src/HOL/Transcendental.thy
author immler@in.tum.de
Tue, 20 Jan 2009 20:58:25 +0100
changeset 29594 d9ec10c2d71f
parent 29171 5eff800a695f
child 29667 53103fc8ffa3
permissions -rw-r--r--
Automated merge with http://isabelle.in.tum.de/repos/isabelle/tip
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     1
(*  Title       : Transcendental.thy
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     2
    Author      : Jacques D. Fleuriot
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     3
    Copyright   : 1998,1999 University of Cambridge
13958
c1c67582c9b5 New material on integration, etc. Moving Hyperreal/ex
paulson
parents: 12196
diff changeset
     4
                  1999,2001 University of Edinburgh
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     7
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
header{*Power Series, Transcendental Functions etc.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     9
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    10
theory Transcendental
25600
73431bd8c4c4 joined EvenOdd theory with Parity
haftmann
parents: 25153
diff changeset
    11
imports Fact Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    12
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    13
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
    14
subsection {* Properties of Power Series *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    15
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    16
lemma lemma_realpow_diff:
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    17
  fixes y :: "'a::recpower"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    18
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    19
proof -
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    20
  assume "p \<le> n"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    21
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    22
  thus ?thesis by (simp add: power_Suc power_commutes)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    23
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    24
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    25
lemma lemma_realpow_diff_sumr:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    26
  fixes y :: "'a::{recpower,comm_semiring_0}" shows
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    27
     "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ (Suc n - p)) =  
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    28
      y * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
    29
by (simp add: setsum_right_distrib lemma_realpow_diff mult_ac
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
    30
         del: setsum_op_ivl_Suc cong: strong_setsum_cong)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    31
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    32
lemma lemma_realpow_diff_sumr2:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    33
  fixes y :: "'a::{recpower,comm_ring}" shows
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    34
     "x ^ (Suc n) - y ^ (Suc n) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    35
      (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
25153
af3c7e99fed0 tuned proof
haftmann
parents: 25062
diff changeset
    36
apply (induct n, simp add: power_Suc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    37
apply (simp add: power_Suc del: setsum_op_ivl_Suc)
15561
045a07ac35a7 another reorganization of setsums and intervals
nipkow
parents: 15546
diff changeset
    38
apply (subst setsum_op_ivl_Suc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    39
apply (subst lemma_realpow_diff_sumr)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    40
apply (simp add: right_distrib del: setsum_op_ivl_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    41
apply (subst mult_left_commute [where a="x - y"])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    42
apply (erule subst)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
    43
apply (simp add: power_Suc ring_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    44
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    45
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    46
lemma lemma_realpow_rev_sumr:
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
    47
     "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    48
      (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    49
apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    50
apply (rule inj_onI, simp)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    51
apply auto
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    52
apply (rule_tac x="n - x" in image_eqI, simp, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    53
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    54
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    55
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    56
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    57
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    58
lemma powser_insidea:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    59
  fixes x z :: "'a::{real_normed_field,banach,recpower}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    60
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    61
  assumes 2: "norm z < norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    62
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    63
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    64
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    65
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    66
    by (rule summable_LIMSEQ_zero)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    67
  hence "convergent (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    68
    by (rule convergentI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    69
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    70
    by (simp add: Cauchy_convergent_iff)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    71
  hence "Bseq (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    72
    by (rule Cauchy_Bseq)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    73
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    74
    by (simp add: Bseq_def, safe)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    75
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    76
                   K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    77
  proof (intro exI allI impI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    78
    fix n::nat assume "0 \<le> n"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    79
    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    80
          norm (f n * x ^ n) * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    81
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    82
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    83
      by (simp only: mult_right_mono 4 norm_ge_zero)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    84
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    85
      by (simp add: x_neq_0)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    86
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    87
      by (simp only: mult_assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    88
    finally show "norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    89
                  K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    90
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    91
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    92
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    93
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    94
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    95
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    96
      by (simp add: nonzero_norm_divide divide_inverse [symmetric])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    97
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    98
      by (rule summable_geometric)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    99
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   100
      by (rule summable_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   101
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   102
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   103
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   104
                    power_inverse norm_power mult_assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   105
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   106
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   107
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   108
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   109
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   110
lemma powser_inside:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   111
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach,recpower}" shows
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   112
     "[| summable (%n. f(n) * (x ^ n)); norm z < norm x |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   113
      ==> summable (%n. f(n) * (z ^ n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   114
by (rule powser_insidea [THEN summable_norm_cancel])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   115
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   116
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   117
subsection {* Term-by-Term Differentiability of Power Series *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   118
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   119
definition
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   120
  diffs :: "(nat => 'a::ring_1) => nat => 'a" where
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
  "diffs c = (%n. of_nat (Suc n) * c(Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   122
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   123
text{*Lemma about distributing negation over it*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   124
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   125
by (simp add: diffs_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   126
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   127
lemma sums_Suc_imp:
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   128
  assumes f: "f 0 = 0"
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   129
  shows "(\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   130
unfolding sums_def
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   131
apply (rule LIMSEQ_imp_Suc)
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   132
apply (subst setsum_shift_lb_Suc0_0_upt [where f=f, OF f, symmetric])
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   133
apply (simp only: setsum_shift_bounds_Suc_ivl)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   134
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   135
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   136
lemma diffs_equiv:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   137
     "summable (%n. (diffs c)(n) * (x ^ n)) ==>  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   138
      (%n. of_nat n * c(n) * (x ^ (n - Suc 0))) sums  
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   139
         (\<Sum>n. (diffs c)(n) * (x ^ n))"
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   140
unfolding diffs_def
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   141
apply (drule summable_sums)
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   142
apply (rule sums_Suc_imp, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   143
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   144
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   145
lemma lemma_termdiff1:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   146
  fixes z :: "'a :: {recpower,comm_ring}" shows
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   147
  "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   148
   (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
16641
fce796ad9c2b Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents: 15561
diff changeset
   149
by (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac
fce796ad9c2b Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents: 15561
diff changeset
   150
  cong: strong_setsum_cong)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   151
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   152
lemma sumr_diff_mult_const2:
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   153
  "setsum f {0..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i = 0..<n. f i - r)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   154
by (simp add: setsum_subtractf)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   155
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   156
lemma lemma_termdiff2:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   157
  fixes h :: "'a :: {recpower,field}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   158
  assumes h: "h \<noteq> 0" shows
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   159
  "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   160
   h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p.
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   161
        (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   162
apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   163
apply (simp add: right_diff_distrib diff_divide_distrib h)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   164
apply (simp add: mult_assoc [symmetric])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   165
apply (cases "n", simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   166
apply (simp add: lemma_realpow_diff_sumr2 h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   167
                 right_diff_distrib [symmetric] mult_assoc
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   168
            del: realpow_Suc setsum_op_ivl_Suc of_nat_Suc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   169
apply (subst lemma_realpow_rev_sumr)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   170
apply (subst sumr_diff_mult_const2)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   171
apply simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   172
apply (simp only: lemma_termdiff1 setsum_right_distrib)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   173
apply (rule setsum_cong [OF refl])
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   174
apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   175
apply (clarify)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   176
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   177
            del: setsum_op_ivl_Suc realpow_Suc)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   178
apply (subst mult_assoc [symmetric], subst power_add [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   179
apply (simp add: mult_ac)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   180
done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   181
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   182
lemma real_setsum_nat_ivl_bounded2:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   183
  fixes K :: "'a::ordered_semidom"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   184
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   185
  assumes K: "0 \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   186
  shows "setsum f {0..<n-k} \<le> of_nat n * K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   187
apply (rule order_trans [OF setsum_mono])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   188
apply (rule f, simp)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   189
apply (simp add: mult_right_mono K)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   190
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   191
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   192
lemma lemma_termdiff3:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   193
  fixes h z :: "'a::{real_normed_field,recpower}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   194
  assumes 1: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   195
  assumes 2: "norm z \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   196
  assumes 3: "norm (z + h) \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   197
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   198
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   199
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   200
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   201
        norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   202
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   203
    apply (subst lemma_termdiff2 [OF 1])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   204
    apply (subst norm_mult)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   205
    apply (rule mult_commute)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   206
    done
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   207
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   208
  proof (rule mult_right_mono [OF _ norm_ge_zero])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   209
    from norm_ge_zero 2 have K: "0 \<le> K" by (rule order_trans)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   210
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   211
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   212
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   213
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   214
      done
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   215
    show "norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   216
              (z + h) ^ q * z ^ (n - 2 - q))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   217
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   218
      apply (intro
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   219
         order_trans [OF norm_setsum]
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   220
         real_setsum_nat_ivl_bounded2
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   221
         mult_nonneg_nonneg
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   222
         zero_le_imp_of_nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   223
         zero_le_power K)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   224
      apply (rule le_Kn, simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   225
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   226
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   227
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   228
    by (simp only: mult_assoc)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   229
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   230
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   231
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   232
lemma lemma_termdiff4:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   233
  fixes f :: "'a::{real_normed_field,recpower} \<Rightarrow>
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   234
              'b::real_normed_vector"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   235
  assumes k: "0 < (k::real)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   236
  assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   237
  shows "f -- 0 --> 0"
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   238
unfolding LIM_def diff_0_right
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   239
proof (safe)
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   240
  let ?h = "of_real (k / 2)::'a"
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   241
  have "?h \<noteq> 0" and "norm ?h < k" using k by simp_all
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   242
  hence "norm (f ?h) \<le> K * norm ?h" by (rule le)
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   243
  hence "0 \<le> K * norm ?h" by (rule order_trans [OF norm_ge_zero])
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   244
  hence zero_le_K: "0 \<le> K" using k by (simp add: zero_le_mult_iff)
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   245
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   246
  fix r::real assume r: "0 < r"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   247
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   248
  proof (cases)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   249
    assume "K = 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   250
    with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < k \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   251
      by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   252
    thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" ..
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   253
  next
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   254
    assume K_neq_zero: "K \<noteq> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   255
    with zero_le_K have K: "0 < K" by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   256
    show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   257
    proof (rule exI, safe)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   258
      from k r K show "0 < min k (r * inverse K / 2)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   259
        by (simp add: mult_pos_pos positive_imp_inverse_positive)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   260
    next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   261
      fix x::'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   262
      assume x1: "x \<noteq> 0" and x2: "norm x < min k (r * inverse K / 2)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   263
      from x2 have x3: "norm x < k" and x4: "norm x < r * inverse K / 2"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   264
        by simp_all
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   265
      from x1 x3 le have "norm (f x) \<le> K * norm x" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   266
      also from x4 K have "K * norm x < K * (r * inverse K / 2)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   267
        by (rule mult_strict_left_mono)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   268
      also have "\<dots> = r / 2"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   269
        using K_neq_zero by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   270
      also have "r / 2 < r"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   271
        using r by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   272
      finally show "norm (f x) < r" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   273
    qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   274
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   275
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   276
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   277
lemma lemma_termdiff5:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   278
  fixes g :: "'a::{recpower,real_normed_field} \<Rightarrow>
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   279
              nat \<Rightarrow> 'b::banach"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   280
  assumes k: "0 < (k::real)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   281
  assumes f: "summable f"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   282
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   283
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   284
proof (rule lemma_termdiff4 [OF k])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   285
  fix h::'a assume "h \<noteq> 0" and "norm h < k"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   286
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   287
    by (simp add: le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   288
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   289
    by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   290
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   291
    by (rule summable_mult2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   292
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   293
    by (rule summable_comparison_test)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   294
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   295
    by (rule summable_norm)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   296
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   297
    by (rule summable_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   298
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   299
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   300
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   301
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   302
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   303
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   304
text{* FIXME: Long proofs*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   305
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   306
lemma termdiffs_aux:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   307
  fixes x :: "'a::{recpower,real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   308
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   309
  assumes 2: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   310
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   311
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   312
proof -
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   313
  from dense [OF 2]
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   314
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   315
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   316
    by (rule order_le_less_trans)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   317
  hence r_neq_0: "r \<noteq> 0" by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   318
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   319
  proof (rule lemma_termdiff5)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   320
    show "0 < r - norm x" using r1 by simp
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   321
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   322
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   323
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   324
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   325
      by (rule powser_insidea)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   326
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   327
      using r
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   328
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   329
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   330
      by (rule diffs_equiv [THEN sums_summable])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   331
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   332
      = (\<lambda>n. diffs (%m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   333
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   334
      apply (simp add: diffs_def)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   335
      apply (case_tac n, simp_all add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   336
      done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   337
    finally have "summable 
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   338
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   339
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   340
    also have
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   341
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   342
           r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   343
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   344
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   345
      apply (case_tac "n", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   346
      apply (case_tac "nat", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   347
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   348
      done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   349
    finally show
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   350
      "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   351
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   352
    fix h::'a and n::nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   353
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   354
    assume "norm h < r - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   355
    hence "norm x + norm h < r" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   356
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   357
      by (rule order_le_less_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   358
    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   359
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   360
      apply (simp only: norm_mult mult_assoc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   361
      apply (rule mult_left_mono [OF _ norm_ge_zero])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   362
      apply (simp (no_asm) add: mult_assoc [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   363
      apply (rule lemma_termdiff3)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   364
      apply (rule h)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   365
      apply (rule r1 [THEN order_less_imp_le])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   366
      apply (rule xh [THEN order_less_imp_le])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   367
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   368
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   369
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   370
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   371
lemma termdiffs:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   372
  fixes K x :: "'a::{recpower,real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   373
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   374
  assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   375
  assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   376
  assumes 4: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   377
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   378
unfolding deriv_def
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   379
proof (rule LIM_zero_cancel)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   380
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   381
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   382
  proof (rule LIM_equal2)
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   383
    show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   384
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   385
    fix h :: 'a
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   386
    assume "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   387
    assume "norm (h - 0) < norm K - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   388
    hence "norm x + norm h < norm K" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   389
    hence 5: "norm (x + h) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   390
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   391
    have A: "summable (\<lambda>n. c n * x ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   392
      by (rule powser_inside [OF 1 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   393
    have B: "summable (\<lambda>n. c n * (x + h) ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   394
      by (rule powser_inside [OF 1 5])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   395
    have C: "summable (\<lambda>n. diffs c n * x ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   396
      by (rule powser_inside [OF 2 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   397
    show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   398
             - (\<Sum>n. diffs c n * x ^ n) = 
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   399
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   400
      apply (subst sums_unique [OF diffs_equiv [OF C]])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   401
      apply (subst suminf_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   402
      apply (subst suminf_divide [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   403
      apply (rule summable_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   404
      apply (subst suminf_diff)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   405
      apply (rule summable_divide)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   406
      apply (rule summable_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   407
      apply (rule sums_summable [OF diffs_equiv [OF C]])
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   408
      apply (rule arg_cong [where f="suminf"], rule ext)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
   409
      apply (simp add: ring_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   410
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   411
  next
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   412
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   413
               of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   414
        by (rule termdiffs_aux [OF 3 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   415
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   416
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   417
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   418
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   419
subsection {* Exponential Function *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   420
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   421
definition
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   422
  exp :: "'a \<Rightarrow> 'a::{recpower,real_normed_field,banach}" where
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   423
  "exp x = (\<Sum>n. x ^ n /\<^sub>R real (fact n))"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   424
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   425
lemma summable_exp_generic:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   426
  fixes x :: "'a::{real_normed_algebra_1,recpower,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   427
  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   428
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   429
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   430
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   431
    unfolding S_def by (simp add: power_Suc del: mult_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   432
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   433
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   434
  obtain N :: nat where N: "norm x < real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   435
    using reals_Archimedean3 [OF r0] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   436
  from r1 show ?thesis
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   437
  proof (rule ratio_test [rule_format])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   438
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   439
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   440
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   441
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   442
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   443
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   444
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   445
      using norm_ge_zero by (rule mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   446
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   447
      by (rule order_trans [OF norm_mult_ineq])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   448
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   449
      by (simp add: pos_divide_le_eq mult_ac)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   450
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   451
      by (simp add: S_Suc norm_scaleR inverse_eq_divide)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   452
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   453
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   454
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   455
lemma summable_norm_exp:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   456
  fixes x :: "'a::{real_normed_algebra_1,recpower,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   457
  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   458
proof (rule summable_norm_comparison_test [OF exI, rule_format])
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   459
  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   460
    by (rule summable_exp_generic)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   461
next
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   462
  fix n show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   463
    by (simp add: norm_scaleR norm_power_ineq)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   464
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   465
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   466
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   467
by (insert summable_exp_generic [where x=x], simp)
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   468
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   469
lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   470
unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   471
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   472
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   473
lemma exp_fdiffs: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   474
      "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))"
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23413
diff changeset
   475
by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   476
         del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   477
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   478
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   479
by (simp add: diffs_def)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   480
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   481
lemma lemma_exp_ext: "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   482
by (auto intro!: ext simp add: exp_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   483
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   484
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   485
apply (simp add: exp_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   486
apply (subst lemma_exp_ext)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   487
apply (subgoal_tac "DERIV (\<lambda>u. \<Sum>n. of_real (inverse (real (fact n))) * u ^ n) x :> (\<Sum>n. diffs (\<lambda>n. of_real (inverse (real (fact n)))) n * x ^ n)")
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   488
apply (rule_tac [2] K = "of_real (1 + norm x)" in termdiffs)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   489
apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   490
apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   491
apply (simp del: of_real_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   492
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   493
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   494
lemma isCont_exp [simp]: "isCont exp x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   495
by (rule DERIV_exp [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   496
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   497
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   498
subsubsection {* Properties of the Exponential Function *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   499
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   500
lemma powser_zero:
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   501
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1,recpower}"
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   502
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   503
proof -
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   504
  have "(\<Sum>n = 0..<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   505
    by (rule sums_unique [OF series_zero], simp add: power_0_left)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   506
  thus ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   507
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   508
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   509
lemma exp_zero [simp]: "exp 0 = 1"
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   510
unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   511
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   512
lemma setsum_cl_ivl_Suc2:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   513
  "(\<Sum>i=m..Suc n. f i) = (if Suc n < m then 0 else f m + (\<Sum>i=m..n. f (Suc i)))"
28069
ba4de3022862 moved lemma into SetInterval where it belongs
nipkow
parents: 27483
diff changeset
   514
by (simp add: setsum_head_Suc setsum_shift_bounds_cl_Suc_ivl
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   515
         del: setsum_cl_ivl_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   516
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   517
lemma exp_series_add:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   518
  fixes x y :: "'a::{real_field,recpower}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   519
  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   520
  shows "S (x + y) n = (\<Sum>i=0..n. S x i * S y (n - i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   521
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   522
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   523
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   524
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   525
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   526
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   527
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   528
    unfolding S_def by (simp add: power_Suc del: mult_Suc)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   529
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   530
    by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   531
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   532
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   533
    by (simp only: times_S)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   534
  also have "\<dots> = (x + y) * (\<Sum>i=0..n. S x i * S y (n-i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   535
    by (simp only: Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   536
  also have "\<dots> = x * (\<Sum>i=0..n. S x i * S y (n-i))
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   537
                + y * (\<Sum>i=0..n. S x i * S y (n-i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   538
    by (rule left_distrib)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   539
  also have "\<dots> = (\<Sum>i=0..n. (x * S x i) * S y (n-i))
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   540
                + (\<Sum>i=0..n. S x i * (y * S y (n-i)))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   541
    by (simp only: setsum_right_distrib mult_ac)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   542
  also have "\<dots> = (\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   543
                + (\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   544
    by (simp add: times_S Suc_diff_le)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   545
  also have "(\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   546
             (\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   547
    by (subst setsum_cl_ivl_Suc2, simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   548
  also have "(\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   549
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   550
    by (subst setsum_cl_ivl_Suc, simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   551
  also have "(\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   552
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   553
             (\<Sum>i=0..Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   554
    by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric]
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   555
              real_of_nat_add [symmetric], simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   556
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i=0..Suc n. S x i * S y (Suc n-i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
   557
    by (simp only: scaleR_right.setsum)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   558
  finally show
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   559
    "S (x + y) (Suc n) = (\<Sum>i=0..Suc n. S x i * S y (Suc n - i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   560
    by (simp add: scaleR_cancel_left del: setsum_cl_ivl_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   561
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   562
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   563
lemma exp_add: "exp (x + y) = exp x * exp y"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   564
unfolding exp_def
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   565
by (simp only: Cauchy_product summable_norm_exp exp_series_add)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   566
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   567
lemma mult_exp_exp: "exp x * exp y = exp (x + y)"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   568
by (rule exp_add [symmetric])
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   569
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   570
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   571
unfolding exp_def
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   572
apply (subst of_real.suminf)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   573
apply (rule summable_exp_generic)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   574
apply (simp add: scaleR_conv_of_real)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   575
done
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   576
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   577
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   578
proof
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   579
  have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   580
  also assume "exp x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   581
  finally show "False" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   582
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   583
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   584
lemma exp_minus: "exp (- x) = inverse (exp x)"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   585
by (rule inverse_unique [symmetric], simp add: mult_exp_exp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   586
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   587
lemma exp_diff: "exp (x - y) = exp x / exp y"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   588
  unfolding diff_minus divide_inverse
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   589
  by (simp add: exp_add exp_minus)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   590
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   591
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   592
subsubsection {* Properties of the Exponential Function on Reals *}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   593
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   594
text {* Comparisons of @{term "exp x"} with zero. *}
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   595
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   596
text{*Proof: because every exponential can be seen as a square.*}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   597
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   598
proof -
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   599
  have "0 \<le> exp (x/2) * exp (x/2)" by simp
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   600
  thus ?thesis by (simp add: exp_add [symmetric])
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   601
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
   602
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   603
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   604
by (simp add: order_less_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   605
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   606
lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   607
by (simp add: not_less)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   608
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   609
lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   610
by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   612
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   613
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   614
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   615
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
   616
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   617
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   618
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   619
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   620
text {* Strict monotonicity of exponential. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   621
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   622
lemma exp_ge_add_one_self_aux: "0 \<le> (x::real) ==> (1 + x) \<le> exp(x)"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   623
apply (drule order_le_imp_less_or_eq, auto)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   624
apply (simp add: exp_def)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   625
apply (rule real_le_trans)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   626
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   627
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_mult_iff)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   628
done
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   629
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   630
lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   631
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   632
  assume x: "0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   633
  hence "1 < 1 + x" by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   634
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   635
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   636
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   637
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   638
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   639
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   640
  fixes x y :: real
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   641
  assumes "x < y" shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   642
proof -
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   643
  from `x < y` have "0 < y - x" by simp
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   644
  hence "1 < exp (y - x)" by (rule exp_gt_one)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   645
  hence "1 < exp y / exp x" by (simp only: exp_diff)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   646
  thus "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   647
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   648
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   649
lemma exp_less_cancel: "exp (x::real) < exp y ==> x < y"
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   650
apply (simp add: linorder_not_le [symmetric])
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   651
apply (auto simp add: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   652
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   653
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   654
lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   655
by (auto intro: exp_less_mono exp_less_cancel)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   656
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   657
lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   658
by (auto simp add: linorder_not_less [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   659
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   660
lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   661
by (simp add: order_eq_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   662
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   663
text {* Comparisons of @{term "exp x"} with one. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   664
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   665
lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   666
  using exp_less_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   667
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   668
lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   669
  using exp_less_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   670
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   671
lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   672
  using exp_le_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   673
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   674
lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   675
  using exp_le_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   676
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   677
lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   678
  using exp_inj_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
   679
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   680
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   681
apply (rule IVT)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   682
apply (auto intro: isCont_exp simp add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   683
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") 
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
   684
apply simp
17014
ad5ceb90877d renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents: 16924
diff changeset
   685
apply (rule exp_ge_add_one_self_aux, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   686
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   687
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   688
lemma exp_total: "0 < (y::real) ==> \<exists>x. exp x = y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   689
apply (rule_tac x = 1 and y = y in linorder_cases)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   690
apply (drule order_less_imp_le [THEN lemma_exp_total])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   691
apply (rule_tac [2] x = 0 in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   692
apply (frule_tac [3] real_inverse_gt_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   693
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   694
apply (rule_tac x = "-x" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   695
apply (simp add: exp_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   696
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   697
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   698
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   699
subsection {* Natural Logarithm *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   700
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   701
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   702
  ln :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   703
  "ln x = (THE u. exp u = x)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   704
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   705
lemma ln_exp [simp]: "ln (exp x) = x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   706
by (simp add: ln_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   707
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   708
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   709
by (auto dest: exp_total)
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   710
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   711
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   712
apply (rule iffI)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   713
apply (erule subst, rule exp_gt_zero)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   714
apply (erule exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   715
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   716
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   717
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   718
by (erule subst, rule ln_exp)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   719
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   720
lemma ln_one [simp]: "ln 1 = 0"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   721
by (rule ln_unique, simp)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   722
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   723
lemma ln_mult: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x * y) = ln x + ln y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   724
by (rule ln_unique, simp add: exp_add)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   725
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   726
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   727
by (rule ln_unique, simp add: exp_minus)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   728
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   729
lemma ln_div: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x / y) = ln x - ln y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   730
by (rule ln_unique, simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   731
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   732
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   733
by (rule ln_unique, simp add: exp_real_of_nat_mult)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   734
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   735
lemma ln_less_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   736
by (subst exp_less_cancel_iff [symmetric], simp)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   737
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   738
lemma ln_le_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   739
by (simp add: linorder_not_less [symmetric])
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   740
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   741
lemma ln_inj_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   742
by (simp add: order_eq_iff)
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   743
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   744
lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   745
apply (rule exp_le_cancel_iff [THEN iffD1])
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   746
apply (simp add: exp_ge_add_one_self_aux)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   747
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   748
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   749
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
   750
by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   751
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   752
lemma ln_ge_zero [simp]:
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   753
  assumes x: "1 \<le> x" shows "0 \<le> ln x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   754
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   755
  have "0 < x" using x by arith
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   756
  hence "exp 0 \<le> exp (ln x)"
22915
bb8a928a6bfa fix proofs
huffman
parents: 22722
diff changeset
   757
    by (simp add: x)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   758
  thus ?thesis by (simp only: exp_le_cancel_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   759
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   760
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   761
lemma ln_ge_zero_imp_ge_one:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   762
  assumes ln: "0 \<le> ln x" 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   763
      and x:  "0 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   764
  shows "1 \<le> x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   765
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   766
  from ln have "ln 1 \<le> ln x" by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   767
  thus ?thesis by (simp add: x del: ln_one) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   768
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   769
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   770
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   771
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   772
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   773
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   774
by (insert ln_ge_zero_iff [of x], arith)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   775
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   776
lemma ln_gt_zero:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   777
  assumes x: "1 < x" shows "0 < ln x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   778
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   779
  have "0 < x" using x by arith
22915
bb8a928a6bfa fix proofs
huffman
parents: 22722
diff changeset
   780
  hence "exp 0 < exp (ln x)" by (simp add: x)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   781
  thus ?thesis  by (simp only: exp_less_cancel_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   782
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   783
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   784
lemma ln_gt_zero_imp_gt_one:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   785
  assumes ln: "0 < ln x" 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   786
      and x:  "0 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   787
  shows "1 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   788
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   789
  from ln have "ln 1 < ln x" by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   790
  thus ?thesis by (simp add: x del: ln_one) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   791
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   792
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   793
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   794
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   795
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   796
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   797
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   798
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   799
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   800
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   801
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   802
lemma exp_ln_eq: "exp u = x ==> ln x = u"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   803
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   804
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   805
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   806
apply (subgoal_tac "isCont ln (exp (ln x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   807
apply (rule isCont_inverse_function [where f=exp], simp_all)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   808
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   809
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   810
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   811
apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   812
apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   813
apply (simp_all add: abs_if isCont_ln)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   814
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   815
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   816
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   817
subsection {* Sine and Cosine *}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   818
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   819
definition
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   820
  sin :: "real => real" where
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   821
  "sin x = (\<Sum>n. (if even(n) then 0 else
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   822
             (-1 ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   823
 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   824
definition
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   825
  cos :: "real => real" where
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   826
  "cos x = (\<Sum>n. (if even(n) then (-1 ^ (n div 2))/(real (fact n)) 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   827
                            else 0) * x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   828
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   829
lemma summable_sin: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   830
     "summable (%n.  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   831
           (if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   832
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   833
                x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   834
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   835
apply (rule_tac [2] summable_exp)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   836
apply (rule_tac x = 0 in exI)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   837
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   838
done
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   839
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   840
lemma summable_cos: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   841
      "summable (%n.  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   842
           (if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   843
           -1 ^ (n div 2)/(real (fact n)) else 0) * x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   844
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   845
apply (rule_tac [2] summable_exp)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   846
apply (rule_tac x = 0 in exI)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   847
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   848
done
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   849
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   850
lemma lemma_STAR_sin:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   851
     "(if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   852
       else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   853
by (induct "n", auto)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   854
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   855
lemma lemma_STAR_cos:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   856
     "0 < n -->  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   857
      -1 ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   858
by (induct "n", auto)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   859
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   860
lemma lemma_STAR_cos1:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   861
     "0 < n -->  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   862
      (-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   863
by (induct "n", auto)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   864
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   865
lemma lemma_STAR_cos2:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   866
  "(\<Sum>n=1..<n. if even n then -1 ^ (n div 2)/(real (fact n)) *  0 ^ n 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   867
                         else 0) = 0"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   868
apply (induct "n")
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   869
apply (case_tac [2] "n", auto)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   870
done
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   871
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   872
lemma sin_converges: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   873
      "(%n. (if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   874
            else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   875
                 x ^ n) sums sin(x)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   876
unfolding sin_def by (rule summable_sin [THEN summable_sums])
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   877
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   878
lemma cos_converges: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   879
      "(%n. (if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   880
           -1 ^ (n div 2)/(real (fact n))  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   881
           else 0) * x ^ n) sums cos(x)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   882
unfolding cos_def by (rule summable_cos [THEN summable_sums])
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   883
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   884
lemma sin_fdiffs: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   885
      "diffs(%n. if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   886
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n)))  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   887
       = (%n. if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   888
                 -1 ^ (n div 2)/(real (fact n))  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   889
              else 0)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   890
by (auto intro!: ext 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   891
         simp add: diffs_def divide_inverse real_of_nat_def of_nat_mult
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   892
         simp del: mult_Suc of_nat_Suc)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   893
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   894
lemma sin_fdiffs2: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   895
       "diffs(%n. if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   896
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) n  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   897
       = (if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   898
                 -1 ^ (n div 2)/(real (fact n))  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   899
              else 0)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   900
by (simp only: sin_fdiffs)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   901
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   902
lemma cos_fdiffs: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   903
      "diffs(%n. if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   904
                 -1 ^ (n div 2)/(real (fact n)) else 0)  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   905
       = (%n. - (if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   906
           else -1 ^ ((n - Suc 0)div 2)/(real (fact n))))"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   907
by (auto intro!: ext 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   908
         simp add: diffs_def divide_inverse odd_Suc_mult_two_ex real_of_nat_def of_nat_mult
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   909
         simp del: mult_Suc of_nat_Suc)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   910
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   911
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   912
lemma cos_fdiffs2: 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   913
      "diffs(%n. if even n then  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   914
                 -1 ^ (n div 2)/(real (fact n)) else 0) n 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   915
       = - (if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   916
           else -1 ^ ((n - Suc 0)div 2)/(real (fact n)))"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   917
by (simp only: cos_fdiffs)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   918
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   919
text{*Now at last we can get the derivatives of exp, sin and cos*}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   920
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   921
lemma lemma_sin_minus:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   922
     "- sin x = (\<Sum>n. - ((if even n then 0 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   923
                  else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   924
by (auto intro!: sums_unique sums_minus sin_converges)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   925
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   926
lemma lemma_sin_ext:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   927
     "sin = (%x. \<Sum>n. 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   928
                   (if even n then 0  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   929
                       else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   930
                   x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   931
by (auto intro!: ext simp add: sin_def)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   932
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   933
lemma lemma_cos_ext:
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   934
     "cos = (%x. \<Sum>n. 
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   935
                   (if even n then -1 ^ (n div 2)/(real (fact n)) else 0) *
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   936
                   x ^ n)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   937
by (auto intro!: ext simp add: cos_def)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   938
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   939
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   940
apply (simp add: cos_def)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   941
apply (subst lemma_sin_ext)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   942
apply (auto simp add: sin_fdiffs2 [symmetric])
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   943
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   944
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   945
done
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   946
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   947
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   948
apply (subst lemma_cos_ext)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   949
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   950
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   951
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus)
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   952
done
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   953
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   954
lemma isCont_sin [simp]: "isCont sin x"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   955
by (rule DERIV_sin [THEN DERIV_isCont])
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   956
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   957
lemma isCont_cos [simp]: "isCont cos x"
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   958
by (rule DERIV_cos [THEN DERIV_isCont])
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   959
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   960
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   961
subsection {* Properties of Sine and Cosine *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   962
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   963
lemma sin_zero [simp]: "sin 0 = 0"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   964
unfolding sin_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   965
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   966
lemma cos_zero [simp]: "cos 0 = 1"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   967
unfolding cos_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   968
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   969
lemma DERIV_sin_sin_mult [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   970
     "DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   971
by (rule DERIV_mult, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   972
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   973
lemma DERIV_sin_sin_mult2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   974
     "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   975
apply (cut_tac x = x in DERIV_sin_sin_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   976
apply (auto simp add: mult_assoc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   977
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   978
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   979
lemma DERIV_sin_realpow2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   980
     "DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   981
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   982
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   983
lemma DERIV_sin_realpow2a [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   984
     "DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   985
by (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   986
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   987
lemma DERIV_cos_cos_mult [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   988
     "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   989
by (rule DERIV_mult, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   990
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   991
lemma DERIV_cos_cos_mult2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   992
     "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   993
apply (cut_tac x = x in DERIV_cos_cos_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   994
apply (auto simp add: mult_ac)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   995
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   996
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   997
lemma DERIV_cos_realpow2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   998
     "DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   999
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1000
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1001
lemma DERIV_cos_realpow2a [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1002
     "DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1003
by (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1004
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1005
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1006
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1007
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1008
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1009
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1010
apply (rule DERIV_cos_realpow2a, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1011
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1012
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1013
(* most useful *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1014
lemma DERIV_cos_cos_mult3 [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1015
     "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1016
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1017
apply (rule DERIV_cos_cos_mult2, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1018
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1019
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1020
lemma DERIV_sin_circle_all: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1021
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :>  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1022
             (2*cos(x)*sin(x) - 2*cos(x)*sin(x))"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1023
apply (simp only: diff_minus, safe)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1024
apply (rule DERIV_add) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1025
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1026
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1027
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1028
lemma DERIV_sin_circle_all_zero [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1029
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1030
by (cut_tac DERIV_sin_circle_all, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1031
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1032
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1033
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1034
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1035
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1036
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1037
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1"
23286
huffman
parents: 23278
diff changeset
  1038
apply (subst add_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1039
apply (simp (no_asm) del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1040
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1041
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1042
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1043
apply (cut_tac x = x in sin_cos_squared_add2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1044
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1045
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1046
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1047
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1048
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1049
apply (simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1050
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1051
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1052
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1053
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1054
apply (simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1055
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1056
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  1057
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
23097
f4779adcd1a2 simplify some proofs
huffman
parents: 23082
diff changeset
  1058
by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1059
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1060
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1061
apply (insert abs_sin_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1062
apply (simp add: abs_le_iff del: abs_sin_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1063
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1064
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1065
lemma sin_le_one [simp]: "sin x \<le> 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1066
apply (insert abs_sin_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1067
apply (simp add: abs_le_iff del: abs_sin_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1068
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1069
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  1070
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
23097
f4779adcd1a2 simplify some proofs
huffman
parents: 23082
diff changeset
  1071
by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1072
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1073
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1074
apply (insert abs_cos_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1075
apply (simp add: abs_le_iff del: abs_cos_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1076
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1078
lemma cos_le_one [simp]: "cos x \<le> 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1079
apply (insert abs_cos_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1080
apply (simp add: abs_le_iff del: abs_cos_le_one)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1081
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1082
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1083
lemma DERIV_fun_pow: "DERIV g x :> m ==>  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1084
      DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1085
apply (rule lemma_DERIV_subst)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1086
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1087
apply (rule DERIV_pow, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1088
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1089
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1090
lemma DERIV_fun_exp:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1091
     "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1092
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1093
apply (rule_tac f = exp in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1094
apply (rule DERIV_exp, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1095
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1096
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1097
lemma DERIV_fun_sin:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1098
     "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1099
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1100
apply (rule_tac f = sin in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1101
apply (rule DERIV_sin, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1102
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1103
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1104
lemma DERIV_fun_cos:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1105
     "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1106
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1107
apply (rule_tac f = cos in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1108
apply (rule DERIV_cos, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1109
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1110
23069
cdfff0241c12 rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents: 23066
diff changeset
  1111
lemmas DERIV_intros = DERIV_ident DERIV_const DERIV_cos DERIV_cmult 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1112
                    DERIV_sin  DERIV_exp  DERIV_inverse DERIV_pow 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1113
                    DERIV_add  DERIV_diff  DERIV_mult  DERIV_minus 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1114
                    DERIV_inverse_fun DERIV_quotient DERIV_fun_pow 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1115
                    DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1116
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1117
(* lemma *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1118
lemma lemma_DERIV_sin_cos_add:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1119
     "\<forall>x.  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1120
         DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1121
               (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1122
apply (safe, rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1123
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1124
  --{*replaces the old @{text DERIV_tac}*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1125
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1126
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1127
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1128
lemma sin_cos_add [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1129
     "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1130
      (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1131
apply (cut_tac y = 0 and x = x and y7 = y 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1132
       in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1133
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1134
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1135
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1136
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1137
apply (cut_tac x = x and y = y in sin_cos_add)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1138
apply (simp del: sin_cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1139
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1140
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1141
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1142
apply (cut_tac x = x and y = y in sin_cos_add)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1143
apply (simp del: sin_cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1144
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1145
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1146
lemma lemma_DERIV_sin_cos_minus:
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1147
    "\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1148
apply (safe, rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1149
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1150
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1151
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1152
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1153
lemma sin_cos_minus: 
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1154
    "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0"
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1155
apply (cut_tac y = 0 and x = x 
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1156
       in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all])
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1157
apply simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1158
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1159
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1160
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1161
  using sin_cos_minus [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1162
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1163
lemma cos_minus [simp]: "cos (-x) = cos(x)"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1164
  using sin_cos_minus [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1165
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1166
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1167
by (simp add: diff_minus sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1168
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1169
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1170
by (simp add: sin_diff mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1171
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1172
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1173
by (simp add: diff_minus cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1174
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1175
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1176
by (simp add: cos_diff mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1177
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1178
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1179
  using sin_add [where x=x and y=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1180
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1181
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1182
  using cos_add [where x=x and y=x]
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1183
  by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1184
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1185
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1186
subsection {* The Constant Pi *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1187
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1188
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1189
  pi :: "real" where
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1190
  "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1191
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1192
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1193
   hence define pi.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1194
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1195
lemma sin_paired:
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1196
     "(%n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1197
      sums  sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1198
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1199
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1200
            (if even k then 0
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1201
             else -1 ^ ((k - Suc 0) div 2) / real (fact k)) *
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1202
            x ^ k) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1203
	sums sin x"
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1204
    unfolding sin_def
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1205
    by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1206
  thus ?thesis by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1207
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1208
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1209
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1210
apply (subgoal_tac 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1211
       "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1212
              -1 ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) 
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1213
     sums (\<Sum>n. -1 ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1214
 prefer 2
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1215
 apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1216
apply (rotate_tac 2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1217
apply (drule sin_paired [THEN sums_unique, THEN ssubst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1218
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1219
apply (frule sums_unique)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1220
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1221
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1222
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1223
apply (erule sums_summable)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1224
apply (case_tac "m=0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1225
apply (simp (no_asm_simp))
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1226
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1227
apply (simp only: mult_less_cancel_left, simp)  
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1228
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1229
apply (subgoal_tac "x*x < 2*3", simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1230
apply (rule mult_strict_mono)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1231
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1232
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1233
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1234
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1235
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1236
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1237
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1238
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1239
apply (subst real_of_nat_mult)
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1240
apply (simp (no_asm) add: divide_inverse del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1241
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1242
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1243
apply (auto simp add: mult_assoc simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1244
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1245
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1246
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1247
apply (erule ssubst)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1248
apply (auto simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1249
apply (subgoal_tac "0 < x ^ (4 * m) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1250
 prefer 2 apply (simp only: zero_less_power) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1251
apply (simp (no_asm_simp) add: mult_less_cancel_left)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1252
apply (rule mult_strict_mono)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1253
apply (simp_all (no_asm_simp))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1254
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1255
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1256
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1257
by (auto intro: sin_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1258
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1259
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1260
apply (cut_tac x = x in sin_gt_zero1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1261
apply (auto simp add: cos_squared_eq cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1262
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1263
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1264
lemma cos_paired:
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1265
     "(%n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1266
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1267
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1268
            (if even k then -1 ^ (k div 2) / real (fact k) else 0) *
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1269
            x ^ k) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1270
        sums cos x"
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1271
    unfolding cos_def
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1272
    by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1273
  thus ?thesis by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1274
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1275
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1276
lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1277
by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1278
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1279
lemma cos_two_less_zero [simp]: "cos (2) < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1280
apply (cut_tac x = 2 in cos_paired)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1281
apply (drule sums_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1282
apply (rule neg_less_iff_less [THEN iffD1]) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1283
apply (frule sums_unique, auto)
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1284
apply (rule_tac y =
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1285
 "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1286
       in order_less_trans)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1287
apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc)
15561
045a07ac35a7 another reorganization of setsums and intervals
nipkow
parents: 15546
diff changeset
  1288
apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1289
apply (rule sumr_pos_lt_pair)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1290
apply (erule sums_summable, safe)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1291
apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] 
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1292
            del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1293
apply (rule real_mult_inverse_cancel2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1294
apply (rule real_of_nat_fact_gt_zero)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1295
apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1296
apply (subst fact_lemma) 
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1297
apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1298
apply (simp only: real_of_nat_mult)
23007
e025695d9b0e use mult_strict_mono instead of real_mult_less_mono
huffman
parents: 22998
diff changeset
  1299
apply (rule mult_strict_mono, force)
27483
7c58324cd418 use real_of_nat_ge_zero instead of real_of_nat_fact_ge_zero
huffman
parents: 25875
diff changeset
  1300
  apply (rule_tac [3] real_of_nat_ge_zero)
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1301
 prefer 2 apply force
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1302
apply (rule real_of_nat_less_iff [THEN iffD2])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1303
apply (rule fact_less_mono, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1304
done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1305
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1306
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1307
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1308
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1309
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1310
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1311
apply (rule_tac [2] IVT2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1312
apply (auto intro: DERIV_isCont DERIV_cos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1313
apply (cut_tac x = xa and y = y in linorder_less_linear)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1314
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1315
apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1316
apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1317
apply (drule_tac f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1318
apply (drule_tac [5] f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1319
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1320
apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1321
apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1322
apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1323
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1324
    
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1325
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1326
by (simp add: pi_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1327
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1328
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1329
by (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1330
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1331
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1332
apply (rule order_le_neq_trans)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1333
apply (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1334
apply (rule notI, drule arg_cong [where f=cos], simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1335
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1336
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1337
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1338
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1339
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1340
lemma pi_half_less_two [simp]: "pi / 2 < 2"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1341
apply (rule order_le_neq_trans)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1342
apply (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1343
apply (rule notI, drule arg_cong [where f=cos], simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1344
done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1345
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1346
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1347
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1348
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1349
lemma pi_gt_zero [simp]: "0 < pi"
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1350
by (insert pi_half_gt_zero, simp)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1351
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1352
lemma pi_ge_zero [simp]: "0 \<le> pi"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1353
by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1354
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1355
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1356
by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1357
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1358
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1359
by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1360
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1361
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1362
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1363
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1364
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1365
apply (cut_tac x = "pi/2" in sin_cos_squared_add2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1366
apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1367
apply (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1368
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1369
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1370
lemma cos_pi [simp]: "cos pi = -1"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1371
by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1372
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1373
lemma sin_pi [simp]: "sin pi = 0"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1374
by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1375
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1376
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1377
by (simp add: diff_minus cos_add)
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1378
declare sin_cos_eq [symmetric, simp]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1379
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1380
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1381
by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1382
declare minus_sin_cos_eq [symmetric, simp]
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1383
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1384
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1385
by (simp add: diff_minus sin_add)
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1386
declare cos_sin_eq [symmetric, simp]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1387
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1388
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1389
by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1390
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1391
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1392
by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1393
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1394
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1395
by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1396
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1397
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1398
by (simp add: sin_add cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1399
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1400
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1401
by (simp add: cos_add cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1402
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1403
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
  1404
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1405
apply (auto simp add: real_of_nat_Suc left_distrib)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1406
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1407
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1408
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1409
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1410
  have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute)
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1411
  also have "... = -1 ^ n" by (rule cos_npi) 
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1412
  finally show ?thesis .
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1413
qed
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1414
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1415
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
  1416
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1417
apply (auto simp add: real_of_nat_Suc left_distrib)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1418
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1419
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1420
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1421
by (simp add: mult_commute [of pi]) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1422
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1423
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1424
by (simp add: cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1425
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1426
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1427
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1428
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1429
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1430
apply (rule sin_gt_zero, assumption)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1431
apply (rule order_less_trans, assumption)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1432
apply (rule pi_half_less_two)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1433
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1434
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1435
lemma sin_less_zero: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1436
  assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1437
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1438
  have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1439
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1440
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1441
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1442
lemma pi_less_4: "pi < 4"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1443
by (cut_tac pi_half_less_two, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1444
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1445
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1446
apply (cut_tac pi_less_4)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1447
apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1448
apply (cut_tac cos_is_zero, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1449
apply (rename_tac y z)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1450
apply (drule_tac x = y in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1451
apply (drule_tac x = "pi/2" in spec, simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1452
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1453
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1454
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1455
apply (rule_tac x = x and y = 0 in linorder_cases)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1456
apply (rule cos_minus [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1457
apply (rule cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1458
apply (auto intro: cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1459
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1460
 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1461
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1462
apply (auto simp add: order_le_less cos_gt_zero_pi)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1463
apply (subgoal_tac "x = pi/2", auto) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1464
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1465
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1466
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1467
apply (subst sin_cos_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1468
apply (rotate_tac 1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1469
apply (drule real_sum_of_halves [THEN ssubst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1470
apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1471
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1472
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1473
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1474
by (auto simp add: order_le_less sin_gt_zero_pi)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1475
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1476
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1477
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1478
apply (rule_tac [2] IVT2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1479
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1480
apply (cut_tac x = xa and y = y in linorder_less_linear)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1481
apply (rule ccontr, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1482
apply (drule_tac f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1483
apply (drule_tac [5] f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1484
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1485
            dest!: DERIV_cos [THEN DERIV_unique] 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1486
            simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1487
apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1488
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1489
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1490
lemma sin_total:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1491
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1492
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1493
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
18585
5d379fe2eb74 replaced swap by contrapos_np;
wenzelm
parents: 17318
diff changeset
  1494
apply (erule contrapos_np)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1495
apply (simp del: minus_sin_cos_eq [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1496
apply (cut_tac y="-y" in cos_total, simp) apply simp 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1497
apply (erule ex1E)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1498
apply (rule_tac a = "x - (pi/2)" in ex1I)
23286
huffman
parents: 23278
diff changeset
  1499
apply (simp (no_asm) add: add_assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1500
apply (rotate_tac 3)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1501
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1502
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1503
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1504
lemma reals_Archimedean4:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1505
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1506
apply (auto dest!: reals_Archimedean3)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1507
apply (drule_tac x = x in spec, clarify) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1508
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1509
 prefer 2 apply (erule LeastI) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1510
apply (case_tac "LEAST m::nat. x < real m * y", simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1511
apply (subgoal_tac "~ x < real nat * y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1512
 prefer 2 apply (rule not_less_Least, simp, force)  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1513
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1514
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1515
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1516
   now causes some unwanted re-arrangements of literals!   *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1517
lemma cos_zero_lemma:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1518
     "[| 0 \<le> x; cos x = 0 |] ==>  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1519
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1520
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1521
apply (subgoal_tac "0 \<le> x - real n * pi & 
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1522
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1523
apply (auto simp add: compare_rls) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1524
  prefer 3 apply (simp add: cos_diff) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1525
 prefer 2 apply (simp add: real_of_nat_Suc left_distrib) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1526
apply (simp add: cos_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1527
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1528
apply (rule_tac [2] cos_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1529
apply (drule_tac x = "x - real n * pi" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1530
apply (drule_tac x = "pi/2" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1531
apply (simp add: cos_diff)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1532
apply (rule_tac x = "Suc (2 * n)" in exI)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1533
apply (simp add: real_of_nat_Suc left_distrib, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1534
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1535
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1536
lemma sin_zero_lemma:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1537
     "[| 0 \<le> x; sin x = 0 |] ==>  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1538
      \<exists>n::nat. even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1539
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1540
 apply (clarify, rule_tac x = "n - 1" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1541
 apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1542
apply (rule cos_zero_lemma)
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1543
apply (simp_all add: add_increasing)  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1544
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1545
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1546
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1547
lemma cos_zero_iff:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1548
     "(cos x = 0) =  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1549
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |    
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1550
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1551
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1552
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1553
apply (drule cos_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1554
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1555
apply (force simp add: minus_equation_iff [of x]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1556
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1557
apply (auto simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1558
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1559
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1560
(* ditto: but to a lesser extent *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1561
lemma sin_zero_iff:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1562
     "(sin x = 0) =  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1563
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |    
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1564
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1565
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1566
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1567
apply (drule sin_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1568
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1569
apply (force simp add: minus_equation_iff [of x]) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1570
apply (auto simp add: even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1571
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1572
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1573
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1574
subsection {* Tangent *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1575
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1576
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1577
  tan :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1578
  "tan x = (sin x)/(cos x)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1579
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1580
lemma tan_zero [simp]: "tan 0 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1581
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1582
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1583
lemma tan_pi [simp]: "tan pi = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1584
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1585
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1586
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1587
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1588
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1589
lemma tan_minus [simp]: "tan (-x) = - tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1590
by (simp add: tan_def minus_mult_left)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1591
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1592
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1593
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1594
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1595
lemma lemma_tan_add1: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1596
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1597
        ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1598
apply (simp add: tan_def divide_inverse)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1599
apply (auto simp del: inverse_mult_distrib 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1600
            simp add: inverse_mult_distrib [symmetric] mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1601
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1602
apply (auto simp del: inverse_mult_distrib 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1603
            simp add: mult_assoc left_diff_distrib cos_add)
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1604
done  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1605
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1606
lemma add_tan_eq: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1607
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1608
       ==> tan x + tan y = sin(x + y)/(cos x * cos y)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1609
apply (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1610
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1611
apply (auto simp add: mult_assoc left_distrib)
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1612
apply (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1613
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1614
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1615
lemma tan_add:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1616
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1617
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1618
apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1619
apply (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1620
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1621
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1622
lemma tan_double:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1623
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1624
      ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1625
apply (insert tan_add [of x x]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1626
apply (simp add: mult_2 [symmetric])  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1627
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1628
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1629
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1630
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1631
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1632
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1633
lemma tan_less_zero: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1634
  assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1635
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1636
  have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1637
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1638
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1639
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1640
lemma lemma_DERIV_tan:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1641
     "cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1642
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1643
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
15079
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 15077
diff changeset
  1644
apply (auto simp add: divide_inverse numeral_2_eq_2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1645
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1646
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1647
lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1648
by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1649
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1650
lemma isCont_tan [simp]: "cos x \<noteq> 0 ==> isCont tan x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1651
by (rule DERIV_tan [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1652
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1653
lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1654
apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1")
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1655
apply (simp add: divide_inverse [symmetric])
22613
2f119f54d150 remove redundant lemmas
huffman
parents: 21404
diff changeset
  1656
apply (rule LIM_mult)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1657
apply (rule_tac [2] inverse_1 [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1658
apply (rule_tac [2] LIM_inverse)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1659
apply (simp_all add: divide_inverse [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1660
apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1661
apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1662
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1663
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1664
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1665
apply (cut_tac LIM_cos_div_sin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1666
apply (simp only: LIM_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1667
apply (drule_tac x = "inverse y" in spec, safe, force)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1668
apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1669
apply (rule_tac x = "(pi/2) - e" in exI)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1670
apply (simp (no_asm_simp))
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1671
apply (drule_tac x = "(pi/2) - e" in spec)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1672
apply (auto simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1673
apply (rule inverse_less_iff_less [THEN iffD1])
15079
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 15077
diff changeset
  1674
apply (auto simp add: divide_inverse)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1675
apply (rule real_mult_order) 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1676
apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1677
apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1678
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1679
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1680
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1681
apply (frule order_le_imp_less_or_eq, safe)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1682
 prefer 2 apply force
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1683
apply (drule lemma_tan_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1684
apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1685
apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1686
apply (drule_tac y = xa in order_le_imp_less_or_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1687
apply (auto dest: cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1688
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1689
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1690
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1691
apply (cut_tac linorder_linear [of 0 y], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1692
apply (drule tan_total_pos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1693
apply (cut_tac [2] y="-y" in tan_total_pos, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1694
apply (rule_tac [3] x = "-x" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1695
apply (auto intro!: exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1696
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1697
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1698
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1699
apply (cut_tac y = y in lemma_tan_total1, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1700
apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1701
apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1702
apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1703
apply (rule_tac [4] Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1704
apply (rule_tac [2] Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1705
apply (auto intro!: DERIV_tan DERIV_isCont exI 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1706
            simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1707
txt{*Now, simulate TRYALL*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1708
apply (rule_tac [!] DERIV_tan asm_rl)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1709
apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1710
	    simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym]) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1711
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1712
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1713
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1714
subsection {* Inverse Trigonometric Functions *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1715
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1716
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1717
  arcsin :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1718
  "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1719
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1720
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1721
  arccos :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1722
  "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1723
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1724
definition     
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1725
  arctan :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1726
  "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1727
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1728
lemma arcsin:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1729
     "[| -1 \<le> y; y \<le> 1 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1730
      ==> -(pi/2) \<le> arcsin y &  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1731
           arcsin y \<le> pi/2 & sin(arcsin y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1732
unfolding arcsin_def by (rule theI' [OF sin_total])
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1733
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1734
lemma arcsin_pi:
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1735
     "[| -1 \<le> y; y \<le> 1 |]  
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1736
      ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1737
apply (drule (1) arcsin)
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1738
apply (force intro: order_trans)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1739
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1740
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1741
lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1742
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1743
      
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1744
lemma arcsin_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1745
     "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1746
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1747
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1748
lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1749
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1750
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1751
lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1752
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1753
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1754
lemma arcsin_lt_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1755
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1756
apply (frule order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1757
apply (frule_tac y = y in order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1758
apply (frule arcsin_bounded)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1759
apply (safe, simp)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1760
apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1761
apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1762
apply (drule_tac [!] f = sin in arg_cong, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1763
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1764
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1765
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1766
apply (unfold arcsin_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1767
apply (rule the1_equality)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1768
apply (rule sin_total, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1769
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1770
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1771
lemma arccos:
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1772
     "[| -1 \<le> y; y \<le> 1 |]  
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1773
      ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1774
unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1775
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1776
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1777
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1778
      
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1779
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1780
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1781
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1782
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1783
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1784
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1785
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1786
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1787
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1788
lemma arccos_lt_bounded:
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1789
     "[| -1 < y; y < 1 |]  
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1790
      ==> 0 < arccos y & arccos y < pi"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1791
apply (frule order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1792
apply (frule_tac y = y in order_less_imp_le)
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1793
apply (frule arccos_bounded, auto)
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1794
apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1795
apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1796
apply (drule_tac [!] f = cos in arg_cong, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1797
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1798
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1799
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1800
apply (simp add: arccos_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1801
apply (auto intro!: the1_equality cos_total)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1802
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1803
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1804
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1805
apply (simp add: arccos_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1806
apply (auto intro!: the1_equality cos_total)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1807
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1808
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1809
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1810
apply (subgoal_tac "x\<twosuperior> \<le> 1")
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1811
apply (rule power2_eq_imp_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1812
apply (simp add: cos_squared_eq)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1813
apply (rule cos_ge_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1814
apply (erule (1) arcsin_lbound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1815
apply (erule (1) arcsin_ubound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1816
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1817
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1818
apply (rule power_mono, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1819
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1820
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1821
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1822
apply (subgoal_tac "x\<twosuperior> \<le> 1")
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1823
apply (rule power2_eq_imp_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1824
apply (simp add: sin_squared_eq)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1825
apply (rule sin_ge_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1826
apply (erule (1) arccos_lbound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1827
apply (erule (1) arccos_ubound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1828
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1829
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1830
apply (rule power_mono, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1831
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1832
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1833
lemma arctan [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1834
     "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1835
unfolding arctan_def by (rule theI' [OF tan_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1836
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1837
lemma tan_arctan: "tan(arctan y) = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1838
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1839
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1840
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1841
by (auto simp only: arctan)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1842
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1843
lemma arctan_lbound: "- (pi/2) < arctan y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1844
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1845
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1846
lemma arctan_ubound: "arctan y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1847
by (auto simp only: arctan)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1848
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1849
lemma arctan_tan: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1850
      "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1851
apply (unfold arctan_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1852
apply (rule the1_equality)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1853
apply (rule tan_total, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1854
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1855
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1856
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1857
by (insert arctan_tan [of 0], simp)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1858
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1859
lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1860
apply (auto simp add: cos_zero_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1861
apply (case_tac "n")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1862
apply (case_tac [3] "n")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1863
apply (cut_tac [2] y = x in arctan_ubound)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1864
apply (cut_tac [4] y = x in arctan_lbound) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1865
apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1866
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1867
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1868
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1869
apply (rule power_inverse [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1870
apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])
22960
114cf1906681 remove redundant lemmas
huffman
parents: 22956
diff changeset
  1871
apply (auto dest: field_power_not_zero
20516
2d2e1d323a05 realpow_divide -> power_divide
huffman
parents: 20432
diff changeset
  1872
        simp add: power_mult_distrib left_distrib power_divide tan_def 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1873
                  mult_assoc power_inverse [symmetric] 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1874
        simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1875
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1876
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1877
lemma isCont_inverse_function2:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1878
  fixes f g :: "real \<Rightarrow> real" shows
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1879
  "\<lbrakk>a < x; x < b;
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1880
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1881
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1882
   \<Longrightarrow> isCont g (f x)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1883
apply (rule isCont_inverse_function
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1884
       [where f=f and d="min (x - a) (b - x)"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1885
apply (simp_all add: abs_le_iff)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1886
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1887
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1888
lemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1889
apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1890
apply (rule isCont_inverse_function2 [where f=sin])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1891
apply (erule (1) arcsin_lt_bounded [THEN conjunct1])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1892
apply (erule (1) arcsin_lt_bounded [THEN conjunct2])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1893
apply (fast intro: arcsin_sin, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1894
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1895
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1896
lemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1897
apply (subgoal_tac "isCont arccos (cos (arccos x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1898
apply (rule isCont_inverse_function2 [where f=cos])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1899
apply (erule (1) arccos_lt_bounded [THEN conjunct1])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1900
apply (erule (1) arccos_lt_bounded [THEN conjunct2])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1901
apply (fast intro: arccos_cos, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1902
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1903
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1904
lemma isCont_arctan: "isCont arctan x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1905
apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1906
apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1907
apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1908
apply (erule (1) isCont_inverse_function2 [where f=tan])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1909
apply (clarify, rule arctan_tan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1910
apply (erule (1) order_less_le_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1911
apply (erule (1) order_le_less_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1912
apply (clarify, rule isCont_tan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1913
apply (rule less_imp_neq [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1914
apply (rule cos_gt_zero_pi)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1915
apply (erule (1) order_less_le_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1916
apply (erule (1) order_le_less_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1917
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1918
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1919
lemma DERIV_arcsin:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1920
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1921
apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1922
apply (rule lemma_DERIV_subst [OF DERIV_sin])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1923
apply (simp add: cos_arcsin)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1924
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1925
apply (rule power_strict_mono, simp, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1926
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1927
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1928
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1929
apply (erule (1) isCont_arcsin)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1930
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1931
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1932
lemma DERIV_arccos:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1933
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1934
apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1935
apply (rule lemma_DERIV_subst [OF DERIV_cos])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1936
apply (simp add: sin_arccos)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1937
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1938
apply (rule power_strict_mono, simp, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1939
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1940
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1941
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1942
apply (erule (1) isCont_arccos)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1943
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1944
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1945
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1946
apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1947
apply (rule lemma_DERIV_subst [OF DERIV_tan])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1948
apply (rule cos_arctan_not_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1949
apply (simp add: power_inverse tan_sec [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1950
apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1951
apply (simp add: add_pos_nonneg)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1952
apply (simp, simp, simp, rule isCont_arctan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1953
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1954
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1955
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1956
subsection {* More Theorems about Sin and Cos *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1957
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1958
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1959
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1960
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1961
  have nonneg: "0 \<le> ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1962
    by (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1963
  have "0 = cos (pi / 4 + pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1964
    by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1965
  also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1966
    by (simp only: cos_add power2_eq_square)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1967
  also have "\<dots> = 2 * ?c\<twosuperior> - 1"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1968
    by (simp add: sin_squared_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1969
  finally have "?c\<twosuperior> = (sqrt 2 / 2)\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1970
    by (simp add: power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1971
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1972
    using nonneg by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1973
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1974
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1975
lemma cos_30: "cos (pi / 6) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1976
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1977
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1978
  have pos_c: "0 < ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1979
    by (rule cos_gt_zero, simp, simp)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1980
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  1981
    by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1982
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1983
    by (simp only: cos_add sin_add)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1984
  also have "\<dots> = ?c * (?c\<twosuperior> - 3 * ?s\<twosuperior>)"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
  1985
    by (simp add: ring_simps power2_eq_square)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1986
  finally have "?c\<twosuperior> = (sqrt 3 / 2)\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1987
    using pos_c by (simp add: sin_squared_eq power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1988
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1989
    using pos_c [THEN order_less_imp_le]
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1990
    by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1991
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1992
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1993
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1994
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1995
  have "sin (pi / 4) = cos (pi / 2 - pi / 4)" by (rule sin_cos_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1996
  also have "pi / 2 - pi / 4 = pi / 4" by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1997
  also have "cos (pi / 4) = sqrt 2 / 2" by (rule cos_45)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1998
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1999
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2000
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2001
lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2002
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2003
  have "sin (pi / 3) = cos (pi / 2 - pi / 3)" by (rule sin_cos_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2004
  also have "pi / 2 - pi / 3 = pi / 6" by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2005
  also have "cos (pi / 6) = sqrt 3 / 2" by (rule cos_30)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2006
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2007
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2008
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2009
lemma cos_60: "cos (pi / 3) = 1 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2010
apply (rule power2_eq_imp_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2011
apply (simp add: cos_squared_eq sin_60 power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2012
apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2013
done
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2014
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2015
lemma sin_30: "sin (pi / 6) = 1 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2016
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2017
  have "sin (pi / 6) = cos (pi / 2 - pi / 6)" by (rule sin_cos_eq)
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2018
  also have "pi / 2 - pi / 6 = pi / 3" by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2019
  also have "cos (pi / 3) = 1 / 2" by (rule cos_60)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2020
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2021
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2022
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2023
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2024
unfolding tan_def by (simp add: sin_30 cos_30)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2025
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2026
lemma tan_45: "tan (pi / 4) = 1"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2027
unfolding tan_def by (simp add: sin_45 cos_45)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2028
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2029
lemma tan_60: "tan (pi / 3) = sqrt 3"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2030
unfolding tan_def by (simp add: sin_60 cos_60)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2031
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  2032
text{*NEEDED??*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2033
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2034
     "sin (x + 1 / 2 * real (Suc m) * pi) =  
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2035
      cos (x + 1 / 2 * real  (m) * pi)"
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2036
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2037
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  2038
text{*NEEDED??*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2039
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2040
     "sin (x + real (Suc m) * pi / 2) =  
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2041
      cos (x + real (m) * pi / 2)"
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2042
by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2043
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2044
lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2045
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2046
apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2047
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2048
apply (simp (no_asm))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2049
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2050
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2051
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2052
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2053
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2054
    by (auto simp add: right_distrib sin_add left_distrib mult_ac)
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2055
  thus ?thesis
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2056
    by (simp add: real_of_nat_Suc left_distrib add_divide_distrib 
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2057
                  mult_commute [of pi])
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2058
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2059
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2060
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2061
by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2062
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2063
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2064
apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2065
apply (subst cos_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2066
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2067
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2068
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2069
by (auto simp add: mult_assoc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2070
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2071
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2072
apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2073
apply (subst sin_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2074
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2075
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2076
(*NEEDED??*)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2077
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2078
     "cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2079
apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2080
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2081
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2082
(*NEEDED??*)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2083
lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2084
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2085
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2086
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2087
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2088
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2089
lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2090
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2091
apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2092
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2093
apply (simp (no_asm))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2094
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2095
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2096
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  2097
by (auto simp add: sin_zero_iff even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2098
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2099
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2100
by (cut_tac x = x in sin_cos_squared_add3, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2101
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2102
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2103
subsection {* Existence of Polar Coordinates *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2104
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2105
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2106
apply (rule power2_le_imp_le [OF _ zero_le_one])
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2107
apply (simp add: abs_divide power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2108
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2109
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2110
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2111
by (simp add: abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2112
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2113
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2114
by (simp add: sin_arccos abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2115
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2116
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  2117
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2118
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2119
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2120
lemma polar_ex1:
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2121
     "0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2122
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2123
apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2124
apply (simp add: cos_arccos_lemma1)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2125
apply (simp add: sin_arccos_lemma1)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2126
apply (simp add: power_divide)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2127
apply (simp add: real_sqrt_mult [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2128
apply (simp add: right_diff_distrib)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2129
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2130
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2131
lemma polar_ex2:
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2132
     "y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2133
apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2134
apply (rule_tac x = r in exI)
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2135
apply (rule_tac x = "-a" in exI, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2136
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2137
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2138
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2139
apply (rule_tac x=0 and y=y in linorder_cases)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2140
apply (erule polar_ex1)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2141
apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2142
apply (erule polar_ex2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2143
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2144
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
  2145
end