As = {} \<and> set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)"
 | 
| 2613 | proof - | |
| 2614 | from b c have "finite Xs" by (simp add: finite_subset) | |
| 2615 | then show ?thesis using b | |
| 2616 | proof (induct) | |
| 2617 | case empty | |
| 2618 |     have "({}::'a set)\<sharp>*c" by (simp add: fresh_star_def)
 | |
| 2619 | moreover | |
| 2620 |     have "({}::'a set) \<inter> As = {}" by simp
 | |
| 2621 | moreover | |
| 2622 |     have "set ([]::'a prm) \<subseteq> {} \<times> {}" by simp
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2623 | ultimately show ?case by (simp add: empty_eqvt) | 
| 32638 | 2624 | next | 
| 2625 | case (insert x Xs) | |
| 2626 |     then have ih: "\<exists>pi. (pi\<bullet>Xs)\<sharp>*c \<and> (pi\<bullet>Xs) \<inter> As = {} \<and> set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" by simp
 | |
| 2627 |     then obtain pi where a1: "(pi\<bullet>Xs)\<sharp>*c" and a2: "(pi\<bullet>Xs) \<inter> As = {}" and 
 | |
| 2628 | a4: "set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" by blast | |
| 2629 | have b: "x\<notin>Xs" by fact | |
| 2630 | have d1: "finite As" by fact | |
| 2631 | have d2: "finite Xs" by fact | |
| 2632 |     have d3: "({x} \<union> Xs) \<subseteq> As" using insert(4) by simp
 | |
| 2633 | from d d1 d2 | |
| 2634 | obtain y::"'a" where fr: "y\<sharp>(c,pi\<bullet>Xs,As)" | |
| 2635 | apply(rule_tac at_exists_fresh[OF at, where x="(c,pi\<bullet>Xs,As)"]) | |
| 2636 | apply(auto simp add: supp_prod at_supp[OF at] at_fin_set_supp[OF at] | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2637 | pt_supp_finite_pi[OF pt_set_inst[OF at_pt_inst[OF at]] at]) | 
| 32638 | 2638 | done | 
| 2639 |     have "({y}\<union>(pi\<bullet>Xs))\<sharp>*c" using a1 fr by (simp add: fresh_star_def)
 | |
| 2640 | moreover | |
| 2641 |     have "({y}\<union>(pi\<bullet>Xs))\<inter>As = {}" using a2 d1 fr 
 | |
| 2642 | by (simp add: fresh_prod at_fin_set_fresh[OF at]) | |
| 2643 | moreover | |
| 2644 | have "pi\<bullet>x=x" using a4 b a2 d3 | |
| 2645 | by (rule_tac at_prm_fresh2[OF at]) (auto) | |
| 2646 |     then have "set ((pi\<bullet>x,y)#pi) \<subseteq> ({x} \<union> Xs) \<times> ({y}\<union>(pi\<bullet>Xs))" using a4 by auto
 | |
| 2647 | moreover | |
| 2648 |     have "(((pi\<bullet>x,y)#pi)\<bullet>({x} \<union> Xs)) = {y}\<union>(pi\<bullet>Xs)"
 | |
| 26847 | 2649 | proof - | 
| 32638 | 2650 | have eq: "[(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs) = (pi\<bullet>Xs)" | 
| 2651 | proof - | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2652 | have "(pi\<bullet>x)\<sharp>(pi\<bullet>Xs)" using b d2 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2653 | by (simp add: pt_fresh_bij [OF pt_set_inst [OF at_pt_inst [OF at]], OF at] | 
| 45961 | 2654 | at_fin_set_fresh [OF at]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2655 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2656 | have "y\<sharp>(pi\<bullet>Xs)" using fr by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2657 | ultimately show "[(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs) = (pi\<bullet>Xs)" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2658 | by (simp add: pt_fresh_fresh[OF pt_set_inst | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2659 | [OF at_pt_inst[OF at]], OF at]) | 
| 32638 | 2660 | qed | 
| 2661 |       have "(((pi\<bullet>x,y)#pi)\<bullet>({x}\<union>Xs)) = ([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>({x}\<union>Xs)))"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2662 | by (simp add: pt2[symmetric, OF pt_set_inst [OF at_pt_inst[OF at]]]) | 
| 32638 | 2663 |       also have "\<dots> = {y}\<union>([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs))" 
 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2664 | by (simp only: union_eqvt perm_set_def at_calc[OF at])(auto) | 
| 32638 | 2665 |       finally show "(((pi\<bullet>x,y)#pi)\<bullet>({x} \<union> Xs)) = {y}\<union>(pi\<bullet>Xs)" using eq by simp
 | 
| 26847 | 2666 | qed | 
| 32638 | 2667 | ultimately | 
| 2668 | show ?case by (rule_tac x="(pi\<bullet>x,y)#pi" in exI) (auto) | |
| 26847 | 2669 | qed | 
| 2670 | qed | |
| 2671 | ||
| 2672 | lemma at_set_avoiding: | |
| 2673 | fixes Xs::"'a set" | |
| 2674 |   assumes at: "at TYPE('a)"
 | |
| 2675 | and a: "finite Xs" | |
| 2676 | and b: "finite ((supp c)::'a set)" | |
| 32638 | 2677 | obtains pi::"'a prm" where "(pi\<bullet>Xs)\<sharp>*c" and "set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" | 
| 2678 | using a b at_set_avoiding_aux[OF at, where Xs="Xs" and As="Xs" and c="c"] | |
| 2679 | by (blast) | |
| 2680 | ||
| 63167 | 2681 | section \<open>composition instances\<close> | 
| 19477 | 2682 | (* ============================= *) | 
| 2683 | ||
| 2684 | lemma cp_list_inst: | |
| 2685 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2686 |   shows "cp TYPE ('a list) TYPE('x) TYPE('y)"
 | |
| 2687 | using c1 | |
| 2688 | apply(simp add: cp_def) | |
| 2689 | apply(auto) | |
| 2690 | apply(induct_tac x) | |
| 2691 | apply(auto) | |
| 2692 | done | |
| 2693 | ||
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2694 | lemma cp_set_inst: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2695 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2696 |   shows "cp TYPE ('a set) TYPE('x) TYPE('y)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2697 | using c1 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2698 | apply(simp add: cp_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2699 | apply(auto) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2700 | apply(auto simp add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2701 | apply(rule_tac x="pi2\<bullet>xc" in exI) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2702 | apply(auto) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2703 | done | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2704 | |
| 19477 | 2705 | lemma cp_option_inst: | 
| 2706 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2707 |   shows "cp TYPE ('a option) TYPE('x) TYPE('y)"
 | |
| 2708 | using c1 | |
| 2709 | apply(simp add: cp_def) | |
| 2710 | apply(auto) | |
| 2711 | apply(case_tac x) | |
| 2712 | apply(auto) | |
| 2713 | done | |
| 2714 | ||
| 2715 | lemma cp_noption_inst: | |
| 2716 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2717 |   shows "cp TYPE ('a noption) TYPE('x) TYPE('y)"
 | |
| 2718 | using c1 | |
| 2719 | apply(simp add: cp_def) | |
| 2720 | apply(auto) | |
| 2721 | apply(case_tac x) | |
| 2722 | apply(auto) | |
| 2723 | done | |
| 2724 | ||
| 2725 | lemma cp_unit_inst: | |
| 2726 |   shows "cp TYPE (unit) TYPE('x) TYPE('y)"
 | |
| 2727 | apply(simp add: cp_def) | |
| 2728 | done | |
| 2729 | ||
| 2730 | lemma cp_bool_inst: | |
| 2731 |   shows "cp TYPE (bool) TYPE('x) TYPE('y)"
 | |
| 2732 | apply(simp add: cp_def) | |
| 2733 | apply(rule allI)+ | |
| 2734 | apply(induct_tac x) | |
| 2735 | apply(simp_all) | |
| 2736 | done | |
| 2737 | ||
| 2738 | lemma cp_prod_inst: | |
| 2739 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2740 |   and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
 | |
| 2741 |   shows "cp TYPE ('a\<times>'b) TYPE('x) TYPE('y)"
 | |
| 2742 | using c1 c2 | |
| 2743 | apply(simp add: cp_def) | |
| 2744 | done | |
| 2745 | ||
| 2746 | lemma cp_fun_inst: | |
| 2747 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2748 |   and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
 | |
| 2749 |   and     pt: "pt TYPE ('y) TYPE('x)"
 | |
| 2750 |   and     at: "at TYPE ('x)"
 | |
| 2751 |   shows "cp TYPE ('a\<Rightarrow>'b) TYPE('x) TYPE('y)"
 | |
| 2752 | using c1 c2 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2753 | apply(auto simp add: cp_def perm_fun_def fun_eq_iff) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 2754 | apply(simp add: rev_eqvt[symmetric]) | 
| 19477 | 2755 | apply(simp add: pt_rev_pi[OF pt_list_inst[OF pt_prod_inst[OF pt, OF pt]], OF at]) | 
| 2756 | done | |
| 2757 | ||
| 2758 | ||
| 63167 | 2759 | section \<open>Andy's freshness lemma\<close> | 
| 17870 | 2760 | (*================================*) | 
| 2761 | ||
| 2762 | lemma freshness_lemma: | |
| 2763 | fixes h :: "'x\<Rightarrow>'a" | |
| 2764 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2765 |   and     at:  "at TYPE('x)" 
 | |
| 2766 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2767 | and a: "\<exists>a::'x. a\<sharp>(h,h a)" | 
| 17870 | 2768 | shows "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> (h a) = fr" | 
| 2769 | proof - | |
| 2770 |   have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
 | |
| 2771 |   have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2772 | from a obtain a0 where a1: "a0\<sharp>h" and a2: "a0\<sharp>(h a0)" by (force simp add: fresh_prod) | 
| 17870 | 2773 | show ?thesis | 
| 2774 | proof | |
| 2775 | let ?fr = "h (a0::'x)" | |
| 2776 | show "\<forall>(a::'x). (a\<sharp>h \<longrightarrow> ((h a) = ?fr))" | |
| 2777 | proof (intro strip) | |
| 2778 | fix a | |
| 2779 | assume a3: "(a::'x)\<sharp>h" | |
| 2780 | show "h (a::'x) = h a0" | |
| 2781 | proof (cases "a=a0") | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2782 | case True thus "h (a::'x) = h a0" by simp | 
| 17870 | 2783 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2784 | case False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2785 | assume "a\<noteq>a0" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2786 | hence c1: "a\<notin>((supp a0)::'x set)" by (simp add: fresh_def[symmetric] at_fresh[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2787 | have c2: "a\<notin>((supp h)::'x set)" using a3 by (simp add: fresh_def) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2788 | from c1 c2 have c3: "a\<notin>((supp h)\<union>((supp a0)::'x set))" by force | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2789 | have f2: "finite ((supp a0)::'x set)" by (simp add: at_supp[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2790 | from f1 f2 have "((supp (h a0))::'x set)\<subseteq>((supp h)\<union>(supp a0))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2791 | by (simp add: pt_supp_fun_subset[OF ptb, OF pta, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2792 | hence "a\<notin>((supp (h a0))::'x set)" using c3 by force | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2793 | hence "a\<sharp>(h a0)" by (simp add: fresh_def) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2794 | with a2 have d1: "[(a0,a)]\<bullet>(h a0) = (h a0)" by (rule pt_fresh_fresh[OF pta, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2795 | from a1 a3 have d2: "[(a0,a)]\<bullet>h = h" by (rule pt_fresh_fresh[OF ptc, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2796 | from d1 have "h a0 = [(a0,a)]\<bullet>(h a0)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2797 | also have "\<dots>= ([(a0,a)]\<bullet>h)([(a0,a)]\<bullet>a0)" by (simp add: pt_fun_app_eq[OF ptb, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2798 | also have "\<dots> = h ([(a0,a)]\<bullet>a0)" using d2 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2799 | also have "\<dots> = h a" by (simp add: at_calc[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2800 | finally show "h a = h a0" by simp | 
| 17870 | 2801 | qed | 
| 2802 | qed | |
| 2803 | qed | |
| 2804 | qed | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2805 | |
| 17870 | 2806 | lemma freshness_lemma_unique: | 
| 2807 | fixes h :: "'x\<Rightarrow>'a" | |
| 2808 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2809 |   and     at: "at TYPE('x)" 
 | |
| 2810 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2811 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2812 | shows "\<exists>!(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" | 
| 18703 | 2813 | proof (rule ex_ex1I) | 
| 17870 | 2814 | from pt at f1 a show "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr" by (simp add: freshness_lemma) | 
| 2815 | next | |
| 2816 | fix fr1 fr2 | |
| 2817 | assume b1: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr1" | |
| 2818 | assume b2: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr2" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2819 | from a obtain a where "(a::'x)\<sharp>h" by (force simp add: fresh_prod) | 
| 17870 | 2820 | with b1 b2 have "h a = fr1 \<and> h a = fr2" by force | 
| 2821 | thus "fr1 = fr2" by force | |
| 2822 | qed | |
| 2823 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 2824 | \<comment> \<open>packaging the freshness lemma into a function\<close> | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 2825 | definition fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a" where
 | 
| 17870 | 2826 | "fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)" | 
| 2827 | ||
| 2828 | lemma fresh_fun_app: | |
| 2829 | fixes h :: "'x\<Rightarrow>'a" | |
| 2830 | and a :: "'x" | |
| 2831 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2832 |   and     at: "at TYPE('x)" 
 | |
| 2833 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2834 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2835 | and b: "a\<sharp>h" | 
| 2836 | shows "(fresh_fun h) = (h a)" | |
| 2837 | proof (unfold fresh_fun_def, rule the_equality) | |
| 2838 | show "\<forall>(a'::'x). a'\<sharp>h \<longrightarrow> h a' = h a" | |
| 2839 | proof (intro strip) | |
| 2840 | fix a'::"'x" | |
| 2841 | assume c: "a'\<sharp>h" | |
| 2842 | from pt at f1 a have "\<exists>(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" by (rule freshness_lemma) | |
| 2843 | with b c show "h a' = h a" by force | |
| 2844 | qed | |
| 2845 | next | |
| 2846 | fix fr::"'a" | |
| 2847 | assume "\<forall>a. a\<sharp>h \<longrightarrow> h a = fr" | |
| 2848 | with b show "fr = h a" by force | |
| 2849 | qed | |
| 2850 | ||
| 22714 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2851 | lemma fresh_fun_app': | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2852 | fixes h :: "'x\<Rightarrow>'a" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2853 | and a :: "'x" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2854 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2855 |   and     at: "at TYPE('x)" 
 | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2856 | and f1: "finite ((supp h)::'x set)" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2857 | and a: "a\<sharp>h" "a\<sharp>h a" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2858 | shows "(fresh_fun h) = (h a)" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2859 | apply(rule fresh_fun_app[OF pt, OF at, OF f1]) | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2860 | apply(auto simp add: fresh_prod intro: a) | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2861 | done | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2862 | |
| 19477 | 2863 | lemma fresh_fun_equiv_ineq: | 
| 2864 | fixes h :: "'y\<Rightarrow>'a" | |
| 2865 | and pi:: "'x prm" | |
| 2866 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2867 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 2868 |   and     ptb':"pt TYPE('a) TYPE('y)"
 | |
| 2869 |   and     at:  "at TYPE('x)" 
 | |
| 2870 |   and     at': "at TYPE('y)"
 | |
| 2871 |   and     cpa: "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 2872 |   and     cpb: "cp TYPE('y) TYPE('x) TYPE('y)"
 | |
| 2873 | and f1: "finite ((supp h)::'y set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2874 | and a1: "\<exists>(a::'y). a\<sharp>(h,h a)" | 
| 19477 | 2875 | shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS") | 
| 2876 | proof - | |
| 2877 |   have ptd: "pt TYPE('y) TYPE('y)" by (simp add: at_pt_inst[OF at']) 
 | |
| 2878 |   have ptc: "pt TYPE('y\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 23393 | 2879 |   have cpc: "cp TYPE('y\<Rightarrow>'a) TYPE ('x) TYPE ('y)" by (rule cp_fun_inst[OF cpb cpa ptb at])
 | 
| 19477 | 2880 | have f2: "finite ((supp (pi\<bullet>h))::'y set)" | 
| 2881 | proof - | |
| 2882 | from f1 have "finite (pi\<bullet>((supp h)::'y set))" | |
| 2883 | by (simp add: pt_set_finite_ineq[OF ptb, OF at]) | |
| 2884 | thus ?thesis | |
| 2885 | by (simp add: pt_perm_supp_ineq[OF ptc, OF ptb, OF at, OF cpc]) | |
| 2886 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2887 | from a1 obtain a' where c0: "a'\<sharp>(h,h a')" by force | 
| 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2888 | hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by (simp_all add: fresh_prod) | 
| 19477 | 2889 | have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 | 
| 2890 | by (simp add: pt_fresh_bij_ineq[OF ptc, OF ptb, OF at, OF cpc]) | |
| 2891 | have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')" | |
| 2892 | proof - | |
| 2893 | from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" | |
| 2894 | by (simp add: pt_fresh_bij_ineq[OF pta, OF ptb, OF at,OF cpa]) | |
| 2895 | thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2896 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2897 | have a2: "\<exists>(a::'y). a\<sharp>(pi\<bullet>h,(pi\<bullet>h) a)" using c3 c4 by (force simp add: fresh_prod) | 
| 19477 | 2898 | have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF ptb', OF at', OF f1]) | 
| 2899 | have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 | |
| 2900 | by (simp add: fresh_fun_app[OF ptb', OF at', OF f2]) | |
| 2901 | show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2902 | qed | |
| 2903 | ||
| 17870 | 2904 | lemma fresh_fun_equiv: | 
| 2905 | fixes h :: "'x\<Rightarrow>'a" | |
| 2906 | and pi:: "'x prm" | |
| 2907 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2908 |   and     at:  "at TYPE('x)" 
 | |
| 2909 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2910 | and a1: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2911 | shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS") | 
| 2912 | proof - | |
| 2913 |   have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
 | |
| 2914 |   have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 2915 | have f2: "finite ((supp (pi\<bullet>h))::'x set)" | |
| 2916 | proof - | |
| 2917 | from f1 have "finite (pi\<bullet>((supp h)::'x set))" by (simp add: pt_set_finite_ineq[OF ptb, OF at]) | |
| 2918 | thus ?thesis by (simp add: pt_perm_supp[OF ptc, OF at]) | |
| 2919 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2920 | from a1 obtain a' where c0: "a'\<sharp>(h,h a')" by force | 
| 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2921 | hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by (simp_all add: fresh_prod) | 
| 17870 | 2922 | have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 by (simp add: pt_fresh_bij[OF ptc, OF at]) | 
| 2923 | have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')" | |
| 2924 | proof - | |
| 2925 | from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" by (simp add: pt_fresh_bij[OF pta, OF at]) | |
| 2926 | thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2927 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2928 | have a2: "\<exists>(a::'x). a\<sharp>(pi\<bullet>h,(pi\<bullet>h) a)" using c3 c4 by (force simp add: fresh_prod) | 
| 17870 | 2929 | have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF pta, OF at, OF f1]) | 
| 2930 | have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 by (simp add: fresh_fun_app[OF pta, OF at, OF f2]) | |
| 2931 | show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2932 | qed | |
| 19216 | 2933 | |
| 2934 | lemma fresh_fun_supports: | |
| 2935 | fixes h :: "'x\<Rightarrow>'a" | |
| 2936 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2937 |   and     at: "at TYPE('x)" 
 | |
| 2938 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2939 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 19216 | 2940 | shows "((supp h)::'x set) supports (fresh_fun h)" | 
| 22808 | 2941 | apply(simp add: supports_def fresh_def[symmetric]) | 
| 19216 | 2942 | apply(auto) | 
| 2943 | apply(simp add: fresh_fun_equiv[OF pt, OF at, OF f1, OF a]) | |
| 2944 | apply(simp add: pt_fresh_fresh[OF pt_fun_inst[OF at_pt_inst[OF at], OF pt], OF at, OF at]) | |
| 2945 | done | |
| 17870 | 2946 | |
| 63167 | 2947 | section \<open>Abstraction function\<close> | 
| 17870 | 2948 | (*==============================*) | 
| 2949 | ||
| 2950 | lemma pt_abs_fun_inst: | |
| 2951 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2952 |   and     at: "at TYPE('x)"
 | |
| 18579 
002d371401f5
changed the name of the type "nOption" to "noption".
 urbanc parents: 
18578diff
changeset | 2953 |   shows "pt TYPE('x\<Rightarrow>('a noption)) TYPE('x)"
 | 
| 17870 | 2954 | by (rule pt_fun_inst[OF at_pt_inst[OF at],OF pt_noption_inst[OF pt],OF at]) | 
| 2955 | ||
| 69597 | 2956 | definition abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" (\<open>[_]._\<close> [100,100] 100) where 
 | 
| 17870 | 2957 | "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))" | 
| 2958 | ||
| 18745 
060400dc077c
a fixme comments about abs_fun_if, which should be called perm_if
 urbanc parents: 
18703diff
changeset | 2959 | (* FIXME: should be called perm_if and placed close to the definition of permutations on bools *) | 
| 17870 | 2960 | lemma abs_fun_if: | 
| 2961 | fixes pi :: "'x prm" | |
| 2962 | and x :: "'a" | |
| 2963 | and y :: "'a" | |
| 2964 | and c :: "bool" | |
| 2965 | shows "pi\<bullet>(if c then x else y) = (if c then (pi\<bullet>x) else (pi\<bullet>y))" | |
| 2966 | by force | |
| 2967 | ||
| 2968 | lemma abs_fun_pi_ineq: | |
| 2969 | fixes a :: "'y" | |
| 2970 | and x :: "'a" | |
| 2971 | and pi :: "'x prm" | |
| 2972 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2973 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 2974 |   and     at:  "at TYPE('x)"
 | |
| 2975 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 2976 | shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)" | |
| 2977 | apply(simp add: abs_fun_def perm_fun_def abs_fun_if) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2978 | apply(simp only: fun_eq_iff) | 
| 17870 | 2979 | apply(rule allI) | 
| 2980 | apply(subgoal_tac "(((rev pi)\<bullet>(xa::'y)) = (a::'y)) = (xa = pi\<bullet>a)")(*A*) | |
| 2981 | apply(subgoal_tac "(((rev pi)\<bullet>xa)\<sharp>x) = (xa\<sharp>(pi\<bullet>x))")(*B*) | |
| 2982 | apply(subgoal_tac "pi\<bullet>([(a,(rev pi)\<bullet>xa)]\<bullet>x) = [(pi\<bullet>a,xa)]\<bullet>(pi\<bullet>x)")(*C*) | |
| 2983 | apply(simp) | |
| 2984 | (*C*) | |
| 2985 | apply(simp add: cp1[OF cp]) | |
| 2986 | apply(simp add: pt_pi_rev[OF ptb, OF at]) | |
| 2987 | (*B*) | |
| 2988 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 2989 | (*A*) | |
| 2990 | apply(rule iffI) | |
| 2991 | apply(rule pt_bij2[OF ptb, OF at, THEN sym]) | |
| 2992 | apply(simp) | |
| 2993 | apply(rule pt_bij2[OF ptb, OF at]) | |
| 2994 | apply(simp) | |
| 2995 | done | |
| 2996 | ||
| 2997 | lemma abs_fun_pi: | |
| 2998 | fixes a :: "'x" | |
| 2999 | and x :: "'a" | |
| 3000 | and pi :: "'x prm" | |
| 3001 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3002 |   and     at: "at TYPE('x)"
 | |
| 3003 | shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)" | |
| 3004 | apply(rule abs_fun_pi_ineq) | |
| 3005 | apply(rule pt) | |
| 3006 | apply(rule at_pt_inst) | |
| 3007 | apply(rule at)+ | |
| 3008 | apply(rule cp_pt_inst) | |
| 3009 | apply(rule pt) | |
| 3010 | apply(rule at) | |
| 3011 | done | |
| 3012 | ||
| 3013 | lemma abs_fun_eq1: | |
| 3014 | fixes x :: "'a" | |
| 3015 | and y :: "'a" | |
| 3016 | and a :: "'x" | |
| 3017 | shows "([a].x = [a].y) = (x = y)" | |
| 3018 | apply(auto simp add: abs_fun_def) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3019 | apply(auto simp add: fun_eq_iff) | 
| 17870 | 3020 | apply(drule_tac x="a" in spec) | 
| 3021 | apply(simp) | |
| 3022 | done | |
| 3023 | ||
| 3024 | lemma abs_fun_eq2: | |
| 3025 | fixes x :: "'a" | |
| 3026 | and y :: "'a" | |
| 3027 | and a :: "'x" | |
| 3028 | and b :: "'x" | |
| 3029 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3030 |       and at: "at TYPE('x)"
 | |
| 3031 | and a1: "a\<noteq>b" | |
| 3032 | and a2: "[a].x = [b].y" | |
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3033 | shows "x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3034 | proof - | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3035 | from a2 have "\<forall>c::'x. ([a].x) c = ([b].y) c" by (force simp add: fun_eq_iff) | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3036 | hence "([a].x) a = ([b].y) a" by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3037 | hence a3: "nSome(x) = ([b].y) a" by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3038 | show "x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3039 | proof (cases "a\<sharp>y") | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3040 | assume a4: "a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3041 | hence "x=[(b,a)]\<bullet>y" using a3 a1 by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3042 | moreover | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3043 | have "[(a,b)]\<bullet>y = [(b,a)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3044 | ultimately show ?thesis using a4 by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3045 | next | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3046 | assume "\<not>a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3047 | hence "nSome(x) = nNone" using a1 a3 by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3048 | hence False by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3049 | thus ?thesis by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3050 | qed | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3051 | qed | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3052 | |
| 17870 | 3053 | lemma abs_fun_eq3: | 
| 3054 | fixes x :: "'a" | |
| 3055 | and y :: "'a" | |
| 3056 | and a :: "'x" | |
| 3057 | and b :: "'x" | |
| 3058 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3059 |       and at: "at TYPE('x)"
 | |
| 3060 | and a1: "a\<noteq>b" | |
| 3061 | and a2: "x=[(a,b)]\<bullet>y" | |
| 3062 | and a3: "a\<sharp>y" | |
| 3063 | shows "[a].x =[b].y" | |
| 3064 | proof - | |
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3065 | show ?thesis | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3066 | proof (simp only: abs_fun_def fun_eq_iff, intro strip) | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3067 | fix c::"'x" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3068 | let ?LHS = "if c=a then nSome(x) else if c\<sharp>x then nSome([(a,c)]\<bullet>x) else nNone" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3069 | and ?RHS = "if c=b then nSome(y) else if c\<sharp>y then nSome([(b,c)]\<bullet>y) else nNone" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3070 | show "?LHS=?RHS" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3071 | proof - | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3072 | have "(c=a) \<or> (c=b) \<or> (c\<noteq>a \<and> c\<noteq>b)" by blast | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 3073 | moreover \<comment> \<open>case c=a\<close> | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3074 |       { have "nSome(x) = nSome([(a,b)]\<bullet>y)" using a2 by simp
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3075 | also have "\<dots> = nSome([(b,a)]\<bullet>y)" by (simp, rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3076 | finally have "nSome(x) = nSome([(b,a)]\<bullet>y)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3077 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3078 | assume "c=a" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3079 | ultimately have "?LHS=?RHS" using a1 a3 by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3080 | } | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 3081 | moreover \<comment> \<open>case c=b\<close> | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3082 |       { have a4: "y=[(a,b)]\<bullet>x" using a2 by (simp only: pt_swap_bij[OF pt, OF at])
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3083 | hence "a\<sharp>([(a,b)]\<bullet>x)" using a3 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3084 | hence "b\<sharp>x" by (simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3085 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3086 | assume "c=b" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3087 | ultimately have "?LHS=?RHS" using a1 a4 by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3088 | } | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
66453diff
changeset | 3089 | moreover \<comment> \<open>case c\<noteq>a \<and> c\<noteq>b\<close> | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3090 |       { assume a5: "c\<noteq>a \<and> c\<noteq>b"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3091 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3092 | have "c\<sharp>x = c\<sharp>y" using a2 a5 by (force simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3093 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3094 | have "c\<sharp>y \<longrightarrow> [(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3095 | proof (intro strip) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3096 | assume a6: "c\<sharp>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3097 | have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" using a1 a5 by (force intro: at_ds3[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3098 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>y)) = [(a,b)]\<bullet>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3099 | by (simp add: pt2[OF pt, symmetric] pt3[OF pt]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3100 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = [(a,b)]\<bullet>y" using a3 a6 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3101 | by (simp add: pt_fresh_fresh[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3102 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = x" using a2 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3103 | hence "[(b,c)]\<bullet>y = [(a,c)]\<bullet>x" by (drule_tac pt_bij1[OF pt, OF at], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3104 | thus "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3105 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3106 | ultimately have "?LHS=?RHS" by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3107 | } | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3108 | ultimately show "?LHS = ?RHS" by blast | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3109 | qed | 
| 17870 | 3110 | qed | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3111 | qed | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3112 | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3113 | (* alpha equivalence *) | 
| 17870 | 3114 | lemma abs_fun_eq: | 
| 3115 | fixes x :: "'a" | |
| 3116 | and y :: "'a" | |
| 3117 | and a :: "'x" | |
| 3118 | and b :: "'x" | |
| 3119 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3120 |       and at: "at TYPE('x)"
 | |
| 3121 | shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y))" | |
| 3122 | proof (rule iffI) | |
| 3123 | assume b: "[a].x = [b].y" | |
| 3124 | show "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)" | |
| 3125 | proof (cases "a=b") | |
| 3126 | case True with b show ?thesis by (simp add: abs_fun_eq1) | |
| 3127 | next | |
| 3128 | case False with b show ?thesis by (simp add: abs_fun_eq2[OF pt, OF at]) | |
| 3129 | qed | |
| 3130 | next | |
| 3131 | assume "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)" | |
| 3132 | thus "[a].x = [b].y" | |
| 3133 | proof | |
| 3134 | assume "a=b \<and> x=y" thus ?thesis by simp | |
| 3135 | next | |
| 3136 | assume "a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | |
| 3137 | thus ?thesis by (simp add: abs_fun_eq3[OF pt, OF at]) | |
| 3138 | qed | |
| 3139 | qed | |
| 3140 | ||
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3141 | (* symmetric version of alpha-equivalence *) | 
| 19562 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3142 | lemma abs_fun_eq': | 
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3143 | fixes x :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3144 | and y :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3145 | and a :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3146 | and b :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3147 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3148 |       and at: "at TYPE('x)"
 | 
| 23159 | 3149 | shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> [(b,a)]\<bullet>x=y \<and> b\<sharp>x))" | 
| 3150 | by (auto simp add: abs_fun_eq[OF pt, OF at] pt_swap_bij'[OF pt, OF at] | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3151 | pt_fresh_left[OF pt, OF at] | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3152 | at_calc[OF at]) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3153 | |
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3154 | (* alpha_equivalence with a fresh name *) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3155 | lemma abs_fun_fresh: | 
| 19562 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3156 | fixes x :: "'a" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3157 | and y :: "'a" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3158 | and c :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3159 | and a :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3160 | and b :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3161 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3162 |       and at: "at TYPE('x)"
 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3163 | and fr: "c\<noteq>a" "c\<noteq>b" "c\<sharp>x" "c\<sharp>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3164 | shows "([a].x = [b].y) = ([(a,c)]\<bullet>x = [(b,c)]\<bullet>y)" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3165 | proof (rule iffI) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3166 | assume eq0: "[a].x = [b].y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3167 | show "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3168 | proof (cases "a=b") | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3169 | case True then show ?thesis using eq0 by (simp add: pt_bij[OF pt, OF at] abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3170 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3171 | case False | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3172 | have ineq: "a\<noteq>b" by fact | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3173 | with eq0 have eq: "x=[(a,b)]\<bullet>y" and fr': "a\<sharp>y" by (simp_all add: abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3174 | from eq have "[(a,c)]\<bullet>x = [(a,c)]\<bullet>[(a,b)]\<bullet>y" by (simp add: pt_bij[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3175 | also have "\<dots> = ([(a,c)]\<bullet>[(a,b)])\<bullet>([(a,c)]\<bullet>y)" by (rule pt_perm_compose[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3176 | also have "\<dots> = [(c,b)]\<bullet>y" using ineq fr fr' | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3177 | by (simp add: pt_fresh_fresh[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3178 | also have "\<dots> = [(b,c)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3179 | finally show ?thesis by simp | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3180 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3181 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3182 | assume eq: "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3183 | thus "[a].x = [b].y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3184 | proof (cases "a=b") | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3185 | case True then show ?thesis using eq by (simp add: pt_bij[OF pt, OF at] abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3186 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3187 | case False | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3188 | have ineq: "a\<noteq>b" by fact | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3189 | from fr have "([(a,c)]\<bullet>c)\<sharp>([(a,c)]\<bullet>x)" by (simp add: pt_fresh_bij[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3190 | hence "a\<sharp>([(b,c)]\<bullet>y)" using eq fr by (simp add: at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3191 | hence fr0: "a\<sharp>y" using ineq fr by (simp add: pt_fresh_left[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3192 | from eq have "x = (rev [(a,c)])\<bullet>([(b,c)]\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3193 | also have "\<dots> = [(a,c)]\<bullet>([(b,c)]\<bullet>y)" by simp | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3194 | also have "\<dots> = ([(a,c)]\<bullet>[(b,c)])\<bullet>([(a,c)]\<bullet>y)" by (rule pt_perm_compose[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3195 | also have "\<dots> = [(b,a)]\<bullet>y" using ineq fr fr0 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3196 | by (simp add: pt_fresh_fresh[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3197 | also have "\<dots> = [(a,b)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3198 | finally show ?thesis using ineq fr0 by (simp add: abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3199 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3200 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3201 | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3202 | lemma abs_fun_fresh': | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3203 | fixes x :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3204 | and y :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3205 | and c :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3206 | and a :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3207 | and b :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3208 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3209 |       and at: "at TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3210 | and as: "[a].x = [b].y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3211 | and fr: "c\<noteq>a" "c\<noteq>b" "c\<sharp>x" "c\<sharp>y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3212 | shows "x = [(a,c)]\<bullet>[(b,c)]\<bullet>y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3213 | using as fr | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3214 | apply(drule_tac sym) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3215 | apply(simp add: abs_fun_fresh[OF pt, OF at] pt_swap_bij[OF pt, OF at]) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3216 | done | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3217 | |
| 17870 | 3218 | lemma abs_fun_supp_approx: | 
| 3219 | fixes x :: "'a" | |
| 3220 | and a :: "'x" | |
| 3221 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3222 |   and     at: "at TYPE('x)"
 | |
| 18048 | 3223 | shows "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))" | 
| 3224 | proof | |
| 3225 | fix c | |
| 3226 | assume "c\<in>((supp ([a].x))::'x set)" | |
| 3227 |   hence "infinite {b. [(c,b)]\<bullet>([a].x) \<noteq> [a].x}" by (simp add: supp_def)
 | |
| 3228 |   hence "infinite {b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x}" by (simp add: abs_fun_pi[OF pt, OF at])
 | |
| 3229 | moreover | |
| 3230 |   have "{b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x} \<subseteq> {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by force
 | |
| 3231 |   ultimately have "infinite {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by (simp add: infinite_super)
 | |
| 3232 | thus "c\<in>(supp (x,a))" by (simp add: supp_def) | |
| 17870 | 3233 | qed | 
| 3234 | ||
| 3235 | lemma abs_fun_finite_supp: | |
| 3236 | fixes x :: "'a" | |
| 3237 | and a :: "'x" | |
| 3238 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3239 |   and     at: "at TYPE('x)"
 | |
| 3240 | and f: "finite ((supp x)::'x set)" | |
| 3241 | shows "finite ((supp ([a].x))::'x set)" | |
| 3242 | proof - | |
| 18048 | 3243 | from f have "finite ((supp (x,a))::'x set)" by (simp add: supp_prod at_supp[OF at]) | 
| 3244 | moreover | |
| 3245 | have "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))" by (rule abs_fun_supp_approx[OF pt, OF at]) | |
| 3246 | ultimately show ?thesis by (simp add: finite_subset) | |
| 17870 | 3247 | qed | 
| 3248 | ||
| 3249 | lemma fresh_abs_funI1: | |
| 3250 | fixes x :: "'a" | |
| 3251 | and a :: "'x" | |
| 3252 | and b :: "'x" | |
| 3253 |   assumes pt:  "pt TYPE('a) TYPE('x)"
 | |
| 3254 |   and     at:   "at TYPE('x)"
 | |
| 3255 | and f: "finite ((supp x)::'x set)" | |
| 3256 | and a1: "b\<sharp>x" | |
| 3257 | and a2: "a\<noteq>b" | |
| 3258 | shows "b\<sharp>([a].x)" | |
| 3259 | proof - | |
| 3260 | have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3261 | proof (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3262 | show "finite ((supp ([a].x))::'x set)" using f | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3263 | by (simp add: abs_fun_finite_supp[OF pt, OF at]) | 
| 17870 | 3264 | qed | 
| 3265 | then obtain c where fr1: "c\<noteq>b" | |
| 3266 | and fr2: "c\<noteq>a" | |
| 3267 | and fr3: "c\<sharp>x" | |
| 3268 | and fr4: "c\<sharp>([a].x)" | |
| 3269 | by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3270 | have e: "[(c,b)]\<bullet>([a].x) = [a].([(c,b)]\<bullet>x)" using a2 fr1 fr2 | |
| 3271 | by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3272 | from fr4 have "([(c,b)]\<bullet>c)\<sharp> ([(c,b)]\<bullet>([a].x))" | |
| 3273 | by (simp add: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3274 | hence "b\<sharp>([a].([(c,b)]\<bullet>x))" using fr1 fr2 e | |
| 3275 | by (simp add: at_calc[OF at]) | |
| 3276 | thus ?thesis using a1 fr3 | |
| 3277 | by (simp add: pt_fresh_fresh[OF pt, OF at]) | |
| 3278 | qed | |
| 3279 | ||
| 3280 | lemma fresh_abs_funE: | |
| 3281 | fixes a :: "'x" | |
| 3282 | and b :: "'x" | |
| 3283 | and x :: "'a" | |
| 3284 |   assumes pt:  "pt TYPE('a) TYPE('x)"
 | |
| 3285 |   and     at:  "at TYPE('x)"
 | |
| 3286 | and f: "finite ((supp x)::'x set)" | |
| 3287 | and a1: "b\<sharp>([a].x)" | |
| 3288 | and a2: "b\<noteq>a" | |
| 3289 | shows "b\<sharp>x" | |
| 3290 | proof - | |
| 3291 | have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3292 | proof (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3293 | show "finite ((supp ([a].x))::'x set)" using f | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3294 | by (simp add: abs_fun_finite_supp[OF pt, OF at]) | 
| 17870 | 3295 | qed | 
| 3296 | then obtain c where fr1: "b\<noteq>c" | |
| 3297 | and fr2: "c\<noteq>a" | |
| 3298 | and fr3: "c\<sharp>x" | |
| 3299 | and fr4: "c\<sharp>([a].x)" by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3300 | have "[a].x = [(b,c)]\<bullet>([a].x)" using a1 fr4 | |
| 3301 | by (simp add: pt_fresh_fresh[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3302 | hence "[a].x = [a].([(b,c)]\<bullet>x)" using fr2 a2 | |
| 3303 | by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3304 | hence b: "([(b,c)]\<bullet>x) = x" by (simp add: abs_fun_eq1) | |
| 3305 | from fr3 have "([(b,c)]\<bullet>c)\<sharp>([(b,c)]\<bullet>x)" | |
| 3306 | by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 3307 | thus ?thesis using b fr1 by (simp add: at_calc[OF at]) | |
| 3308 | qed | |
| 3309 | ||
| 3310 | lemma fresh_abs_funI2: | |
| 3311 | fixes a :: "'x" | |
| 3312 | and x :: "'a" | |
| 3313 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3314 |   and     at: "at TYPE('x)"
 | |
| 3315 | and f: "finite ((supp x)::'x set)" | |
| 3316 | shows "a\<sharp>([a].x)" | |
| 3317 | proof - | |
| 3318 | have "\<exists>c::'x. c\<sharp>(a,x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3319 | by (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3320 | then obtain c where fr1: "a\<noteq>c" and fr1_sym: "c\<noteq>a" | 
| 3321 | and fr2: "c\<sharp>x" by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3322 | have "c\<sharp>([a].x)" using f fr1 fr2 by (simp add: fresh_abs_funI1[OF pt, OF at]) | |
| 3323 | hence "([(c,a)]\<bullet>c)\<sharp>([(c,a)]\<bullet>([a].x))" using fr1 | |
| 3324 | by (simp only: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3325 | hence a: "a\<sharp>([c].([(c,a)]\<bullet>x))" using fr1_sym | |
| 3326 | by (simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3327 | have "[c].([(c,a)]\<bullet>x) = ([a].x)" using fr1_sym fr2 | |
| 3328 | by (simp add: abs_fun_eq[OF pt, OF at]) | |
| 3329 | thus ?thesis using a by simp | |
| 3330 | qed | |
| 3331 | ||
| 3332 | lemma fresh_abs_fun_iff: | |
| 3333 | fixes a :: "'x" | |
| 3334 | and b :: "'x" | |
| 3335 | and x :: "'a" | |
| 3336 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3337 |   and     at: "at TYPE('x)"
 | |
| 3338 | and f: "finite ((supp x)::'x set)" | |
| 3339 | shows "(b\<sharp>([a].x)) = (b=a \<or> b\<sharp>x)" | |
| 3340 | by (auto dest: fresh_abs_funE[OF pt, OF at,OF f] | |
| 3341 | intro: fresh_abs_funI1[OF pt, OF at,OF f] | |
| 3342 | fresh_abs_funI2[OF pt, OF at,OF f]) | |
| 3343 | ||
| 3344 | lemma abs_fun_supp: | |
| 3345 | fixes a :: "'x" | |
| 3346 | and x :: "'a" | |
| 3347 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3348 |   and     at: "at TYPE('x)"
 | |
| 3349 | and f: "finite ((supp x)::'x set)" | |
| 3350 |   shows "supp ([a].x) = (supp x)-{a}"
 | |
| 3351 | by (force simp add: supp_fresh_iff fresh_abs_fun_iff[OF pt, OF at, OF f]) | |
| 3352 | ||
| 18048 | 3353 | (* maybe needs to be better stated as supp intersection supp *) | 
| 17870 | 3354 | lemma abs_fun_supp_ineq: | 
| 3355 | fixes a :: "'y" | |
| 3356 | and x :: "'a" | |
| 3357 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 3358 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 3359 |   and     at:  "at TYPE('x)"
 | |
| 3360 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 3361 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | |
| 3362 | shows "((supp ([a].x))::'x set) = (supp x)" | |
| 3363 | apply(auto simp add: supp_def) | |
| 3364 | apply(auto simp add: abs_fun_pi_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 3365 | apply(auto simp add: dj_perm_forget[OF dj]) | |
| 3366 | apply(auto simp add: abs_fun_eq1) | |
| 3367 | done | |
| 3368 | ||
| 3369 | lemma fresh_abs_fun_iff_ineq: | |
| 3370 | fixes a :: "'y" | |
| 3371 | and b :: "'x" | |
| 3372 | and x :: "'a" | |
| 3373 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 3374 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 3375 |   and     at:  "at TYPE('x)"
 | |
| 3376 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 3377 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | |
| 3378 | shows "b\<sharp>([a].x) = b\<sharp>x" | |
| 3379 | by (simp add: fresh_def abs_fun_supp_ineq[OF pta, OF ptb, OF at, OF cp, OF dj]) | |
| 3380 | ||
| 63167 | 3381 | section \<open>abstraction type for the parsing in nominal datatype\<close> | 
| 18048 | 3382 | (*==============================================================*) | 
| 23755 | 3383 | |
| 3384 | inductive_set ABS_set :: "('x\<Rightarrow>('a noption)) set"
 | |
| 3385 | where | |
| 17870 | 3386 | ABS_in: "(abs_fun a x)\<in>ABS_set" | 
| 3387 | ||
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3388 | definition "ABS = ABS_set" | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3389 | |
| 69597 | 3390 | typedef ('x, 'a) ABS (\<open>\<guillemotleft>_\<guillemotright>_\<close> [1000,1000] 1000) =
 | 
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3391 |     "ABS::('x\<Rightarrow>('a noption)) set"
 | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3392 | morphisms Rep_ABS Abs_ABS | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3393 | unfolding ABS_def | 
| 17870 | 3394 | proof | 
| 3395 | fix x::"'a" and a::"'x" | |
| 3396 | show "(abs_fun a x)\<in> ABS_set" by (rule ABS_in) | |
| 3397 | qed | |
| 3398 | ||
| 3399 | ||
| 63167 | 3400 | section \<open>lemmas for deciding permutation equations\<close> | 
| 17870 | 3401 | (*===================================================*) | 
| 3402 | ||
| 19477 | 3403 | lemma perm_aux_fold: | 
| 3404 | shows "perm_aux pi x = pi\<bullet>x" by (simp only: perm_aux_def) | |
| 3405 | ||
| 3406 | lemma pt_perm_compose_aux: | |
| 3407 | fixes pi1 :: "'x prm" | |
| 3408 | and pi2 :: "'x prm" | |
| 3409 | and x :: "'a" | |
| 3410 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3411 |   and     at: "at TYPE('x)"
 | |
| 3412 | shows "pi2\<bullet>(pi1\<bullet>x) = perm_aux (pi2\<bullet>pi1) (pi2\<bullet>x)" | |
| 3413 | proof - | |
| 23393 | 3414 | have "(pi2@pi1) \<triangleq> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8[OF at]) | 
| 19477 | 3415 | hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt]) | 
| 3416 | thus ?thesis by (simp add: pt2[OF pt] perm_aux_def) | |
| 3417 | qed | |
| 3418 | ||
| 3419 | lemma cp1_aux: | |
| 3420 | fixes pi1::"'x prm" | |
| 3421 | and pi2::"'y prm" | |
| 3422 | and x ::"'a" | |
| 3423 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 3424 | shows "pi1\<bullet>(pi2\<bullet>x) = perm_aux (pi1\<bullet>pi2) (pi1\<bullet>x)" | |
| 3425 | using cp by (simp add: cp_def perm_aux_def) | |
| 3426 | ||
| 17870 | 3427 | lemma perm_eq_app: | 
| 3428 | fixes f :: "'a\<Rightarrow>'b" | |
| 3429 | and x :: "'a" | |
| 3430 | and pi :: "'x prm" | |
| 3431 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3432 |   and     at: "at TYPE('x)"
 | |
| 3433 | shows "(pi\<bullet>(f x)=y) = ((pi\<bullet>f)(pi\<bullet>x)=y)" | |
| 3434 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 3435 | ||
| 3436 | lemma perm_eq_lam: | |
| 3437 | fixes f :: "'a\<Rightarrow>'b" | |
| 3438 | and x :: "'a" | |
| 3439 | and pi :: "'x prm" | |
| 3440 | shows "((pi\<bullet>(\<lambda>x. f x))=y) = ((\<lambda>x. (pi\<bullet>(f ((rev pi)\<bullet>x))))=y)" | |
| 3441 | by (simp add: perm_fun_def) | |
| 3442 | ||
| 63167 | 3443 | section \<open>test\<close> | 
| 19132 | 3444 | lemma at_prm_eq_compose: | 
| 3445 | fixes pi1 :: "'x prm" | |
| 3446 | and pi2 :: "'x prm" | |
| 3447 | and pi3 :: "'x prm" | |
| 3448 |   assumes at: "at TYPE('x)"
 | |
| 3449 | and a: "pi1 \<triangleq> pi2" | |
| 3450 | shows "(pi3\<bullet>pi1) \<triangleq> (pi3\<bullet>pi2)" | |
| 3451 | proof - | |
| 3452 |   have pt: "pt TYPE('x) TYPE('x)" by (rule at_pt_inst[OF at])
 | |
| 3453 |   have pt_prm: "pt TYPE('x prm) TYPE('x)" 
 | |
| 3454 | by (rule pt_list_inst[OF pt_prod_inst[OF pt, OF pt]]) | |
| 3455 | from a show ?thesis | |
| 3456 | apply - | |
| 3457 | apply(auto simp add: prm_eq_def) | |
| 3458 | apply(rule_tac pi="rev pi3" in pt_bij4[OF pt, OF at]) | |
| 3459 | apply(rule trans) | |
| 3460 | apply(rule pt_perm_compose[OF pt, OF at]) | |
| 3461 | apply(simp add: pt_rev_pi[OF pt_prm, OF at]) | |
| 3462 | apply(rule sym) | |
| 3463 | apply(rule trans) | |
| 3464 | apply(rule pt_perm_compose[OF pt, OF at]) | |
| 3465 | apply(simp add: pt_rev_pi[OF pt_prm, OF at]) | |
| 3466 | done | |
| 3467 | qed | |
| 3468 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3469 | (************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3470 | (* Various eqvt-lemmas *) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3471 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3472 | lemma Zero_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3473 | shows "pi\<bullet>(0::nat) = 0" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3474 | by (auto simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3475 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3476 | lemma One_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3477 | shows "pi\<bullet>(1::nat) = 1" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3478 | by (simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3479 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3480 | lemma Suc_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3481 | shows "pi\<bullet>(Suc x) = Suc (pi\<bullet>x)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3482 | by (auto simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3483 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3484 | lemma numeral_nat_eqvt: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3485 | shows "pi\<bullet>((numeral n)::nat) = numeral n" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3486 | by (simp add: perm_nat_def perm_int_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3487 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3488 | lemma max_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3489 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3490 | shows "pi\<bullet>(max x y) = max (pi\<bullet>x) (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3491 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3492 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3493 | lemma min_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3494 | fixes x::"nat" | 
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 3495 | shows "pi\<bullet>(min x y) = min (pi\<bullet>x) (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3496 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3497 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3498 | lemma plus_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3499 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3500 | shows "pi\<bullet>(x + y) = (pi\<bullet>x) + (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3501 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3502 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3503 | lemma minus_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3504 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3505 | shows "pi\<bullet>(x - y) = (pi\<bullet>x) - (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3506 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3507 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3508 | lemma mult_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3509 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3510 | shows "pi\<bullet>(x * y) = (pi\<bullet>x) * (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3511 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3512 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3513 | lemma div_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3514 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3515 | shows "pi\<bullet>(x div y) = (pi\<bullet>x) div (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3516 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3517 | |
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3518 | lemma Zero_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3519 | shows "pi\<bullet>(0::int) = 0" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3520 | by (auto simp add: perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3521 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3522 | lemma One_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3523 | shows "pi\<bullet>(1::int) = 1" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3524 | by (simp add: perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3525 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3526 | lemma numeral_int_eqvt: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3527 | shows "pi\<bullet>((numeral n)::int) = numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3528 | by (simp add: perm_int_def perm_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3529 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3530 | lemma neg_numeral_int_eqvt: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
49834diff
changeset | 3531 | shows "pi\<bullet>((- numeral n)::int) = - numeral n" | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3532 | by (simp add: perm_int_def perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3533 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3534 | lemma max_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3535 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3536 | shows "pi\<bullet>(max (x::int) y) = max (pi\<bullet>x) (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3537 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3538 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3539 | lemma min_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3540 | fixes x::"int" | 
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 3541 | shows "pi\<bullet>(min x y) = min (pi\<bullet>x) (pi\<bullet>y)" | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3542 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3543 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3544 | lemma plus_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3545 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3546 | shows "pi\<bullet>(x + y) = (pi\<bullet>x) + (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3547 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3548 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3549 | lemma minus_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3550 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3551 | shows "pi\<bullet>(x - y) = (pi\<bullet>x) - (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3552 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3553 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3554 | lemma mult_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3555 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3556 | shows "pi\<bullet>(x * y) = (pi\<bullet>x) * (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3557 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3558 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3559 | lemma div_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3560 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3561 | shows "pi\<bullet>(x div y) = (pi\<bullet>x) div (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3562 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3563 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 3564 | (*******************************************************) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 3565 | (* Setup of the theorem attributes eqvt and eqvt_force *) | 
| 69605 | 3566 | ML_file \<open>nominal_thmdecls.ML\<close> | 
| 22245 
1b8f4ef50c48
moved the infrastructure from the nominal_tags file to nominal_thmdecls
 urbanc parents: 
22231diff
changeset | 3567 | setup "NominalThmDecls.setup" | 
| 19132 | 3568 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3569 | lemmas [eqvt] = | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3570 | (* connectives *) | 
| 22732 
5bd1a2a94e1b
declared lemmas true_eqvt and false_eqvt to be equivariant (suggested by samth at ccs.neu.edu)
 urbanc parents: 
22729diff
changeset | 3571 | if_eqvt imp_eqvt disj_eqvt conj_eqvt neg_eqvt | 
| 
5bd1a2a94e1b
declared lemmas true_eqvt and false_eqvt to be equivariant (suggested by samth at ccs.neu.edu)
 urbanc parents: 
22729diff
changeset | 3572 | true_eqvt false_eqvt | 
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
58372diff
changeset | 3573 | imp_eqvt [folded HOL.induct_implies_def] | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3574 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3575 | (* datatypes *) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3576 | perm_unit.simps | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3577 | perm_list.simps append_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3578 | perm_prod.simps | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3579 | fst_eqvt snd_eqvt | 
| 22511 
ca326e0fb5c5
added the permutation operation on options to the list of equivariance lemmas
 urbanc parents: 
22500diff
changeset | 3580 | perm_option.simps | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3581 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3582 | (* nats *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3583 | Suc_eqvt Zero_nat_eqvt One_nat_eqvt min_nat_eqvt max_nat_eqvt | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3584 | plus_nat_eqvt minus_nat_eqvt mult_nat_eqvt div_nat_eqvt | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3585 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3586 | (* ints *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3587 | Zero_int_eqvt One_int_eqvt min_int_eqvt max_int_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3588 | plus_int_eqvt minus_int_eqvt mult_int_eqvt div_int_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3589 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3590 | (* sets *) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 3591 | union_eqvt empty_eqvt insert_eqvt set_eqvt | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3592 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3593 | |
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3594 | (* the lemmas numeral_nat_eqvt numeral_int_eqvt do not conform with the *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3595 | (* usual form of an eqvt-lemma, but they are needed for analysing *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3596 | (* permutations on nats and ints *) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3597 | lemmas [eqvt_force] = numeral_nat_eqvt numeral_int_eqvt neg_numeral_int_eqvt | 
| 22326 
a3acee47a883
start adding the attribute eqvt to some lemmas of the nominal library
 narboux parents: 
22312diff
changeset | 3598 | |
| 17870 | 3599 | (***************************************) | 
| 3600 | (* setup for the individial atom-kinds *) | |
| 18047 
3d643b13eb65
simplified the abs_supp_approx proof and tuned some comments in
 urbanc parents: 
18012diff
changeset | 3601 | (* and nominal datatypes *) | 
| 69605 | 3602 | ML_file \<open>nominal_atoms.ML\<close> | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3603 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3604 | (************************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3605 | (* various tactics for analysing permutations, supports etc *) | 
| 69605 | 3606 | ML_file \<open>nominal_permeq.ML\<close> | 
| 17870 | 3607 | |
| 3608 | method_setup perm_simp = | |
| 63167 | 3609 | \<open>NominalPermeq.perm_simp_meth\<close> | 
| 3610 | \<open>simp rules and simprocs for analysing permutations\<close> | |
| 17870 | 3611 | |
| 3612 | method_setup perm_simp_debug = | |
| 63167 | 3613 | \<open>NominalPermeq.perm_simp_meth_debug\<close> | 
| 3614 | \<open>simp rules and simprocs for analysing permutations including debugging facilities\<close> | |
| 19477 | 3615 | |
| 28322 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3616 | method_setup perm_extend_simp = | 
| 63167 | 3617 | \<open>NominalPermeq.perm_extend_simp_meth\<close> | 
| 3618 | \<open>tactic for deciding equalities involving permutations\<close> | |
| 19477 | 3619 | |
| 28322 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3620 | method_setup perm_extend_simp_debug = | 
| 63167 | 3621 | \<open>NominalPermeq.perm_extend_simp_meth_debug\<close> | 
| 3622 | \<open>tactic for deciding equalities involving permutations including debugging facilities\<close> | |
| 17870 | 3623 | |
| 3624 | method_setup supports_simp = | |
| 63167 | 3625 | \<open>NominalPermeq.supports_meth\<close> | 
| 3626 | \<open>tactic for deciding whether something supports something else\<close> | |
| 17870 | 3627 | |
| 3628 | method_setup supports_simp_debug = | |
| 63167 | 3629 | \<open>NominalPermeq.supports_meth_debug\<close> | 
| 3630 | \<open>tactic for deciding whether something supports something else including debugging facilities\<close> | |
| 17870 | 3631 | |
| 19164 | 3632 | method_setup finite_guess = | 
| 63167 | 3633 | \<open>NominalPermeq.finite_guess_meth\<close> | 
| 3634 | \<open>tactic for deciding whether something has finite support\<close> | |
| 19164 | 3635 | |
| 3636 | method_setup finite_guess_debug = | |
| 63167 | 3637 | \<open>NominalPermeq.finite_guess_meth_debug\<close> | 
| 3638 | \<open>tactic for deciding whether something has finite support including debugging facilities\<close> | |
| 19494 | 3639 | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3640 | method_setup fresh_guess = | 
| 63167 | 3641 | \<open>NominalPermeq.fresh_guess_meth\<close> | 
| 3642 | \<open>tactic for deciding whether an atom is fresh for something\<close> | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3643 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3644 | method_setup fresh_guess_debug = | 
| 63167 | 3645 | \<open>NominalPermeq.fresh_guess_meth_debug\<close> | 
| 3646 | \<open>tactic for deciding whether an atom is fresh for something including debugging facilities\<close> | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3647 | |
| 22762 | 3648 | (*****************************************************************) | 
| 3649 | (* tactics for generating fresh names and simplifying fresh_funs *) | |
| 69605 | 3650 | ML_file \<open>nominal_fresh_fun.ML\<close> | 
| 22729 | 3651 | |
| 63167 | 3652 | method_setup generate_fresh = \<open> | 
| 56230 | 3653 |   Args.type_name {proper = true, strict = true} >>
 | 
| 3654 | (fn s => fn ctxt => SIMPLE_METHOD (generate_fresh_tac ctxt s)) | |
| 63167 | 3655 | \<close> "generate a name fresh for all the variables in the goal" | 
| 3656 | ||
| 3657 | method_setup fresh_fun_simp = \<open> | |
| 56230 | 3658 | Scan.lift (Args.parens (Args.$$$ "no_asm") >> K true || Scan.succeed false) >> | 
| 3659 | (fn b => fn ctxt => SIMPLE_METHOD' (fresh_fun_tac ctxt b)) | |
| 63167 | 3660 | \<close> "delete one inner occurrence of fresh_fun" | 
| 22729 | 3661 | |
| 3662 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3663 | (************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3664 | (* main file for constructing nominal datatypes *) | 
| 27228 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3665 | lemma allE_Nil: assumes "\<forall>x. P x" obtains "P []" | 
| 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3666 | using assms .. | 
| 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3667 | |
| 69605 | 3668 | ML_file \<open>nominal_datatype.ML\<close> | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3669 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3670 | (******************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3671 | (* primitive recursive functions on nominal datatypes *) | 
| 69605 | 3672 | ML_file \<open>nominal_primrec.ML\<close> | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3673 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3674 | (****************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3675 | (* inductive definition involving nominal datatypes *) | 
| 69605 | 3676 | ML_file \<open>nominal_inductive.ML\<close> | 
| 3677 | ML_file \<open>nominal_inductive2.ML\<close> | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3678 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3679 | (*****************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3680 | (* setup for induction principles method *) | 
| 69605 | 3681 | ML_file \<open>nominal_induct.ML\<close> | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3682 | method_setup nominal_induct = | 
| 63167 | 3683 | \<open>NominalInduct.nominal_induct_method\<close> | 
| 3684 | \<open>nominal induction\<close> | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3685 | |
| 17870 | 3686 | end |