tuned sources and proofs
authorwenzelm
Thu, 08 Dec 2005 12:50:04 +0100
changeset 18369 694ea14ab4f2
parent 18368 2f9b2539c5bb
child 18370 db5900e7c6c9
tuned sources and proofs
src/HOL/NumberTheory/BijectionRel.thy
src/HOL/NumberTheory/Euler.thy
src/HOL/NumberTheory/EulerFermat.thy
src/HOL/NumberTheory/EvenOdd.thy
src/HOL/NumberTheory/Finite2.thy
src/HOL/NumberTheory/Gauss.thy
src/HOL/NumberTheory/Int2.thy
src/HOL/NumberTheory/IntFact.thy
src/HOL/NumberTheory/IntPrimes.thy
src/HOL/NumberTheory/Quadratic_Reciprocity.thy
src/HOL/NumberTheory/Residues.thy
src/HOL/NumberTheory/WilsonRuss.thy
--- a/src/HOL/NumberTheory/BijectionRel.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/BijectionRel.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -63,19 +63,16 @@
   done
 
 lemma aux_induct:
-  "finite F ==> F \<subseteq> A ==> P {} ==>
-    (!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F))
-  ==> P F"
-proof -
-  case rule_context
-  assume major: "finite F"
+  assumes major: "finite F"
     and subs: "F \<subseteq> A"
-  show ?thesis
-    apply (rule subs [THEN rev_mp])
-    apply (rule major [THEN finite_induct])
-     apply (blast intro: rule_context)+
-    done
-qed
+    and cases: "P {}"
+      "!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
+  shows "P F"
+  using major subs
+  apply (induct set: Finites)
+   apply (blast intro: cases)+
+  done
+
 
 lemma inj_func_bijR_aux1:
     "A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"
--- a/src/HOL/NumberTheory/Euler.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Euler.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -122,7 +122,7 @@
 
 lemma card_setsum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set); 
     \<forall>X \<in> S. card X = n |] ==> setsum card S = setsum (%x. n) S"
-by (induct set: Finites, auto)
+  by (induct set: Finites) auto
 
 lemma SetS_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> 
                   int(card(SetS a p)) = (p - 1) div 2"
@@ -172,9 +172,9 @@
 lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
   by auto
 
-lemma SRStar_d22set_prop [rule_format]: "2 < p --> (SRStar p) = {1} \<union> 
-    (d22set (p - 1))"
-  apply (induct p rule: d22set.induct, auto)
+lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
+  apply (induct p rule: d22set.induct)
+  apply auto
   apply (simp add: SRStar_def d22set.simps)
   apply (simp add: SRStar_def d22set.simps, clarify)
   apply (frule aux1)
@@ -183,7 +183,7 @@
   apply (simp add: d22set.simps)
   apply (frule d22set_le)
   apply (frule d22set_g_1, auto)
-done
+  done
 
 lemma Union_SetS_setprod_prop1: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
                                  [\<Prod>(Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
@@ -195,8 +195,8 @@
                        MultInvPair_prop1c setprod_Union_disjoint)
   also have "[setprod (setprod (%x. x)) (SetS a p) = 
       setprod (%x. a) (SetS a p)] (mod p)"
-    apply (rule setprod_same_function_zcong)
-    by (auto simp add: prems SetS_setprod_prop SetS_finite)
+    by (rule setprod_same_function_zcong)
+      (auto simp add: prems SetS_setprod_prop SetS_finite)
   also (zcong_trans) have "[setprod (%x. a) (SetS a p) = 
       a^(card (SetS a p))] (mod p)"
     by (auto simp add: prems SetS_finite setprod_constant)
@@ -205,7 +205,7 @@
     apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
     apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
     apply (auto simp add: prems SetS_card)
-  done
+    done
 qed
 
 lemma Union_SetS_setprod_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
@@ -218,15 +218,15 @@
     by (auto simp add: prems SRStar_d22set_prop)
   also have "... = zfact(p - 1)"
   proof -
-     have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
+    have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
       apply (insert prems, auto)
       apply (drule d22set_g_1)
       apply (auto simp add: d22set_fin)
-     done
-     then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
-       by auto
-     then show ?thesis
-       by (auto simp add: d22set_prod_zfact)
+      done
+    then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
+      by auto
+    then show ?thesis
+      by (auto simp add: d22set_prod_zfact)
   qed
   finally show ?thesis .
 qed
@@ -235,7 +235,7 @@
                    [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
   apply (frule Union_SetS_setprod_prop1) 
   apply (auto simp add: Union_SetS_setprod_prop2)
-done
+  done
 
 (****************************************************************)
 (*                                                              *)
@@ -252,7 +252,7 @@
   apply (frule Wilson_Russ)
   apply (auto simp add: zcong_sym)
   apply (rule zcong_trans, auto)
-done
+  done
 
 (********************************************************************)
 (*                                                                  *)
@@ -294,7 +294,7 @@
   apply (frule aux_2, auto)
   apply (frule_tac a = a in aux_1, auto)
   apply (frule zcong_zmult_prop1, auto)
-done
+  done
 
 (****************************************************************)
 (*                                                              *)
@@ -309,7 +309,7 @@
     ~([y ^ 2 = 0] (mod p))")
   apply (auto simp add: zcong_sym [of "y^2" x p] intro: zcong_trans)
   apply (auto simp add: zcong_eq_zdvd_prop intro: zpower_zdvd_prop1)
-done
+  done
 
 lemma aux__2: "2 * nat((p - 1) div 2) =  nat (2 * ((p - 1) div 2))"
   by (auto simp add: nat_mult_distrib)
@@ -327,7 +327,7 @@
   apply (frule odd_minus_one_even)
   apply (frule even_div_2_prop2)
   apply (auto intro: Little_Fermat simp add: zprime_zOdd_eq_grt_2)
-done
+  done
 
 (********************************************************************)
 (*                                                                  *)
@@ -340,6 +340,6 @@
   apply (auto simp add: Legendre_def Euler_part2)
   apply (frule Euler_part3, auto simp add: zcong_sym)
   apply (frule Euler_part1, auto simp add: zcong_sym)
-done
+  done
 
-end
\ No newline at end of file
+end
--- a/src/HOL/NumberTheory/EulerFermat.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/EulerFermat.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -2,9 +2,6 @@
     ID:         $Id$
     Author:     Thomas M. Rasmussen
     Copyright   2000  University of Cambridge
-
-Changes by Jeremy Avigad, 2003/02/21:
-   repaired proof of Bnor_prime (removed use of zprime_def)
 *)
 
 header {* Fermat's Little Theorem extended to Euler's Totient function *}
@@ -60,7 +57,7 @@
 
 lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
   -- {* LCP: not sure why this lemma is needed now *}
-by (auto simp add: abs_if)
+  by (auto simp add: abs_if)
 
 
 text {* \medskip @{text norRRset} *}
@@ -68,29 +65,27 @@
 declare BnorRset.simps [simp del]
 
 lemma BnorRset_induct:
-  "(!!a m. P {} a m) ==>
-    (!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
-      ==> P (BnorRset(a,m)) a m)
-    ==> P (BnorRset(u,v)) u v"
-proof -
-  case rule_context
-  show ?thesis
-    apply (rule BnorRset.induct, safe)
-     apply (case_tac [2] "0 < a")
-      apply (rule_tac [2] rule_context, simp_all)
-     apply (simp_all add: BnorRset.simps rule_context)
+  assumes "!!a m. P {} a m"
+    and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
+      ==> P (BnorRset(a,m)) a m"
+  shows "P (BnorRset(u,v)) u v"
+  apply (rule BnorRset.induct)
+  apply safe
+   apply (case_tac [2] "0 < a")
+    apply (rule_tac [2] prems)
+     apply simp_all
+   apply (simp_all add: BnorRset.simps prems)
   done
-qed
 
-lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) --> b \<le> a"
+lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
   apply (induct a m rule: BnorRset_induct)
-   prefer 2
-   apply (subst BnorRset.simps)
+   apply simp
+  apply (subst BnorRset.simps)
    apply (unfold Let_def, auto)
   done
 
 lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
-by (auto dest: Bnor_mem_zle)
+  by (auto dest: Bnor_mem_zle)
 
 lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
   apply (induct a m rule: BnorRset_induct)
@@ -210,7 +205,7 @@
   RRset2norRR_correct [THEN conjunct2, standard]
 
 lemma RsetR_fin: "A \<in> RsetR m ==> finite A"
-by (erule RsetR.induct, auto)
+  by (induct set: RsetR) auto
 
 lemma RRset_zcong_eq [rule_format]:
   "1 < m ==>
--- a/src/HOL/NumberTheory/EvenOdd.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/EvenOdd.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,14 +5,14 @@
 
 header {*Parity: Even and Odd Integers*}
 
-theory EvenOdd imports Int2 begin;
+theory EvenOdd imports Int2 begin
 
 text{*Note.  This theory is being revised.  See the web page
 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
 
 constdefs
   zOdd    :: "int set"
-  "zOdd == {x. \<exists>k. x = 2*k + 1}"
+  "zOdd == {x. \<exists>k. x = 2 * k + 1}"
   zEven   :: "int set"
   "zEven == {x. \<exists>k. x = 2 * k}"
 
@@ -22,223 +22,239 @@
 (*                                                         *)
 (***********************************************************)
 
-lemma one_not_even: "~(1 \<in> zEven)";
-  apply (simp add: zEven_def)
-  apply (rule allI, case_tac "k \<le> 0", auto)
-done
+lemma zOddI [intro?]: "x = 2 * k + 1 \<Longrightarrow> x \<in> zOdd"
+  and zOddE [elim?]: "x \<in> zOdd \<Longrightarrow> (!!k. x = 2 * k + 1 \<Longrightarrow> C) \<Longrightarrow> C"
+  by (auto simp add: zOdd_def)
 
-lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)";
-  apply (auto simp add: zOdd_def zEven_def)
-  proof -;
-    fix a b;
-    assume "2 * (a::int) = 2 * (b::int) + 1"; 
-    then have "2 * (a::int) - 2 * (b :: int) = 1";
-       by arith
-    then have "2 * (a - b) = 1";
-       by (auto simp add: zdiff_zmult_distrib)
-    moreover have "(2 * (a - b)):zEven";
-       by (auto simp only: zEven_def)
-    ultimately show "False";
-       by (auto simp add: one_not_even)
-  qed;
+lemma zEvenI [intro?]: "x = 2 * k \<Longrightarrow> x \<in> zEven"
+  and zEvenE [elim?]: "x \<in> zEven \<Longrightarrow> (!!k. x = 2 * k \<Longrightarrow> C) \<Longrightarrow> C"
+  by (auto simp add: zEven_def)
+
+lemma one_not_even: "~(1 \<in> zEven)"
+proof
+  assume "1 \<in> zEven"
+  then obtain k :: int where "1 = 2 * k" ..
+  then show False by arith
+qed
 
-lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)";
-  by (simp add: zOdd_def zEven_def, presburger)
+lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)"
+proof -
+  {
+    fix a b
+    assume "2 * (a::int) = 2 * (b::int) + 1"
+    then have "2 * (a::int) - 2 * (b :: int) = 1"
+      by arith
+    then have "2 * (a - b) = 1"
+      by (auto simp add: zdiff_zmult_distrib)
+    moreover have "(2 * (a - b)):zEven"
+      by (auto simp only: zEven_def)
+    ultimately have False
+      by (auto simp add: one_not_even)
+  }
+  then show ?thesis
+    by (auto simp add: zOdd_def zEven_def)
+qed
 
-lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven";
-  by (insert even_odd_disj, auto)
+lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)"
+  by (simp add: zOdd_def zEven_def) arith
 
-lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd";
-  apply (case_tac "x \<in> zOdd", auto)
-  apply (drule not_odd_impl_even)
-  apply (auto simp add: zEven_def zOdd_def)
-  proof -;
-    fix a b; 
-    assume "2 * a * y = 2 * b + 1";
-    then have "2 * a * y - 2 * b = 1";
-      by arith
-    then have "2 * (a * y - b) = 1";
-      by (auto simp add: zdiff_zmult_distrib)
-    moreover have "(2 * (a * y - b)):zEven";
-       by (auto simp only: zEven_def)
-    ultimately show "False";
-       by (auto simp add: one_not_even)
-  qed;
+lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven"
+  using even_odd_disj by auto
 
-lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven";
+lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd"
+proof (rule classical)
+  assume "\<not> ?thesis"
+  then have "x \<in> zEven" by (rule not_odd_impl_even)
+  then obtain a where a: "x = 2 * a" ..
+  assume "x * y : zOdd"
+  then obtain b where "x * y = 2 * b + 1" ..
+  with a have "2 * a * y = 2 * b + 1" by simp
+  then have "2 * a * y - 2 * b = 1"
+    by arith
+  then have "2 * (a * y - b) = 1"
+    by (auto simp add: zdiff_zmult_distrib)
+  moreover have "(2 * (a * y - b)):zEven"
+    by (auto simp only: zEven_def)
+  ultimately have False
+    by (auto simp add: one_not_even)
+  then show ?thesis ..
+qed
+
+lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven"
   by (auto simp add: zOdd_def zEven_def)
 
-lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0";
+lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0"
   by (auto simp add: zEven_def)
 
-lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x";
+lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x"
   by (auto simp add: zEven_def)
 
-lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven";
+lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven"
   apply (auto simp add: zEven_def)
-  by (auto simp only: zadd_zmult_distrib2 [THEN sym])
+  apply (auto simp only: zadd_zmult_distrib2 [symmetric])
+  done
 
-lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven";
+lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven"
   by (auto simp add: zEven_def)
 
-lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven";
+lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven"
   apply (auto simp add: zEven_def)
-  by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
 
-lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven";
+lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven"
   apply (auto simp add: zOdd_def zEven_def)
-  by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
 
-lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd";
+lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd"
   apply (auto simp add: zOdd_def zEven_def)
   apply (rule_tac x = "k - ka - 1" in exI)
-  by auto
+  apply auto
+  done
 
-lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd";
+lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd"
   apply (auto simp add: zOdd_def zEven_def)
-  by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
 
-lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd";
+lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd"
   apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
   apply (rule_tac x = "2 * ka * k + ka + k" in exI)
-  by (auto simp add: zadd_zmult_distrib)
-
-lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))";
-  by (insert even_odd_conj even_odd_disj, auto)
-
-lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"; 
-  by (insert odd_iff_not_even odd_times_odd, auto)
+  apply (auto simp add: zadd_zmult_distrib)
+  done
 
-lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))";
-  apply (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
-     even_minus_odd odd_minus_even)
-  proof -;
-    assume "x - y \<in> zEven" and "x \<in> zEven";
-    show "y \<in> zEven";
-    proof (rule classical);
-      assume "~(y \<in> zEven)"; 
-      then have "y \<in> zOdd" 
-        by (auto simp add: odd_iff_not_even)
-      with prems have "x - y \<in> zOdd";
-        by (simp add: even_minus_odd)
-      with prems have "False"; 
-        by (auto simp add: odd_iff_not_even)
-      thus ?thesis;
-        by auto
-    qed;
-    next assume "x - y \<in> zEven" and "y \<in> zEven"; 
-    show "x \<in> zEven";
-    proof (rule classical);
-      assume "~(x \<in> zEven)"; 
-      then have "x \<in> zOdd" 
-        by (auto simp add: odd_iff_not_even)
-      with prems have "x - y \<in> zOdd";
-        by (simp add: odd_minus_even)
-      with prems have "False"; 
-        by (auto simp add: odd_iff_not_even)
-      thus ?thesis;
-        by auto
-    qed;
-  qed;
+lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))"
+  using even_odd_conj even_odd_disj by auto
+
+lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"
+  using odd_iff_not_even odd_times_odd by auto
 
-lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1";
-proof -;
-  assume "x \<in> zEven" and "0 \<le> x";
-  then have "\<exists>k. x = 2 * k";
-    by (auto simp only: zEven_def)
-  then show ?thesis;
-    proof;
-      fix a;
-      assume "x = 2 * a";
-      from prems have a: "0 \<le> a";
-        by arith
-      from prems have "nat x = nat(2 * a)";
-        by auto
-      also from a have "nat (2 * a) = 2 * nat a";
-        by (auto simp add: nat_mult_distrib)
-      finally have "(-1::int)^nat x = (-1)^(2 * nat a)";
-        by auto
-      also have "... = ((-1::int)^2)^ (nat a)";
-        by (auto simp add: zpower_zpower [THEN sym])
-      also have "(-1::int)^2 = 1";
-        by auto
-      finally; show ?thesis;
-        by auto
-    qed;
-qed;
+lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))"
+proof
+  assume xy: "x - y \<in> zEven"
+  {
+    assume x: "x \<in> zEven"
+    have "y \<in> zEven"
+    proof (rule classical)
+      assume "\<not> ?thesis"
+      then have "y \<in> zOdd"
+        by (simp add: odd_iff_not_even)
+      with x have "x - y \<in> zOdd"
+        by (simp add: even_minus_odd)
+      with xy have False
+        by (auto simp add: odd_iff_not_even)
+      then show ?thesis ..
+    qed
+  } moreover {
+    assume y: "y \<in> zEven"
+    have "x \<in> zEven"
+    proof (rule classical)
+      assume "\<not> ?thesis"
+      then have "x \<in> zOdd"
+        by (auto simp add: odd_iff_not_even)
+      with y have "x - y \<in> zOdd"
+        by (simp add: odd_minus_even)
+      with xy have False
+        by (auto simp add: odd_iff_not_even)
+      then show ?thesis ..
+    qed
+  }
+  ultimately show "(x \<in> zEven) = (y \<in> zEven)"
+    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
+      even_minus_odd odd_minus_even)
+next
+  assume "(x \<in> zEven) = (y \<in> zEven)"
+  then show "x - y \<in> zEven"
+    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
+      even_minus_odd odd_minus_even)
+qed
 
-lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1";
-proof -;
-  assume "x \<in> zOdd" and "0 \<le> x";
-  then have "\<exists>k. x = 2 * k + 1";
-    by (auto simp only: zOdd_def)
-  then show ?thesis;
-    proof;
-      fix a;
-      assume "x = 2 * a + 1";
-      from prems have a: "0 \<le> a";
-        by arith
-      from prems have "nat x = nat(2 * a + 1)";
-        by auto
-      also from a have "nat (2 * a + 1) = 2 * nat a + 1";
-        by (auto simp add: nat_mult_distrib nat_add_distrib)
-      finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)";
-        by auto
-      also have "... = ((-1::int)^2)^ (nat a) * (-1)^1";
-        by (auto simp add: zpower_zpower [THEN sym] zpower_zadd_distrib)
-      also have "(-1::int)^2 = 1";
-        by auto
-      finally; show ?thesis;
-        by auto
-    qed;
-qed;
+lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1"
+proof -
+  assume 1: "x \<in> zEven" and 2: "0 \<le> x"
+  from 1 obtain a where 3: "x = 2 * a" ..
+  with 2 have "0 \<le> a" by simp
+  from 2 3 have "nat x = nat (2 * a)"
+    by simp
+  also from 3 have "nat (2 * a) = 2 * nat a"
+    by (simp add: nat_mult_distrib)
+  finally have "(-1::int)^nat x = (-1)^(2 * nat a)"
+    by simp
+  also have "... = ((-1::int)^2)^ (nat a)"
+    by (simp add: zpower_zpower [symmetric])
+  also have "(-1::int)^2 = 1"
+    by simp
+  finally show ?thesis
+    by simp
+qed
 
-lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==> 
-  (-1::int)^(nat x) = (-1::int)^(nat y)";
-  apply (insert even_odd_disj [of x])
-  apply (insert even_odd_disj [of y])
+lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1"
+proof -
+  assume 1: "x \<in> zOdd" and 2: "0 \<le> x"
+  from 1 obtain a where 3: "x = 2 * a + 1" ..
+  with 2 have a: "0 \<le> a" by simp
+  with 2 3 have "nat x = nat (2 * a + 1)"
+    by simp
+  also from a have "nat (2 * a + 1) = 2 * nat a + 1"
+    by (auto simp add: nat_mult_distrib nat_add_distrib)
+  finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"
+    by simp
+  also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"
+    by (auto simp add: zpower_zpower [symmetric] zpower_zadd_distrib)
+  also have "(-1::int)^2 = 1"
+    by simp
+  finally show ?thesis
+    by simp
+qed
+
+lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==>
+  (-1::int)^(nat x) = (-1::int)^(nat y)"
+  using even_odd_disj [of x] even_odd_disj [of y]
   by (auto simp add: neg_one_even_power neg_one_odd_power)
 
-lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))";
+
+lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"
   by (auto simp add: zcong_def zdvd_not_zless)
 
-lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2";
-  apply (auto simp only: zEven_def)
-  proof -;
-    fix k assume "x < 2 * k";
-    then have "x div 2 < k" by (auto simp add: div_prop1)
-    also have "k = (2 * k) div 2"; by auto
-    finally show "x div 2 < 2 * k div 2" by auto
-  qed;
+lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2"
+proof -
+  assume 1: "y \<in> zEven" and 2: "x < y"
+  from 1 obtain k where k: "y = 2 * k" ..
+  with 2 have "x < 2 * k" by simp
+  then have "x div 2 < k" by (auto simp add: div_prop1)
+  also have "k = (2 * k) div 2" by simp
+  finally have "x div 2 < 2 * k div 2" by simp
+  with k show ?thesis by simp
+qed
 
-lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2";
+lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2"
   by (auto simp add: zEven_def, auto simp add: zdiv_zadd1_eq)
 
-lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y";
+lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y"
   by (auto simp add: zEven_def)
 
 (* An odd prime is greater than 2 *)
 
-lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)";
+lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)"
   apply (auto simp add: zOdd_def zprime_def)
   apply (drule_tac x = 2 in allE)
-  apply (insert odd_iff_not_even [of p])  
-by (auto simp add: zOdd_def zEven_def)
+  using odd_iff_not_even [of p]
+  apply (auto simp add: zOdd_def zEven_def)
+  done
 
 (* Powers of -1 and parity *)
 
-lemma neg_one_special: "finite A ==> 
-    ((-1 :: int) ^ card A) * (-1 ^ card A) = 1";
-  by (induct set: Finites, auto)
+lemma neg_one_special: "finite A ==>
+    ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"
+  by (induct set: Finites) auto
 
-lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1";
-  apply (induct_tac n)
-  by auto
+lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"
+  by (induct n) auto
 
 lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
-  ==> ((-1::int)^j = (-1::int)^k)";
-  apply (insert neg_one_power [of j])
-  apply (insert neg_one_power [of k])
+    ==> ((-1::int)^j = (-1::int)^k)"
+  using neg_one_power [of j] and insert neg_one_power [of k]
   by (auto simp add: one_not_neg_one_mod_m zcong_sym)
 
-end;
+end
--- a/src/HOL/NumberTheory/Finite2.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Finite2.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -23,7 +23,7 @@
 
 subsection {* Useful properties of sums and products *}
 
-lemma setsum_same_function_zcong: 
+lemma setsum_same_function_zcong:
 assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
 shows "[setsum f S = setsum g S] (mod m)"
 proof cases
@@ -48,16 +48,16 @@
   apply (auto simp add: left_distrib right_distrib int_eq_of_nat)
   done
 
-lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) = 
+lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) =
     int(c) * int(card X)"
   apply (induct set: Finites)
   apply (auto simp add: zadd_zmult_distrib2)
-done
+  done
 
-lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A = 
+lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A =
     c * setsum f A"
-  apply (induct set: Finites, auto)
-  by (auto simp only: zadd_zmult_distrib2)
+  by (induct set: Finites) (auto simp add: zadd_zmult_distrib2)
+
 
 (******************************************************************)
 (*                                                                *)
@@ -68,61 +68,71 @@
 subsection {* Cardinality of explicit finite sets *}
 
 lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
-by (simp add: finite_subset finite_imageI)
+  by (simp add: finite_subset finite_imageI)
 
-lemma bdd_nat_set_l_finite: "finite { y::nat . y < x}"
-apply (rule_tac N = "{y. y < x}" and n = x in bounded_nat_set_is_finite)
-by auto
+lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
+  by (rule bounded_nat_set_is_finite) blast
 
-lemma bdd_nat_set_le_finite: "finite { y::nat . y \<le> x  }"
-apply (subgoal_tac "{ y::nat . y \<le> x  } = { y::nat . y < Suc x}")
-by (auto simp add: bdd_nat_set_l_finite)
+lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
+proof -
+  have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
+  then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
+qed
 
-lemma  bdd_int_set_l_finite: "finite { x::int . 0 \<le> x & x < n}"
-apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq> 
+lemma  bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
+apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
     int ` {(x :: nat). x < nat n}")
 apply (erule finite_surjI)
 apply (auto simp add: bdd_nat_set_l_finite image_def)
-apply (rule_tac x = "nat x" in exI, simp) 
+apply (rule_tac x = "nat x" in exI, simp)
 done
 
 lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
 apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
 apply (erule ssubst)
 apply (rule bdd_int_set_l_finite)
-by auto
+apply auto
+done
 
 lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
-apply (subgoal_tac "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}")
-by (auto simp add: bdd_int_set_l_finite finite_subset)
+proof -
+  have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
+qed
 
 lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
-apply (subgoal_tac "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}")
-by (auto simp add: bdd_int_set_le_finite finite_subset)
+proof -
+  have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
+qed
 
 lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
-apply (induct_tac x, force)
-proof -
+proof (induct x)
+  show "card {y::nat . y < 0} = 0" by simp
+next
   fix n::nat
-  assume "card {y. y < n} = n" 
+  assume "card {y. y < n} = n"
   have "{y. y < Suc n} = insert n {y. y < n}"
     by auto
   then have "card {y. y < Suc n} = card (insert n {y. y < n})"
     by auto
   also have "... = Suc (card {y. y < n})"
-    apply (rule card_insert_disjoint)
-    by (auto simp add: bdd_nat_set_l_finite)
-  finally show "card {y. y < Suc n} = Suc n" 
+    by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
+  finally show "card {y. y < Suc n} = Suc n"
     by (simp add: prems)
 qed
 
 lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
-apply (subgoal_tac "{ y::nat. y \<le> x} = { y::nat. y < Suc x}")
-by (auto simp add: card_bdd_nat_set_l)
+proof -
+  have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
+    by auto
+  then show ?thesis by (auto simp add: card_bdd_nat_set_l)
+qed
 
 lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
 proof -
-  fix n::int
   assume "0 \<le> n"
   have "inj_on (%y. int y) {y. y < nat n}"
     by (auto simp add: inj_on_def)
@@ -131,52 +141,63 @@
   also from prems have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
     apply (auto simp add: zless_nat_eq_int_zless image_def)
     apply (rule_tac x = "nat x" in exI)
-    by (auto simp add: nat_0_le)
-  also have "card {y. y < nat n} = nat n" 
+    apply (auto simp add: nat_0_le)
+    done
+  also have "card {y. y < nat n} = nat n"
     by (rule card_bdd_nat_set_l)
   finally show "card {y. 0 \<le> y & y < n} = nat n" .
 qed
 
-lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} = 
+lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
   nat n + 1"
-apply (subgoal_tac "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}")
-apply (insert card_bdd_int_set_l [of "n+1"])
-by (auto simp add: nat_add_distrib)
+proof -
+  assume "0 \<le> n"
+  moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
+  ultimately show ?thesis
+    using card_bdd_int_set_l [of "n + 1"]
+    by (auto simp add: nat_add_distrib)
+qed
 
-lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==> 
+lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
     card {x. 0 < x & x \<le> n} = nat n"
 proof -
-  fix n::int
   assume "0 \<le> n"
   have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
     by (auto simp add: inj_on_def)
-  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) = 
+  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
      card {x. 0 \<le> x & x < n}"
     by (rule card_image)
-  also from prems have "... = nat n"
+  also from `0 \<le> n` have "... = nat n"
     by (rule card_bdd_int_set_l)
   also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
     apply (auto simp add: image_def)
     apply (rule_tac x = "x - 1" in exI)
-    by arith
-  finally show "card {x. 0 < x & x \<le> n} = nat n".
+    apply arith
+    done
+  finally show "card {x. 0 < x & x \<le> n} = nat n" .
 qed
 
-lemma card_bdd_int_set_l_l: "0 < (n::int) ==> 
-    card {x. 0 < x & x < n} = nat n - 1"
-  apply (subgoal_tac "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}")
-  apply (insert card_bdd_int_set_l_le [of "n - 1"])
-  by (auto simp add: nat_diff_distrib)
+lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
+  card {x. 0 < x & x < n} = nat n - 1"
+proof -
+  assume "0 < n"
+  moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
+    by simp
+  ultimately show ?thesis
+    using insert card_bdd_int_set_l_le [of "n - 1"]
+    by (auto simp add: nat_diff_distrib)
+qed
 
-lemma int_card_bdd_int_set_l_l: "0 < n ==> 
+lemma int_card_bdd_int_set_l_l: "0 < n ==>
     int(card {x. 0 < x & x < n}) = n - 1"
   apply (auto simp add: card_bdd_int_set_l_l)
   apply (subgoal_tac "Suc 0 \<le> nat n")
-  apply (auto simp add: zdiff_int [THEN sym])
+  apply (auto simp add: zdiff_int [symmetric])
   apply (subgoal_tac "0 < nat n", arith)
-  by (simp add: zero_less_nat_eq)
+  apply (simp add: zero_less_nat_eq)
+  done
 
-lemma int_card_bdd_int_set_l_le: "0 \<le> n ==> 
+lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
     int(card {x. 0 < x & x \<le> n}) = n"
   by (auto simp add: card_bdd_int_set_l_le)
 
@@ -201,7 +222,7 @@
 
 subsection {* Lemmas for counting arguments *}
 
-lemma setsum_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A; 
+lemma setsum_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
     g ` B \<subseteq> A; inj_on g B |] ==> setsum g B = setsum (g \<circ> f) A"
 apply (frule_tac h = g and f = f in setsum_reindex)
 apply (subgoal_tac "setsum g B = setsum g (f ` A)")
@@ -211,17 +232,19 @@
 apply (auto simp add: card_image)
 apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
 apply (frule_tac A = B and B = A and f = g in card_inj_on_le)
-by auto
+apply auto
+done
 
-lemma setprod_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A; 
+lemma setprod_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
     g ` B \<subseteq> A; inj_on g B |] ==> setprod g B = setprod (g \<circ> f) A"
   apply (frule_tac h = g and f = f in setprod_reindex)
-  apply (subgoal_tac "setprod g B = setprod g (f ` A)") 
+  apply (subgoal_tac "setprod g B = setprod g (f ` A)")
   apply (simp add: inj_on_def)
   apply (subgoal_tac "card A = card B")
   apply (drule_tac A = "f ` A" and B = B in card_seteq)
   apply (auto simp add: card_image)
   apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
-by (frule_tac A = B and B = A and f = g in card_inj_on_le, auto)
+  apply (frule_tac A = B and B = A and f = g in card_inj_on_le, auto)
+  done
 
-end
\ No newline at end of file
+end
--- a/src/HOL/NumberTheory/Gauss.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Gauss.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,7 +5,7 @@
 
 header {* Gauss' Lemma *}
 
-theory Gauss imports Euler begin;
+theory Gauss imports Euler begin
 
 locale GAUSS =
   fixes p :: "int"
@@ -27,410 +27,417 @@
   defines C_def: "C == (StandardRes p) ` B"
   defines D_def: "D == C \<inter> {x. x \<le> ((p - 1) div 2)}"
   defines E_def: "E == C \<inter> {x. ((p - 1) div 2) < x}"
-  defines F_def: "F == (%x. (p - x)) ` E";
+  defines F_def: "F == (%x. (p - x)) ` E"
 
 subsection {* Basic properties of p *}
 
-lemma (in GAUSS) p_odd: "p \<in> zOdd";
+lemma (in GAUSS) p_odd: "p \<in> zOdd"
   by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
 
-lemma (in GAUSS) p_g_0: "0 < p";
-  by (insert p_g_2, auto)
+lemma (in GAUSS) p_g_0: "0 < p"
+  using p_g_2 by auto
 
-lemma (in GAUSS) int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2";
-  by (insert p_g_2, auto simp add: pos_imp_zdiv_nonneg_iff)
+lemma (in GAUSS) int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
+  using insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
 
-lemma (in GAUSS) p_minus_one_l: "(p - 1) div 2 < p";
-  proof -;
-    have "p - 1 = (p - 1) div 1" by auto
-    then have "(p - 1) div 2 \<le> p - 1"
-      apply (rule ssubst) back;
-      apply (rule zdiv_mono2)
-      by (auto simp add: p_g_0)
-    then have "(p - 1) div 2 \<le> p - 1";
-      by auto
-    then show ?thesis by simp
-qed;
+lemma (in GAUSS) p_minus_one_l: "(p - 1) div 2 < p"
+proof -
+  have "(p - 1) div 2 \<le> (p - 1) div 1"
+    by (rule zdiv_mono2) (auto simp add: p_g_0)
+  also have "\<dots> = p - 1" by simp
+  finally show ?thesis by simp
+qed
 
-lemma (in GAUSS) p_eq: "p = (2 * (p - 1) div 2) + 1";
-  apply (insert zdiv_zmult_self2 [of 2 "p - 1"])
-by auto
+lemma (in GAUSS) p_eq: "p = (2 * (p - 1) div 2) + 1"
+  using zdiv_zmult_self2 [of 2 "p - 1"] by auto
 
-lemma zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)";
+lemma zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
   apply (frule odd_minus_one_even)
   apply (simp add: zEven_def)
   apply (subgoal_tac "2 \<noteq> 0")
-  apply (frule_tac b = "2 :: int" and a = "x - 1" in zdiv_zmult_self2)  
-by (auto simp add: even_div_2_prop2)
+  apply (frule_tac b = "2 :: int" and a = "x - 1" in zdiv_zmult_self2)
+  apply (auto simp add: even_div_2_prop2)
+  done
 
-lemma (in GAUSS) p_eq2: "p = (2 * ((p - 1) div 2)) + 1";
+lemma (in GAUSS) p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
   apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
-by (frule zodd_imp_zdiv_eq, auto)
+  apply (frule zodd_imp_zdiv_eq, auto)
+  done
 
 subsection {* Basic Properties of the Gauss Sets *}
 
-lemma (in GAUSS) finite_A: "finite (A)";
-  apply (auto simp add: A_def) 
-thm bdd_int_set_l_finite;
-  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}"); 
-by (auto simp add: bdd_int_set_l_finite finite_subset)
+lemma (in GAUSS) finite_A: "finite (A)"
+  apply (auto simp add: A_def)
+  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}")
+  apply (auto simp add: bdd_int_set_l_finite finite_subset)
+  done
 
-lemma (in GAUSS) finite_B: "finite (B)";
+lemma (in GAUSS) finite_B: "finite (B)"
   by (auto simp add: B_def finite_A finite_imageI)
 
-lemma (in GAUSS) finite_C: "finite (C)";
+lemma (in GAUSS) finite_C: "finite (C)"
   by (auto simp add: C_def finite_B finite_imageI)
 
-lemma (in GAUSS) finite_D: "finite (D)";
+lemma (in GAUSS) finite_D: "finite (D)"
   by (auto simp add: D_def finite_Int finite_C)
 
-lemma (in GAUSS) finite_E: "finite (E)";
+lemma (in GAUSS) finite_E: "finite (E)"
   by (auto simp add: E_def finite_Int finite_C)
 
-lemma (in GAUSS) finite_F: "finite (F)";
+lemma (in GAUSS) finite_F: "finite (F)"
   by (auto simp add: F_def finite_E finite_imageI)
 
-lemma (in GAUSS) C_eq: "C = D \<union> E";
+lemma (in GAUSS) C_eq: "C = D \<union> E"
   by (auto simp add: C_def D_def E_def)
 
-lemma (in GAUSS) A_card_eq: "card A = nat ((p - 1) div 2)";
-  apply (auto simp add: A_def) 
+lemma (in GAUSS) A_card_eq: "card A = nat ((p - 1) div 2)"
+  apply (auto simp add: A_def)
   apply (insert int_nat)
   apply (erule subst)
-  by (auto simp add: card_bdd_int_set_l_le)
+  apply (auto simp add: card_bdd_int_set_l_le)
+  done
 
-lemma (in GAUSS) inj_on_xa_A: "inj_on (%x. x * a) A";
-  apply (insert a_nonzero)
-by (simp add: A_def inj_on_def)
+lemma (in GAUSS) inj_on_xa_A: "inj_on (%x. x * a) A"
+  using a_nonzero by (simp add: A_def inj_on_def)
 
-lemma (in GAUSS) A_res: "ResSet p A";
-  apply (auto simp add: A_def ResSet_def) 
-  apply (rule_tac m = p in zcong_less_eq) 
-  apply (insert p_g_2, auto) 
-  apply (subgoal_tac [1-2] "(p - 1) div 2 < p");
-by (auto, auto simp add: p_minus_one_l)
+lemma (in GAUSS) A_res: "ResSet p A"
+  apply (auto simp add: A_def ResSet_def)
+  apply (rule_tac m = p in zcong_less_eq)
+  apply (insert p_g_2, auto)
+  apply (subgoal_tac [1-2] "(p - 1) div 2 < p")
+  apply (auto, auto simp add: p_minus_one_l)
+  done
 
-lemma (in GAUSS) B_res: "ResSet p B";
+lemma (in GAUSS) B_res: "ResSet p B"
   apply (insert p_g_2 p_a_relprime p_minus_one_l)
-  apply (auto simp add: B_def) 
+  apply (auto simp add: B_def)
   apply (rule ResSet_image)
-  apply (auto simp add: A_res) 
+  apply (auto simp add: A_res)
   apply (auto simp add: A_def)
-  proof -;
-    fix x fix y
-    assume a: "[x * a = y * a] (mod p)"
-    assume b: "0 < x"
-    assume c: "x \<le> (p - 1) div 2"
-    assume d: "0 < y"
-    assume e: "y \<le> (p - 1) div 2"
-    from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] 
-        have "[x = y](mod p)";
-      by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) 
-    with zcong_less_eq [of x y p] p_minus_one_l 
-         order_le_less_trans [of x "(p - 1) div 2" p]
-         order_le_less_trans [of y "(p - 1) div 2" p] show "x = y";
-      by (simp add: prems p_minus_one_l p_g_0)
-qed;
+proof -
+  fix x fix y
+  assume a: "[x * a = y * a] (mod p)"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+      order_le_less_trans [of x "(p - 1) div 2" p]
+      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+qed
 
-lemma (in GAUSS) SR_B_inj: "inj_on (StandardRes p) B";
+lemma (in GAUSS) SR_B_inj: "inj_on (StandardRes p) B"
   apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems)
-  proof -;
-    fix x fix y
-    assume a: "x * a mod p = y * a mod p"
-    assume b: "0 < x"
-    assume c: "x \<le> (p - 1) div 2"
-    assume d: "0 < y"
-    assume e: "y \<le> (p - 1) div 2"
-    assume f: "x \<noteq> y"
-    from a have "[x * a = y * a](mod p)";
-      by (simp add: zcong_zmod_eq p_g_0)
-    with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] 
-        have "[x = y](mod p)";
-      by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) 
-    with zcong_less_eq [of x y p] p_minus_one_l 
-         order_le_less_trans [of x "(p - 1) div 2" p]
-         order_le_less_trans [of y "(p - 1) div 2" p] have "x = y";
-      by (simp add: prems p_minus_one_l p_g_0)
-    then have False;
-      by (simp add: f)
-    then show "a = 0";
-      by simp
-qed;
+proof -
+  fix x fix y
+  assume a: "x * a mod p = y * a mod p"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  assume f: "x \<noteq> y"
+  from a have "[x * a = y * a](mod p)"
+    by (simp add: zcong_zmod_eq p_g_0)
+  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+    order_le_less_trans [of x "(p - 1) div 2" p]
+    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+  then have False
+    by (simp add: f)
+  then show "a = 0"
+    by simp
+qed
 
-lemma (in GAUSS) inj_on_pminusx_E: "inj_on (%x. p - x) E";
+lemma (in GAUSS) inj_on_pminusx_E: "inj_on (%x. p - x) E"
   apply (auto simp add: E_def C_def B_def A_def)
-  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI);
-by auto
+  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
+  apply auto
+  done
 
-lemma (in GAUSS) A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)";
+lemma (in GAUSS) A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
   apply (auto simp add: A_def)
   apply (frule_tac m = p in zcong_not_zero)
   apply (insert p_minus_one_l)
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) A_greater_zero: "x \<in> A ==> 0 < x";
+lemma (in GAUSS) A_greater_zero: "x \<in> A ==> 0 < x"
   by (auto simp add: A_def)
 
-lemma (in GAUSS) B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)";
+lemma (in GAUSS) B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
   apply (auto simp add: B_def)
-  apply (frule A_ncong_p) 
+  apply (frule A_ncong_p)
   apply (insert p_a_relprime p_prime a_nonzero)
   apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
-by (auto simp add: A_greater_zero)
+  apply (auto simp add: A_greater_zero)
+  done
 
-lemma (in GAUSS) B_greater_zero: "x \<in> B ==> 0 < x";
-  apply (insert a_nonzero)
-by (auto simp add: B_def mult_pos_pos A_greater_zero)
+lemma (in GAUSS) B_greater_zero: "x \<in> B ==> 0 < x"
+  using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero)
 
-lemma (in GAUSS) C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)";
+lemma (in GAUSS) C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
   apply (auto simp add: C_def)
   apply (frule B_ncong_p)
-  apply (subgoal_tac "[x = StandardRes p x](mod p)");
-  defer; apply (simp add: StandardRes_prop1)
+  apply (subgoal_tac "[x = StandardRes p x](mod p)")
+  defer apply (simp add: StandardRes_prop1)
   apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) C_greater_zero: "y \<in> C ==> 0 < y";
+lemma (in GAUSS) C_greater_zero: "y \<in> C ==> 0 < y"
   apply (auto simp add: C_def)
-  proof -;
-    fix x;
-    assume a: "x \<in> B";
-    from p_g_0 have "0 \<le> StandardRes p x";
-      by (simp add: StandardRes_lbound)
-    moreover have "~[x = 0] (mod p)";
-      by (simp add: a B_ncong_p)
-    then have "StandardRes p x \<noteq> 0";
-      by (simp add: StandardRes_prop3)
-    ultimately show "0 < StandardRes p x";
-      by (simp add: order_le_less)
-qed;
+proof -
+  fix x
+  assume a: "x \<in> B"
+  from p_g_0 have "0 \<le> StandardRes p x"
+    by (simp add: StandardRes_lbound)
+  moreover have "~[x = 0] (mod p)"
+    by (simp add: a B_ncong_p)
+  then have "StandardRes p x \<noteq> 0"
+    by (simp add: StandardRes_prop3)
+  ultimately show "0 < StandardRes p x"
+    by (simp add: order_le_less)
+qed
 
-lemma (in GAUSS) D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)";
+lemma (in GAUSS) D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
   by (auto simp add: D_def C_ncong_p)
 
-lemma (in GAUSS) E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)";
+lemma (in GAUSS) E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
   by (auto simp add: E_def C_ncong_p)
 
-lemma (in GAUSS) F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)";
-  apply (auto simp add: F_def) 
-  proof -;
-    fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
-    from E_ncong_p have "~[x = 0] (mod p)";
-      by (simp add: a)
-    moreover from a have "0 < x";
-      by (simp add: a E_def C_greater_zero)
-    moreover from a have "x < p";
-      by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
-    ultimately have "~[p - x = 0] (mod p)";
-      by (simp add: zcong_not_zero)
-    from this show False by (simp add: b)
-qed;
+lemma (in GAUSS) F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
+  apply (auto simp add: F_def)
+proof -
+  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
+  from E_ncong_p have "~[x = 0] (mod p)"
+    by (simp add: a)
+  moreover from a have "0 < x"
+    by (simp add: a E_def C_greater_zero)
+  moreover from a have "x < p"
+    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
+  ultimately have "~[p - x = 0] (mod p)"
+    by (simp add: zcong_not_zero)
+  from this show False by (simp add: b)
+qed
 
-lemma (in GAUSS) F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}";
-  apply (auto simp add: F_def E_def) 
+lemma (in GAUSS) F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
+  apply (auto simp add: F_def E_def)
   apply (insert p_g_0)
   apply (frule_tac x = xa in StandardRes_ubound)
   apply (frule_tac x = x in StandardRes_ubound)
   apply (subgoal_tac "xa = StandardRes p xa")
   apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
-  proof -;
-    from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have 
-        "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)";
-      by simp
-    with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
-         ==> p - StandardRes p x \<le> (p - 1) div 2";
-      by simp
-qed;
+proof -
+  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
+    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
+    by simp
+  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
+      ==> p - StandardRes p x \<le> (p - 1) div 2"
+    by simp
+qed
 
-lemma (in GAUSS) D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}";
+lemma (in GAUSS) D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
   by (auto simp add: D_def C_greater_zero)
 
-lemma (in GAUSS) F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}";
+lemma (in GAUSS) F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
   by (auto simp add: F_def E_def D_def C_def B_def A_def)
 
-lemma (in GAUSS) D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}";
+lemma (in GAUSS) D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
   by (auto simp add: D_def C_def B_def A_def)
 
-lemma (in GAUSS) D_leq: "x \<in> D ==> x \<le> (p - 1) div 2";
+lemma (in GAUSS) D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
   by (auto simp add: D_eq)
 
-lemma (in GAUSS) F_ge: "x \<in> F ==> x \<le> (p - 1) div 2";
+lemma (in GAUSS) F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
   apply (auto simp add: F_eq A_def)
-  proof -;
-    fix y;
-    assume "(p - 1) div 2 < StandardRes p (y * a)";
-    then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)";
-      by arith
-    also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"; 
-      by (rule subst, auto)
-    also; have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1";
-      by arith
-    finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2";
-      by (insert zless_add1_eq [of "p - StandardRes p (y * a)" 
-          "(p - 1) div 2"],auto);
-qed;
+proof -
+  fix y
+  assume "(p - 1) div 2 < StandardRes p (y * a)"
+  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
+    by arith
+  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
+    by auto
+  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
+    by arith
+  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
+    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
+qed
 
-lemma (in GAUSS) all_A_relprime: "\<forall>x \<in> A. zgcd(x,p) = 1";
-  apply (insert p_prime p_minus_one_l)
-by (auto simp add: A_def zless_zprime_imp_zrelprime)
+lemma (in GAUSS) all_A_relprime: "\<forall>x \<in> A. zgcd(x, p) = 1"
+  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
 
-lemma (in GAUSS) A_prod_relprime: "zgcd((setprod id A),p) = 1";
-  by (insert all_A_relprime finite_A, simp add: all_relprime_prod_relprime)
+lemma (in GAUSS) A_prod_relprime: "zgcd((setprod id A),p) = 1"
+  using all_A_relprime finite_A by (simp add: all_relprime_prod_relprime)
 
 subsection {* Relationships Between Gauss Sets *}
 
-lemma (in GAUSS) B_card_eq_A: "card B = card A";
-  apply (insert finite_A)
-by (simp add: finite_A B_def inj_on_xa_A card_image)
+lemma (in GAUSS) B_card_eq_A: "card B = card A"
+  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
 
-lemma (in GAUSS) B_card_eq: "card B = nat ((p - 1) div 2)";
-  by (auto simp add: B_card_eq_A A_card_eq)
+lemma (in GAUSS) B_card_eq: "card B = nat ((p - 1) div 2)"
+  by (simp add: B_card_eq_A A_card_eq)
 
-lemma (in GAUSS) F_card_eq_E: "card F = card E";
-  apply (insert finite_E)
-by (simp add: F_def inj_on_pminusx_E card_image)
+lemma (in GAUSS) F_card_eq_E: "card F = card E"
+  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
 
-lemma (in GAUSS) C_card_eq_B: "card C = card B";
+lemma (in GAUSS) C_card_eq_B: "card C = card B"
   apply (insert finite_B)
-  apply (subgoal_tac "inj_on (StandardRes p) B");
+  apply (subgoal_tac "inj_on (StandardRes p) B")
   apply (simp add: B_def C_def card_image)
   apply (rule StandardRes_inj_on_ResSet)
-by (simp add: B_res)
+  apply (simp add: B_res)
+  done
 
-lemma (in GAUSS) D_E_disj: "D \<inter> E = {}";
+lemma (in GAUSS) D_E_disj: "D \<inter> E = {}"
   by (auto simp add: D_def E_def)
 
-lemma (in GAUSS) C_card_eq_D_plus_E: "card C = card D + card E";
+lemma (in GAUSS) C_card_eq_D_plus_E: "card C = card D + card E"
   by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
 
-lemma (in GAUSS) C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C";
+lemma (in GAUSS) C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
   apply (insert D_E_disj finite_D finite_E C_eq)
   apply (frule setprod_Un_disjoint [of D E id])
-by auto
+  apply auto
+  done
 
-lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)";
+lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
   apply (auto simp add: C_def)
-  apply (insert finite_B SR_B_inj) 
-  apply (frule_tac f1 = "StandardRes p" in setprod_reindex_id[THEN sym], auto)
+  apply (insert finite_B SR_B_inj)
+  apply (frule_tac f1 = "StandardRes p" in setprod_reindex_id [symmetric], auto)
   apply (rule setprod_same_function_zcong)
-by (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
+  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
+  done
 
-lemma (in GAUSS) F_Un_D_subset: "(F \<union> D) \<subseteq> A";
+lemma (in GAUSS) F_Un_D_subset: "(F \<union> D) \<subseteq> A"
   apply (rule Un_least)
-by (auto simp add: A_def F_subset D_subset)
+  apply (auto simp add: A_def F_subset D_subset)
+  done
 
-lemma two_eq: "2 * (x::int) = x + x";
+lemma two_eq: "2 * (x::int) = x + x"
   by arith
 
-lemma (in GAUSS) F_D_disj: "(F \<inter> D) = {}";
+lemma (in GAUSS) F_D_disj: "(F \<inter> D) = {}"
   apply (simp add: F_eq D_eq)
   apply (auto simp add: F_eq D_eq)
-  proof -;
-    fix y; fix ya;
-    assume "p - StandardRes p (y * a) = StandardRes p (ya * a)";
-    then have "p = StandardRes p (y * a) + StandardRes p (ya * a)";
-      by arith
-    moreover have "p dvd p";
-      by auto
-    ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))";
-      by auto
-    then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)";
-      by (auto simp add: zcong_def)
-    have "[y * a = StandardRes p (y * a)] (mod p)";
-      by (simp only: zcong_sym StandardRes_prop1)
-    moreover have "[ya * a = StandardRes p (ya * a)] (mod p)";
-      by (simp only: zcong_sym StandardRes_prop1)
-    ultimately have "[y * a + ya * a = 
-        StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)";
-      by (rule zcong_zadd)
-    with a have "[y * a + ya * a = 0] (mod p)";
-      apply (elim zcong_trans)
-      by (simp only: zcong_refl)
-    also have "y * a + ya * a = a * (y + ya)";
-      by (simp add: zadd_zmult_distrib2 zmult_commute)
-    finally have "[a * (y + ya) = 0] (mod p)";.;
-    with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
-        p_a_relprime
-        have a: "[y + ya = 0] (mod p)";
-      by auto
-    assume b: "y \<in> A" and c: "ya: A";
-    with A_def have "0 < y + ya";
-      by auto
-    moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2";
-      by auto 
-    moreover from b c p_eq2 A_def have "y + ya < p";
-      by auto
-    ultimately show False;
-      apply simp
-      apply (frule_tac m = p in zcong_not_zero)
-      by (auto simp add: a)
-qed;
+proof -
+  fix y fix ya
+  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
+  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
+    by arith
+  moreover have "p dvd p"
+    by auto
+  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
+    by auto
+  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
+    by (auto simp add: zcong_def)
+  have "[y * a = StandardRes p (y * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  ultimately have "[y * a + ya * a =
+    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
+    by (rule zcong_zadd)
+  with a have "[y * a + ya * a = 0] (mod p)"
+    apply (elim zcong_trans)
+    by (simp only: zcong_refl)
+  also have "y * a + ya * a = a * (y + ya)"
+    by (simp add: zadd_zmult_distrib2 zmult_commute)
+  finally have "[a * (y + ya) = 0] (mod p)" .
+  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
+    p_a_relprime
+  have a: "[y + ya = 0] (mod p)"
+    by auto
+  assume b: "y \<in> A" and c: "ya: A"
+  with A_def have "0 < y + ya"
+    by auto
+  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
+    by auto
+  moreover from b c p_eq2 A_def have "y + ya < p"
+    by auto
+  ultimately show False
+    apply simp
+    apply (frule_tac m = p in zcong_not_zero)
+    apply (auto simp add: a)
+    done
+qed
 
-lemma (in GAUSS) F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)";
+lemma (in GAUSS) F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
   apply (insert F_D_disj finite_F finite_D)
-  proof -;
-    have "card (F \<union> D) = card E + card D";
-      by (auto simp add: finite_F finite_D F_D_disj 
-                         card_Un_disjoint F_card_eq_E)
-    then have "card (F \<union> D) = card C";
-      by (simp add: C_card_eq_D_plus_E)
-    from this show "card (F \<union> D) = nat ((p - 1) div 2)"; 
-      by (simp add: C_card_eq_B B_card_eq)
-qed;
+proof -
+  have "card (F \<union> D) = card E + card D"
+    by (auto simp add: finite_F finite_D F_D_disj
+      card_Un_disjoint F_card_eq_E)
+  then have "card (F \<union> D) = card C"
+    by (simp add: C_card_eq_D_plus_E)
+  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
+    by (simp add: C_card_eq_B B_card_eq)
+qed
 
-lemma (in GAUSS) F_Un_D_eq_A: "F \<union> D = A";
-  apply (insert finite_A F_Un_D_subset A_card_eq F_Un_D_card) 
-by (auto simp add: card_seteq)
+lemma (in GAUSS) F_Un_D_eq_A: "F \<union> D = A"
+  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
 
-lemma (in GAUSS) prod_D_F_eq_prod_A: 
-    "(setprod id D) * (setprod id F) = setprod id A";
+lemma (in GAUSS) prod_D_F_eq_prod_A:
+    "(setprod id D) * (setprod id F) = setprod id A"
   apply (insert F_D_disj finite_D finite_F)
   apply (frule setprod_Un_disjoint [of F D id])
-by (auto simp add: F_Un_D_eq_A)
+  apply (auto simp add: F_Un_D_eq_A)
+  done
 
 lemma (in GAUSS) prod_F_zcong:
-    "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
-  proof -
-    have "setprod id F = setprod id (op - p ` E)"
-      by (auto simp add: F_def)
-    then have "setprod id F = setprod (op - p) E"
-      apply simp
-      apply (insert finite_E inj_on_pminusx_E)
-      by (frule_tac f = "op - p" in setprod_reindex_id, auto)
-    then have one: 
-      "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
-      apply simp
-      apply (insert p_g_0 finite_E)
-      by (auto simp add: StandardRes_prod)
-    moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
-      apply clarify
-      apply (insert zcong_id [of p])
-      by (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
-    moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
-      apply clarify
-      by (simp add: StandardRes_prop1 zcong_sym)
-    moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
-      apply clarify
-      apply (insert a b)
-      by (rule_tac b = "p - x" in zcong_trans, auto)
-    ultimately have c:
-      "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
-      apply simp
-      apply (insert finite_E p_g_0)
-      by (rule setprod_same_function_zcong [of E "StandardRes p o (op - p)"
-                                                     uminus p], auto)
-    then have two: "[setprod id F = setprod (uminus) E](mod p)"
-      apply (insert one c)
-      by (rule zcong_trans [of "setprod id F" 
+  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
+proof -
+  have "setprod id F = setprod id (op - p ` E)"
+    by (auto simp add: F_def)
+  then have "setprod id F = setprod (op - p) E"
+    apply simp
+    apply (insert finite_E inj_on_pminusx_E)
+    apply (frule_tac f = "op - p" in setprod_reindex_id, auto)
+    done
+  then have one:
+    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
+    apply simp
+    apply (insert p_g_0 finite_E)
+    by (auto simp add: StandardRes_prod)
+  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
+    apply clarify
+    apply (insert zcong_id [of p])
+    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
+    done
+  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
+    apply clarify
+    apply (simp add: StandardRes_prop1 zcong_sym)
+    done
+  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
+    apply clarify
+    apply (insert a b)
+    apply (rule_tac b = "p - x" in zcong_trans, auto)
+    done
+  ultimately have c:
+    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
+    apply simp
+    apply (insert finite_E p_g_0)
+    apply (rule setprod_same_function_zcong
+      [of E "StandardRes p o (op - p)" uminus p], auto)
+    done
+  then have two: "[setprod id F = setprod (uminus) E](mod p)"
+    apply (insert one c)
+    apply (rule zcong_trans [of "setprod id F"
                                "setprod (StandardRes p o op - p) E" p
-                               "setprod uminus E"], auto) 
-    also have "setprod uminus E = (setprod id E) * (-1)^(card E)" 
-      apply (insert finite_E)
-      by (induct set: Finites, auto)
-    then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
-      by (simp add: zmult_commute)
-    with two show ?thesis
-      by simp
+                               "setprod uminus E"], auto)
+    done
+  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
+    using finite_E by (induct set: Finites) auto
+  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
+    by (simp add: zmult_commute)
+  with two show ?thesis
+    by simp
 qed
 
 subsection {* Gauss' Lemma *}
@@ -439,60 +446,65 @@
   by (auto simp add: finite_E neg_one_special)
 
 theorem (in GAUSS) pre_gauss_lemma:
-    "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
-  proof -
-    have "[setprod id A = setprod id F * setprod id D](mod p)"
-      by (auto simp add: prod_D_F_eq_prod_A zmult_commute)
-    then have "[setprod id A = ((-1)^(card E) * setprod id E) * 
-        setprod id D] (mod p)"
-      apply (rule zcong_trans)
-      by (auto simp add: prod_F_zcong zcong_scalar)
-    then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
-      apply (rule zcong_trans)
-      apply (insert C_prod_eq_D_times_E, erule subst)
-      by (subst zmult_assoc, auto)
-    then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
-      apply (rule zcong_trans)
-      by (simp add: C_B_zcong_prod zcong_scalar2)
-    then have "[setprod id A = ((-1)^(card E) *
-        (setprod id ((%x. x * a) ` A)))] (mod p)"
-      by (simp add: B_def)
-    then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))] 
-        (mod p)"
-      by(simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric])
-    moreover have "setprod (%x. x * a) A = 
-        setprod (%x. a) A * setprod id A"
-      by (insert finite_A, induct set: Finites, auto)
-    ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A * 
-        setprod id A))] (mod p)"
-      by simp 
-    then have "[setprod id A = ((-1)^(card E) * a^(card A) * 
-        setprod id A)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant
-        zmult_assoc)
-    then have a: "[setprod id A * (-1)^(card E) = 
-        ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
-      by (rule zcong_scalar)
-    then have "[setprod id A * (-1)^(card E) = setprod id A * 
-        (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: a mult_commute mult_left_commute)
-    then have "[setprod id A * (-1)^(card E) = setprod id A * 
-        a^(card A)](mod p)"
-      apply (rule zcong_trans)
-      by (simp add: aux)
-    with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
-         p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
-       by (simp add: order_less_imp_le)
-    from this show ?thesis
-      by (simp add: A_card_eq zcong_sym)
+  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
+proof -
+  have "[setprod id A = setprod id F * setprod id D](mod p)"
+    by (auto simp add: prod_D_F_eq_prod_A zmult_commute)
+  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
+      setprod id D] (mod p)"
+    apply (rule zcong_trans)
+    apply (auto simp add: prod_F_zcong zcong_scalar)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
+    apply (rule zcong_trans)
+    apply (insert C_prod_eq_D_times_E, erule subst)
+    apply (subst zmult_assoc, auto)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: C_B_zcong_prod zcong_scalar2)
+    done
+  then have "[setprod id A = ((-1)^(card E) *
+    (setprod id ((%x. x * a) ` A)))] (mod p)"
+    by (simp add: B_def)
+  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
+    (mod p)"
+    by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric])
+  moreover have "setprod (%x. x * a) A =
+    setprod (%x. a) A * setprod id A"
+    using finite_A by (induct set: Finites) auto
+  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
+    setprod id A))] (mod p)"
+    by simp
+  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
+      setprod id A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant zmult_assoc)
+    done
+  then have a: "[setprod id A * (-1)^(card E) =
+      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
+    by (rule zcong_scalar)
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: a mult_commute mult_left_commute)
+    done
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      a^(card A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: aux)
+    done
+  with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
+      p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
+    by (simp add: order_less_imp_le)
+  from this show ?thesis
+    by (simp add: A_card_eq zcong_sym)
 qed
 
 theorem (in GAUSS) gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
 proof -
   from Euler_Criterion p_prime p_g_2 have
-    "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
+      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
     by auto
   moreover note pre_gauss_lemma
   ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"
--- a/src/HOL/NumberTheory/Int2.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Int2.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,14 +5,14 @@
 
 header {*Integers: Divisibility and Congruences*}
 
-theory Int2 imports Finite2 WilsonRuss begin;
+theory Int2 imports Finite2 WilsonRuss begin
 
 text{*Note.  This theory is being revised.  See the web page
 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
 
 constdefs
   MultInv :: "int => int => int" 
-  "MultInv p x == x ^ nat (p - 2)";
+  "MultInv p x == x ^ nat (p - 2)"
 
 (*****************************************************************)
 (*                                                               *)
@@ -20,69 +20,68 @@
 (*                                                               *)
 (*****************************************************************)
 
-lemma zpower_zdvd_prop1 [rule_format]: "((0 < n) & (p dvd y)) --> 
-    p dvd ((y::int) ^ n)";
-  by (induct_tac n, auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
+lemma zpower_zdvd_prop1:
+  "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
+  by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
 
-lemma zdvd_bounds: "n dvd m ==> (m \<le> (0::int) | n \<le> m)";
-proof -;
-  assume "n dvd m";
-  then have "~(0 < m & m < n)";
-    apply (insert zdvd_not_zless [of m n])
-    by (rule contrapos_pn, auto)
-  then have "(~0 < m | ~m < n)"  by auto
+lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
+proof -
+  assume "n dvd m"
+  then have "~(0 < m & m < n)"
+    using zdvd_not_zless [of m n] by auto
   then show ?thesis by auto
-qed;
-
-lemma aux4: " -(m * n) = (-m) * (n::int)";
-  by auto
+qed
 
 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
-    (p dvd m) | (p dvd n)";
-  apply (case_tac "0 \<le> m")
+    (p dvd m) | (p dvd n)"
+  apply (cases "0 \<le> m")
   apply (simp add: zprime_zdvd_zmult)
-  by (insert zprime_zdvd_zmult [of "-m" p n], auto)
+  apply (insert zprime_zdvd_zmult [of "-m" p n])
+  apply auto
+  done
 
-lemma zpower_zdvd_prop2 [rule_format]: "zprime p --> p dvd ((y::int) ^ n) 
-    --> 0 < n --> p dvd y";
-  apply (induct_tac n, auto)
-  apply (frule zprime_zdvd_zmult_better, auto)
-done
-
-lemma stupid: "(0 :: int) \<le> y ==> x \<le> x + y";
-  by arith
+lemma zpower_zdvd_prop2:
+    "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
+  apply (induct n)
+   apply simp
+  apply (frule zprime_zdvd_zmult_better)
+   apply simp
+  apply force
+  done
 
-lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y";
-proof -;
-  assume "0 < z";
-  then have "(x div z) * z \<le> (x div z) * z + x mod z";
-  apply (rule_tac x = "x div z * z" in stupid)
-  by (simp add: pos_mod_sign)
-  also have "... = x";
-    by (auto simp add: zmod_zdiv_equality [THEN sym] zmult_ac)
-  also assume  "x < y * z";
-  finally show ?thesis;
+lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
+proof -
+  assume "0 < z"
+  then have "(x div z) * z \<le> (x div z) * z + x mod z"
+    by arith
+  also have "... = x"
+    by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
+  also assume  "x < y * z"
+  finally show ?thesis
     by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
-qed;
+qed
 
-lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y";
-proof -;
-  assume "0 < z" and "x < (y * z) + z";
+lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
+proof -
+  assume "0 < z" and "x < (y * z) + z"
   then have "x < (y + 1) * z" by (auto simp add: int_distrib)
-  then have "x div z < y + 1";
-    by (rule_tac y = "y + 1" in div_prop1, auto simp add: prems)
+  then have "x div z < y + 1"
+    apply -
+    apply (rule_tac y = "y + 1" in div_prop1)
+    apply (auto simp add: prems)
+    done
   then show ?thesis by auto
-qed;
+qed
 
-lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)";
-proof-;
-  assume "0 < y";
+lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
+proof-
+  assume "0 < y"
   from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
-  moreover have "0 \<le> x mod y";
+  moreover have "0 \<le> x mod y"
     by (auto simp add: prems pos_mod_sign)
-  ultimately show ?thesis;
+  ultimately show ?thesis
     by arith
-qed;
+qed
 
 (*****************************************************************)
 (*                                                               *)
@@ -90,96 +89,102 @@
 (*                                                               *)
 (*****************************************************************)
 
-lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)";
+lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
   by (auto simp add: zcong_def)
 
-lemma zcong_id: "[m = 0] (mod m)";
+lemma zcong_id: "[m = 0] (mod m)"
   by (auto simp add: zcong_def zdvd_0_right)
 
-lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)";
+lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
   by (auto simp add: zcong_refl zcong_zadd)
 
-lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)";
-  by (induct_tac z, auto simp add: zcong_zmult)
+lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
+  by (induct z) (auto simp add: zcong_zmult)
 
 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
-    [a = d](mod m)";
-  by (auto, rule_tac b = c in zcong_trans)
+    [a = d](mod m)"
+  apply (erule zcong_trans)
+  apply simp
+  done
 
-lemma aux1: "a - b = (c::int) ==> a = c + b";
+lemma aux1: "a - b = (c::int) ==> a = c + b"
   by auto
 
 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
-    [c = b * d] (mod m))";
+    [c = b * d] (mod m))"
   apply (auto simp add: zcong_def dvd_def)
   apply (rule_tac x = "ka + k * d" in exI)
-  apply (drule aux1)+;
+  apply (drule aux1)+
   apply (auto simp add: int_distrib)
   apply (rule_tac x = "ka - k * d" in exI)
-  apply (drule aux1)+;
+  apply (drule aux1)+
   apply (auto simp add: int_distrib)
-done
+  done
 
 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
-    ([c = d * a](mod m) = [c = d * b] (mod m))";
+    ([c = d * a](mod m) = [c = d * b] (mod m))"
   by (auto simp add: zmult_ac zcong_zmult_prop1)
 
 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
-    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)";
+    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
   apply (auto simp add: zcong_def)
   apply (drule zprime_zdvd_zmult_better, auto)
-done
+  done
 
 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
-    x < m; y < m |] ==> x = y";
+    x < m; y < m |] ==> x = y"
   apply (simp add: zcong_zmod_eq)
-  apply (subgoal_tac "(x mod m) = x");
-  apply (subgoal_tac "(y mod m) = y");
+  apply (subgoal_tac "(x mod m) = x")
+  apply (subgoal_tac "(y mod m) = y")
   apply simp
   apply (rule_tac [1-2] mod_pos_pos_trivial)
-by auto
+  apply auto
+  done
 
 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
-    ~([x = 1] (mod p))";
-proof;
+    ~([x = 1] (mod p))"
+proof
   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
-  then have "[1 = -1] (mod p)";
+  then have "[1 = -1] (mod p)"
     apply (auto simp add: zcong_sym)
     apply (drule zcong_trans, auto)
-  done
-  then have "[1 + 1 = -1 + 1] (mod p)";
+    done
+  then have "[1 + 1 = -1 + 1] (mod p)"
     by (simp only: zcong_shift)
-  then have "[2 = 0] (mod p)";
+  then have "[2 = 0] (mod p)"
     by auto
-  then have "p dvd 2";
+  then have "p dvd 2"
     by (auto simp add: dvd_def zcong_def)
-  with prems show False;
+  with prems show False
     by (auto simp add: zdvd_not_zless)
-qed;
+qed
 
-lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)";
+lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
   by (auto simp add: zcong_def)
 
 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
-  [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"; 
+    [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" 
   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
 
 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
-  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)";
+  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
   apply auto 
   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
-by auto
+  apply auto
+  done
 
-lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"; 
+lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" 
   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
 
-lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0";
+lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
   apply (drule order_le_imp_less_or_eq, auto)
-by (frule_tac m = m in zcong_not_zero, auto)
+  apply (frule_tac m = m in zcong_not_zero)
+  apply auto
+  done
 
 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
-    ==> zgcd (setprod id A,y) = 1";
-  by (induct set: Finites, auto simp add: zgcd_zgcd_zmult)
+    ==> zgcd (setprod id A,y) = 1"
+  by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
 
 (*****************************************************************)
 (*                                                               *)
@@ -188,69 +193,69 @@
 (*****************************************************************)
 
 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
-    [(MultInv p x) = (MultInv p y)] (mod p)";
+    [(MultInv p x) = (MultInv p y)] (mod p)"
   by (auto simp add: MultInv_def zcong_zpower)
 
 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-  [(x * (MultInv p x)) = 1] (mod p)";
-proof (simp add: MultInv_def zcong_eq_zdvd_prop);
-  assume "2 < p" and "zprime p" and "~ p dvd x";
-  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)";
+  [(x * (MultInv p x)) = 1] (mod p)"
+proof (simp add: MultInv_def zcong_eq_zdvd_prop)
+  assume "2 < p" and "zprime p" and "~ p dvd x"
+  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
     by auto
-  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)";
+  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
     by (simp only: nat_add_distrib, auto)
   also have "p - 2 + 1 = p - 1" by arith
-  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)";
+  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
     by (rule ssubst, auto)
-  also from prems have "[x ^ nat (p - 1) = 1] (mod p)";
+  also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
     by (auto simp add: Little_Fermat) 
-  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)";.;
-qed;
+  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
+qed
 
 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    [(MultInv p x) * x = 1] (mod p)";
+    [(MultInv p x) * x = 1] (mod p)"
   by (auto simp add: MultInv_prop2 zmult_ac)
 
-lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))";
+lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
   by (simp add: nat_diff_distrib)
 
-lemma aux_2: "2 < p ==> 0 < nat (p - 2)";
+lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
   by auto
 
 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    ~([MultInv p x = 0](mod p))";
+    ~([MultInv p x = 0](mod p))"
   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   apply (drule aux_2)
   apply (drule zpower_zdvd_prop2, auto)
-done
+  done
 
 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
-      (MultInv p (MultInv p x)))] (mod p)";
+      (MultInv p (MultInv p x)))] (mod p)"
   apply (drule MultInv_prop2, auto)
-  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto);
+  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
   apply (auto simp add: zcong_sym)
-done
+  done
 
 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
-    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)";
+    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
   apply (frule MultInv_prop3, auto)
   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   apply (drule MultInv_prop2, auto)
   apply (drule_tac k = x in zcong_scalar2, auto)
   apply (auto simp add: zmult_ac)
-done
+  done
 
 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    [(MultInv p (MultInv p x)) = x] (mod p)";
+    [(MultInv p (MultInv p x)) = x] (mod p)"
   apply (frule aux__1, auto)
   apply (drule aux__2, auto)
   apply (drule zcong_trans, auto)
-done
+  done
 
 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
-    [x = y] (mod p)";
+    [x = y] (mod p)"
   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
     m = p and k = x in zcong_scalar)
   apply (insert MultInv_prop2 [of p x], simp)
@@ -261,38 +266,38 @@
   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   apply (auto simp add: zcong_sym)
-done
+  done
 
 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
-    [a * MultInv p j = a * MultInv p k] (mod p)";
+    [a * MultInv p j = a * MultInv p k] (mod p)"
   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
 
 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
-    [j * k = a * MultInv p k * k] (mod p)";
+    [j * k = a * MultInv p k * k] (mod p)"
   by (auto simp add: zcong_scalar)
 
 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
-    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)";
+    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
     [of "MultInv p k * k" 1 p "j * k" a])
   apply (auto simp add: zmult_ac)
-done
+  done
 
 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
-     (MultInv p j) * a] (mod p)";
+     (MultInv p j) * a] (mod p)"
   by (auto simp add: zmult_assoc zcong_scalar2)
 
 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
-       ==> [k = a * (MultInv p j)] (mod p)";
+       ==> [k = a * (MultInv p j)] (mod p)"
   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   apply (auto simp add: zmult_ac zcong_sym)
-done
+  done
 
 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
-    [k = a * MultInv p j] (mod p)";
+    [k = a * MultInv p j] (mod p)"
   apply (drule aux___1)
   apply (frule aux___2, auto)
   by (drule aux___3, drule aux___4, auto)
@@ -300,11 +305,11 @@
 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
     ~([k = 0](mod p)); ~([j = 0](mod p));
     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
-      [j = k] (mod p)";
+      [j = k] (mod p)"
   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   apply (frule zprime_imp_zrelprime, auto)
   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   apply (drule MultInv_prop5, auto)
-done
+  done
 
 end
--- a/src/HOL/NumberTheory/IntFact.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/IntFact.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -36,41 +36,36 @@
 
 
 lemma d22set_induct:
-  "(!!a. P {} a) ==>
-    (!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1)
-      ==> P (d22set a) a)
-    ==> P (d22set u) u"
-proof -
-  case rule_context
-  show ?thesis
-    apply (rule d22set.induct)
-    apply safe
-     apply (case_tac [2] "1 < a")
-      apply (rule_tac [2] rule_context)
-       apply (simp_all (no_asm_simp))
-     apply (simp_all (no_asm_simp) add: d22set.simps rule_context)
-    done
-qed
+  assumes "!!a. P {} a"
+    and "!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1) ==> P (d22set a) a"
+  shows "P (d22set u) u"
+  apply (rule d22set.induct)
+  apply safe
+   prefer 2
+   apply (case_tac "1 < a")
+    apply (rule_tac prems)
+     apply (simp_all (no_asm_simp))
+   apply (simp_all (no_asm_simp) add: d22set.simps prems)
+  done
 
 lemma d22set_g_1 [rule_format]: "b \<in> d22set a --> 1 < b"
   apply (induct a rule: d22set_induct)
-   prefer 2
-   apply (subst d22set.simps)
-   apply auto
+   apply simp
+  apply (subst d22set.simps)
+  apply auto
   done
 
 lemma d22set_le [rule_format]: "b \<in> d22set a --> b \<le> a"
   apply (induct a rule: d22set_induct)
-   prefer 2
+  apply simp
    apply (subst d22set.simps)
    apply auto
   done
 
 lemma d22set_le_swap: "a < b ==> b \<notin> d22set a"
-  apply (auto dest: d22set_le)
-  done
+  by (auto dest: d22set_le)
 
-lemma d22set_mem [rule_format]: "1 < b --> b \<le> a --> b \<in> d22set a"
+lemma d22set_mem: "1 < b \<Longrightarrow> b \<le> a \<Longrightarrow> b \<in> d22set a"
   apply (induct a rule: d22set.induct)
   apply auto
    apply (simp_all add: d22set.simps)
--- a/src/HOL/NumberTheory/IntPrimes.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/IntPrimes.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -2,11 +2,6 @@
     ID:         $Id$
     Author:     Thomas M. Rasmussen
     Copyright   2000  University of Cambridge
-
-Changes by Jeremy Avigad, 2003/02/21:
-   Repaired definition of zprime_def, added "0 <= m &"
-   Added lemma zgcd_geq_zero
-   Repaired proof of zprime_imp_zrelprime
 *)
 
 header {* Divisibility and prime numbers (on integers) *}
--- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -16,12 +16,12 @@
 (*                                                             *)
 (***************************************************************)
 
-lemma (in GAUSS) QRLemma1: "a * setsum id A = 
+lemma (in GAUSS) QRLemma1: "a * setsum id A =
   p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E"
 proof -
-  from finite_A have "a * setsum id A = setsum (%x. a * x) A" 
+  from finite_A have "a * setsum id A = setsum (%x. a * x) A"
     by (auto simp add: setsum_const_mult id_def)
-  also have "setsum (%x. a * x) = setsum (%x. x * a)" 
+  also have "setsum (%x. a * x) = setsum (%x. x * a)"
     by (auto simp add: zmult_commute)
   also have "setsum (%x. x * a) A = setsum id B"
     by (simp add: B_def setsum_reindex_id[OF inj_on_xa_A])
@@ -34,28 +34,26 @@
   also from C_eq have "... = setsum id (D \<union> E)"
     by auto
   also from finite_D finite_E have "... = setsum id D + setsum id E"
-    apply (rule setsum_Un_disjoint)
-    by (auto simp add: D_def E_def)
-  also have "setsum (%x. p * (x div p)) B = 
+    by (rule setsum_Un_disjoint) (auto simp add: D_def E_def)
+  also have "setsum (%x. p * (x div p)) B =
       setsum ((%x. p * (x div p)) o (%x. (x * a))) A"
     by (auto simp add: B_def setsum_reindex inj_on_xa_A)
   also have "... = setsum (%x. p * ((x * a) div p)) A"
     by (auto simp add: o_def)
-  also from finite_A have "setsum (%x. p * ((x * a) div p)) A = 
+  also from finite_A have "setsum (%x. p * ((x * a) div p)) A =
     p * setsum (%x. ((x * a) div p)) A"
     by (auto simp add: setsum_const_mult)
   finally show ?thesis by arith
 qed
 
-lemma (in GAUSS) QRLemma2: "setsum id A = p * int (card E) - setsum id E + 
-  setsum id D" 
+lemma (in GAUSS) QRLemma2: "setsum id A = p * int (card E) - setsum id E +
+  setsum id D"
 proof -
   from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)"
     by (simp add: Un_commute)
-  also from F_D_disj finite_D finite_F have 
-      "... = setsum id D + setsum id F"
-    apply (simp add: Int_commute)
-    by (intro setsum_Un_disjoint) 
+  also from F_D_disj finite_D finite_F
+  have "... = setsum id D + setsum id F"
+    by (auto simp add: Int_commute intro: setsum_Un_disjoint)
   also from F_def have "F = (%x. (p - x)) ` E"
     by auto
   also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
@@ -69,30 +67,30 @@
     by arith
 qed
 
-lemma (in GAUSS) QRLemma3: "(a - 1) * setsum id A = 
+lemma (in GAUSS) QRLemma3: "(a - 1) * setsum id A =
     p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E"
 proof -
   have "(a - 1) * setsum id A = a * setsum id A - setsum id A"
-    by (auto simp add: zdiff_zmult_distrib)  
+    by (auto simp add: zdiff_zmult_distrib)
   also note QRLemma1
-  also from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D + 
-     setsum id E - setsum id A = 
-      p * (\<Sum>x \<in> A. x * a div p) + setsum id D + 
+  also from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
+     setsum id E - setsum id A =
+      p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
       setsum id E - (p * int (card E) - setsum id E + setsum id D)"
     by auto
-  also have "... = p * (\<Sum>x \<in> A. x * a div p) - 
-      p * int (card E) + 2 * setsum id E" 
+  also have "... = p * (\<Sum>x \<in> A. x * a div p) -
+      p * int (card E) + 2 * setsum id E"
     by arith
   finally show ?thesis
     by (auto simp only: zdiff_zmult_distrib2)
 qed
 
-lemma (in GAUSS) QRLemma4: "a \<in> zOdd ==> 
+lemma (in GAUSS) QRLemma4: "a \<in> zOdd ==>
     (setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)"
 proof -
   assume a_odd: "a \<in> zOdd"
   from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
-      (a - 1) * setsum id A - 2 * setsum id E" 
+      (a - 1) * setsum id A - 2 * setsum id E"
     by arith
   from a_odd have "a - 1 \<in> zEven"
     by (rule odd_minus_one_even)
@@ -109,10 +107,10 @@
   with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
     by (auto simp add: odd_iff_not_even)
   thus ?thesis
-    by (auto simp only: even_diff [THEN sym])
+    by (auto simp only: even_diff [symmetric])
 qed
 
-lemma (in GAUSS) QRLemma5: "a \<in> zOdd ==> 
+lemma (in GAUSS) QRLemma5: "a \<in> zOdd ==>
    (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
 proof -
   assume "a \<in> zOdd"
@@ -130,7 +128,7 @@
           by (auto simp add: A_def)
         with a_nonzero have "0 \<le> x * a"
           by (auto simp add: zero_le_mult_iff)
-        with p_g_2 show "0 \<le> x * a div p" 
+        with p_g_2 show "0 \<le> x * a div p"
           by (auto simp add: pos_imp_zdiv_nonneg_iff)
       qed
     qed
@@ -143,12 +141,13 @@
 qed
 
 lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p)); zprime p; 2 < p;
-  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==> 
+  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==>
   (Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
   apply (subst GAUSS.gauss_lemma)
   apply (auto simp add: GAUSS_def)
   apply (subst GAUSS.QRLemma5)
-by (auto simp add: GAUSS_def)
+  apply (auto simp add: GAUSS_def)
+  done
 
 (******************************************************************)
 (*                                                                *)
@@ -178,9 +177,9 @@
   defines S_def:     "S     == P_set <*> Q_set"
   defines S1_def:    "S1    == { (x, y). (x, y):S & ((p * y) < (q * x)) }"
   defines S2_def:    "S2    == { (x, y). (x, y):S & ((q * x) < (p * y)) }"
-  defines f1_def:    "f1 j  == { (j1, y). (j1, y):S & j1 = j & 
+  defines f1_def:    "f1 j  == { (j1, y). (j1, y):S & j1 = j &
                                  (y \<le> (q * j) div p) }"
-  defines f2_def:    "f2 j  == { (x, j1). (x, j1):S & j1 = j & 
+  defines f2_def:    "f2 j  == { (x, j1). (x, j1):S & j1 = j &
                                  (x \<le> (p * j) div q) }"
 
 lemma (in QRTEMP) p_fact: "0 < (p - 1) div 2"
@@ -199,7 +198,7 @@
   then show ?thesis by auto
 qed
 
-lemma (in QRTEMP) pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==> 
+lemma (in QRTEMP) pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>
     (p * b \<noteq> q * a)"
 proof
   assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2"
@@ -212,10 +211,11 @@
     with p_prime have "q = 1 | q = p"
       apply (auto simp add: zprime_def QRTEMP_def)
       apply (drule_tac x = q and R = False in allE)
-      apply (simp add: QRTEMP_def)    
+      apply (simp add: QRTEMP_def)
       apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)
       apply (insert prems)
-    by (auto simp add: QRTEMP_def)
+      apply (auto simp add: QRTEMP_def)
+      done
     with q_g_2 p_neq_q show False by auto
   qed
   ultimately have "q dvd b" by auto
@@ -223,7 +223,7 @@
   proof -
     assume "q dvd b"
     moreover from prems have "0 < b" by auto
-    ultimately show ?thesis by (insert zdvd_bounds [of q b], auto)
+    ultimately show ?thesis using zdvd_bounds [of q b] by auto
   qed
   with prems have "q \<le> (q - 1) div 2" by auto
   then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith
@@ -240,10 +240,10 @@
 qed
 
 lemma (in QRTEMP) P_set_finite: "finite (P_set)"
-  by (insert p_fact, auto simp add: P_set_def bdd_int_set_l_le_finite)
+  using p_fact by (auto simp add: P_set_def bdd_int_set_l_le_finite)
 
 lemma (in QRTEMP) Q_set_finite: "finite (Q_set)"
-  by (insert q_fact, auto simp add: Q_set_def bdd_int_set_l_le_finite)
+  using q_fact by (auto simp add: Q_set_def bdd_int_set_l_le_finite)
 
 lemma (in QRTEMP) S_finite: "finite S"
   by (auto simp add: S_def  P_set_finite Q_set_finite finite_cartesian_product)
@@ -263,43 +263,42 @@
 qed
 
 lemma (in QRTEMP) P_set_card: "(p - 1) div 2 = int (card (P_set))"
-  by (insert p_fact, auto simp add: P_set_def card_bdd_int_set_l_le)
+  using p_fact by (auto simp add: P_set_def card_bdd_int_set_l_le)
 
 lemma (in QRTEMP) Q_set_card: "(q - 1) div 2 = int (card (Q_set))"
-  by (insert q_fact, auto simp add: Q_set_def card_bdd_int_set_l_le)
+  using q_fact by (auto simp add: Q_set_def card_bdd_int_set_l_le)
 
 lemma (in QRTEMP) S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
-  apply (insert P_set_card Q_set_card P_set_finite Q_set_finite)
-  apply (auto simp add: S_def zmult_int setsum_constant)
-done
+  using P_set_card Q_set_card P_set_finite Q_set_finite
+  by (auto simp add: S_def zmult_int setsum_constant)
 
 lemma (in QRTEMP) S1_Int_S2_prop: "S1 \<inter> S2 = {}"
   by (auto simp add: S1_def S2_def)
 
 lemma (in QRTEMP) S1_Union_S2_prop: "S = S1 \<union> S2"
   apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
-  proof -
-    fix a and b
-    assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2"
-    with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
-    moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
-    ultimately show "p * b < q * a" by auto
-  qed
+proof -
+  fix a and b
+  assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2"
+  with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
+  moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
+  ultimately show "p * b < q * a" by auto
+qed
 
-lemma (in QRTEMP) card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) = 
+lemma (in QRTEMP) card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =
     int(card(S1)) + int(card(S2))"
-proof-
+proof -
   have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
     by (auto simp add: S_card)
   also have "... = int( card(S1) + card(S2))"
     apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
     apply (drule card_Un_disjoint, auto)
-  done
+    done
   also have "... = int(card(S1)) + int(card(S2))" by auto
   finally show ?thesis .
 qed
 
-lemma (in QRTEMP) aux1a: "[| 0 < a; a \<le> (p - 1) div 2; 
+lemma (in QRTEMP) aux1a: "[| 0 < a; a \<le> (p - 1) div 2;
                              0 < b; b \<le> (q - 1) div 2 |] ==>
                           (p * b < q * a) = (b \<le> q * a div p)"
 proof -
@@ -309,30 +308,31 @@
     assume "p * b < q * a"
     then have "p * b \<le> q * a" by auto
     then have "(p * b) div p \<le> (q * a) div p"
-      by (rule zdiv_mono1, insert p_g_2, auto)
+      by (rule zdiv_mono1) (insert p_g_2, auto)
     then show "b \<le> (q * a) div p"
       apply (subgoal_tac "p \<noteq> 0")
       apply (frule zdiv_zmult_self2, force)
-      by (insert p_g_2, auto)
+      apply (insert p_g_2, auto)
+      done
   qed
   moreover have "b \<le> q * a div p ==> p * b < q * a"
   proof -
     assume "b \<le> q * a div p"
     then have "p * b \<le> p * ((q * a) div p)"
-      by (insert p_g_2, auto simp add: mult_le_cancel_left)
+      using p_g_2 by (auto simp add: mult_le_cancel_left)
     also have "... \<le> q * a"
-      by (rule zdiv_leq_prop, insert p_g_2, auto)
+      by (rule zdiv_leq_prop) (insert p_g_2, auto)
     finally have "p * b \<le> q * a" .
     then have "p * b < q * a | p * b = q * a"
       by (simp only: order_le_imp_less_or_eq)
     moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa, insert prems, auto)
+      by (rule  pb_neq_qa) (insert prems, auto)
     ultimately show ?thesis by auto
   qed
   ultimately show ?thesis ..
 qed
 
-lemma (in QRTEMP) aux1b: "[| 0 < a; a \<le> (p - 1) div 2; 
+lemma (in QRTEMP) aux1b: "[| 0 < a; a \<le> (p - 1) div 2;
                              0 < b; b \<le> (q - 1) div 2 |] ==>
                           (q * a < p * b) = (a \<le> p * b div q)"
 proof -
@@ -342,30 +342,31 @@
     assume "q * a < p * b"
     then have "q * a \<le> p * b" by auto
     then have "(q * a) div q \<le> (p * b) div q"
-      by (rule zdiv_mono1, insert q_g_2, auto)
+      by (rule zdiv_mono1) (insert q_g_2, auto)
     then show "a \<le> (p * b) div q"
       apply (subgoal_tac "q \<noteq> 0")
       apply (frule zdiv_zmult_self2, force)
-      by (insert q_g_2, auto)
+      apply (insert q_g_2, auto)
+      done
   qed
   moreover have "a \<le> p * b div q ==> q * a < p * b"
   proof -
     assume "a \<le> p * b div q"
     then have "q * a \<le> q * ((p * b) div q)"
-      by (insert q_g_2, auto simp add: mult_le_cancel_left)
+      using q_g_2 by (auto simp add: mult_le_cancel_left)
     also have "... \<le> p * b"
-      by (rule zdiv_leq_prop, insert q_g_2, auto)
+      by (rule zdiv_leq_prop) (insert q_g_2, auto)
     finally have "q * a \<le> p * b" .
     then have "q * a < p * b | q * a = p * b"
       by (simp only: order_le_imp_less_or_eq)
     moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa, insert prems, auto)
+      by (rule  pb_neq_qa) (insert prems, auto)
     ultimately show ?thesis by auto
   qed
   ultimately show ?thesis ..
 qed
 
-lemma aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==> 
+lemma aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==>
              (q * ((p - 1) div 2)) div p \<le> (q - 1) div 2"
 proof-
   assume "zprime p" and "zprime q" and "2 < p" and "2 < q"
@@ -388,10 +389,10 @@
     by (auto simp add: even1 even_prod_div_2)
   also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p"
     by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
-  finally show ?thesis 
-    apply (rule_tac x = " q * ((p - 1) div 2)" and 
+  finally show ?thesis
+    apply (rule_tac x = " q * ((p - 1) div 2)" and
                     y = "(q - 1) div 2" in div_prop2)
-    by (insert prems, auto)
+    using prems by auto
 qed
 
 lemma (in QRTEMP) aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p"
@@ -410,27 +411,29 @@
     ultimately have "card ((%(x,y). y) ` (f1 j)) = card  (f1 j)"
       by (auto simp add: f1_def card_image)
     moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}"
-      by (insert prems, auto simp add: f1_def S_def Q_set_def P_set_def 
-        image_def)
+      using prems by (auto simp add: f1_def S_def Q_set_def P_set_def image_def)
     ultimately show ?thesis by (auto simp add: f1_def)
   qed
   also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})"
   proof -
-    have "{y. y \<in> Q_set & y \<le> (q * j) div p} = 
+    have "{y. y \<in> Q_set & y \<le> (q * j) div p} =
         {y. 0 < y & y \<le> (q * j) div p}"
       apply (auto simp add: Q_set_def)
-      proof -
-        fix x
-        assume "0 < x" and "x \<le> q * j div p"
-        with j_fact P_set_def  have "j \<le> (p - 1) div 2" by auto
-        with q_g_2 have "q * j \<le> q * ((p - 1) div 2)"
-          by (auto simp add: mult_le_cancel_left)
-        with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p"
-          by (auto simp add: zdiv_mono1)
-        also from prems have "... \<le> (q - 1) div 2"
-          apply simp apply (insert aux2) by (simp add: QRTEMP_def)
-        finally show "x \<le> (q - 1) div 2" by (insert prems, auto)
-      qed
+    proof -
+      fix x
+      assume "0 < x" and "x \<le> q * j div p"
+      with j_fact P_set_def  have "j \<le> (p - 1) div 2" by auto
+      with q_g_2 have "q * j \<le> q * ((p - 1) div 2)"
+        by (auto simp add: mult_le_cancel_left)
+      with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p"
+        by (auto simp add: zdiv_mono1)
+      also from prems have "... \<le> (q - 1) div 2"
+        apply simp
+        apply (insert aux2)
+        apply (simp add: QRTEMP_def)
+        done
+      finally show "x \<le> (q - 1) div 2" using prems by auto
+    qed
     then show ?thesis by auto
   qed
   also have "... = (q * j) div p"
@@ -440,7 +443,8 @@
     then have "0 \<le> q * j" by auto
     then have "0 div p \<le> (q * j) div p"
       apply (rule_tac a = 0 in zdiv_mono1)
-      by (insert p_g_2, auto)
+      apply (insert p_g_2, auto)
+      done
     also have "0 div p = 0" by auto
     finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
   qed
@@ -463,26 +467,25 @@
     ultimately have "card ((%(x,y). x) ` (f2 j)) = card  (f2 j)"
       by (auto simp add: f2_def card_image)
     moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}"
-      by (insert prems, auto simp add: f2_def S_def Q_set_def 
-        P_set_def image_def)
+      using prems by (auto simp add: f2_def S_def Q_set_def P_set_def image_def)
     ultimately show ?thesis by (auto simp add: f2_def)
   qed
   also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})"
   proof -
-    have "{y. y \<in> P_set & y \<le> (p * j) div q} = 
+    have "{y. y \<in> P_set & y \<le> (p * j) div q} =
         {y. 0 < y & y \<le> (p * j) div q}"
       apply (auto simp add: P_set_def)
-      proof -
-        fix x
-        assume "0 < x" and "x \<le> p * j div q"
-        with j_fact Q_set_def  have "j \<le> (q - 1) div 2" by auto
-        with p_g_2 have "p * j \<le> p * ((q - 1) div 2)"
-          by (auto simp add: mult_le_cancel_left)
-        with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q"
-          by (auto simp add: zdiv_mono1)
-        also from prems have "... \<le> (p - 1) div 2"
-          by (auto simp add: aux2 QRTEMP_def)
-        finally show "x \<le> (p - 1) div 2" by (insert prems, auto)
+    proof -
+      fix x
+      assume "0 < x" and "x \<le> p * j div q"
+      with j_fact Q_set_def  have "j \<le> (q - 1) div 2" by auto
+      with p_g_2 have "p * j \<le> p * ((q - 1) div 2)"
+        by (auto simp add: mult_le_cancel_left)
+      with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q"
+        by (auto simp add: zdiv_mono1)
+      also from prems have "... \<le> (p - 1) div 2"
+        by (auto simp add: aux2 QRTEMP_def)
+      finally show "x \<le> (p - 1) div 2" using prems by auto
       qed
     then show ?thesis by auto
   qed
@@ -493,7 +496,8 @@
     then have "0 \<le> p * j" by auto
     then have "0 div q \<le> (p * j) div q"
       apply (rule_tac a = 0 in zdiv_mono1)
-      by (insert q_g_2, auto)
+      apply (insert q_g_2, auto)
+      done
     also have "0 div q = 0" by auto
     finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
   qed
@@ -511,12 +515,12 @@
   moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})"
     by (auto simp add: f1_def)
   moreover note P_set_finite
-  ultimately have "int(card (UNION P_set f1)) = 
+  ultimately have "int(card (UNION P_set f1)) =
       setsum (%x. int(card (f1 x))) P_set"
     by(simp add:card_UN_disjoint int_setsum o_def)
   moreover have "S1 = UNION P_set f1"
     by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
-  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set" 
+  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"
     by auto
   also have "... = setsum (%j. q * j div p) P_set"
     using aux3a by(fastsimp intro: setsum_cong)
@@ -531,34 +535,34 @@
     have "f2 x \<subseteq> S" by (auto simp add: f2_def)
     with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
   qed
-  moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y --> 
+  moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->
       (f2 x) \<inter> (f2 y) = {})"
     by (auto simp add: f2_def)
   moreover note Q_set_finite
-  ultimately have "int(card (UNION Q_set f2)) = 
+  ultimately have "int(card (UNION Q_set f2)) =
       setsum (%x. int(card (f2 x))) Q_set"
     by(simp add:card_UN_disjoint int_setsum o_def)
   moreover have "S2 = UNION Q_set f2"
     by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
-  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set" 
+  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"
     by auto
   also have "... = setsum (%j. p * j div q) Q_set"
     using aux3b by(fastsimp intro: setsum_cong)
   finally show ?thesis .
 qed
 
-lemma (in QRTEMP) S1_carda: "int (card(S1)) = 
+lemma (in QRTEMP) S1_carda: "int (card(S1)) =
     setsum (%j. (j * q) div p) P_set"
   by (auto simp add: S1_card zmult_ac)
 
-lemma (in QRTEMP) S2_carda: "int (card(S2)) = 
+lemma (in QRTEMP) S2_carda: "int (card(S2)) =
     setsum (%j. (j * p) div q) Q_set"
   by (auto simp add: S2_card zmult_ac)
 
-lemma (in QRTEMP) pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) + 
+lemma (in QRTEMP) pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +
     (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)"
 proof -
-  have "(setsum (%j. (j * p) div q) Q_set) + 
+  have "(setsum (%j. (j * p) div q) Q_set) +
       (setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)"
     by (auto simp add: S1_carda S2_carda)
   also have "... = int (card S1) + int (card S2)"
@@ -572,50 +576,54 @@
   apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
   apply (drule_tac x = q in allE)
   apply (drule_tac x = p in allE)
-by auto
+  apply auto
+  done
 
-lemma (in QRTEMP) QR_short: "(Legendre p q) * (Legendre q p) = 
+lemma (in QRTEMP) QR_short: "(Legendre p q) * (Legendre q p) =
     (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
 proof -
   from prems have "~([p = 0] (mod q))"
     by (auto simp add: pq_prime_neq QRTEMP_def)
-  with prems have a1: "(Legendre p q) = (-1::int) ^ 
+  with prems have a1: "(Legendre p q) = (-1::int) ^
       nat(setsum (%x. ((x * p) div q)) Q_set)"
     apply (rule_tac p = q in  MainQRLemma)
-    by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
+    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
+    done
   from prems have "~([q = 0] (mod p))"
     apply (rule_tac p = q and q = p in pq_prime_neq)
     apply (simp add: QRTEMP_def)+
     done
-  with prems have a2: "(Legendre q p) = 
+  with prems have a2: "(Legendre q p) =
       (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
     apply (rule_tac p = p in  MainQRLemma)
-    by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
-  from a1 a2 have "(Legendre p q) * (Legendre q p) = 
+    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
+    done
+  from a1 a2 have "(Legendre p q) * (Legendre q p) =
       (-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
         (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
     by auto
-  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) + 
+  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +
                    nat(setsum (%x. ((x * q) div p)) P_set))"
     by (auto simp add: zpower_zadd_distrib)
-  also have "nat(setsum (%x. ((x * p) div q)) Q_set) + 
+  also have "nat(setsum (%x. ((x * p) div q)) Q_set) +
       nat(setsum (%x. ((x * q) div p)) P_set) =
-        nat((setsum (%x. ((x * p) div q)) Q_set) + 
+        nat((setsum (%x. ((x * p) div q)) Q_set) +
           (setsum (%x. ((x * q) div p)) P_set))"
-    apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in 
-      nat_add_distrib [THEN sym])
-    by (auto simp add: S1_carda [THEN sym] S2_carda [THEN sym])
+    apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in
+      nat_add_distrib [symmetric])
+    apply (auto simp add: S1_carda [symmetric] S2_carda [symmetric])
+    done
   also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))"
     by (auto simp add: pq_sum_prop)
   finally show ?thesis .
 qed
 
 theorem Quadratic_Reciprocity:
-     "[| p \<in> zOdd; zprime p; q \<in> zOdd; zprime q; 
-         p \<noteq> q |] 
-      ==> (Legendre p q) * (Legendre q p) = 
+     "[| p \<in> zOdd; zprime p; q \<in> zOdd; zprime q;
+         p \<noteq> q |]
+      ==> (Legendre p q) * (Legendre q p) =
           (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
-  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [THEN sym] 
+  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [symmetric]
                      QRTEMP_def)
 
 end
--- a/src/HOL/NumberTheory/Residues.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Residues.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,7 +5,7 @@
 
 header {* Residue Sets *}
 
-theory Residues imports Int2 begin;
+theory Residues imports Int2 begin
 
 text{*Note.  This theory is being revised.  See the web page
 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
@@ -37,7 +37,7 @@
   "SR p == {x. (0 \<le> x) & (x < p)}"
 
   SRStar      :: "int => int set"
-  "SRStar p == {x. (0 < x) & (x < p)}";
+  "SRStar p == {x. (0 < x) & (x < p)}"
 
 (******************************************************************)
 (*                                                                *)
@@ -47,29 +47,29 @@
 
 subsection {* Properties of StandardRes *}
 
-lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)";
+lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)"
   by (auto simp add: StandardRes_def zcong_zmod)
 
 lemma StandardRes_prop2: "0 < m ==> (StandardRes m x1 = StandardRes m x2)
-      = ([x1 = x2] (mod m))";
+      = ([x1 = x2] (mod m))"
   by (auto simp add: StandardRes_def zcong_zmod_eq)
 
-lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))";
+lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))"
   by (auto simp add: StandardRes_def zcong_def zdvd_iff_zmod_eq_0)
 
 lemma StandardRes_prop4: "2 < m 
-     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)";
+     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)"
   by (auto simp add: StandardRes_def zcong_zmod_eq 
                      zmod_zmult_distrib [of x y m])
 
-lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x";
+lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x"
   by (auto simp add: StandardRes_def pos_mod_sign)
 
-lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p";
+lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p"
   by (auto simp add: StandardRes_def pos_mod_bound)
 
 lemma StandardRes_eq_zcong: 
-   "(StandardRes m x = 0) = ([x = 0](mod m))";
+   "(StandardRes m x = 0) = ([x = 0](mod m))"
   by (auto simp add: StandardRes_def zcong_eq_zdvd_prop dvd_def) 
 
 (******************************************************************)
@@ -80,55 +80,56 @@
 
 subsection {* Relations between StandardRes, SRStar, and SR *}
 
-lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p";
+lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p"
   by (auto simp add: SRStar_def SR_def)
 
-lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x";
+lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x"
   by (auto simp add: SR_def StandardRes_def mod_pos_pos_trivial)
 
 lemma StandardRes_SRStar_prop1: "2 < p ==> (StandardRes p x \<in> SRStar p) 
-     = (~[x = 0] (mod p))";
+     = (~[x = 0] (mod p))"
   apply (auto simp add: StandardRes_prop3 StandardRes_def
                         SRStar_def pos_mod_bound)
   apply (subgoal_tac "0 < p")
-by (drule_tac a = x in pos_mod_sign, arith, simp)
+  apply (drule_tac a = x in pos_mod_sign, arith, simp)
+  done
 
-lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))";
+lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))"
   by (auto simp add: SRStar_def zcong_def zdvd_not_zless)
 
 lemma StandardRes_SRStar_prop2: "[| 2 < p; zprime p; x \<in> SRStar p |] 
-     ==> StandardRes p (MultInv p x) \<in> SRStar p";
-  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp);
+     ==> StandardRes p (MultInv p x) \<in> SRStar p"
+  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp)
   apply (rule MultInv_prop3)
   apply (auto simp add: SRStar_def zcong_def zdvd_not_zless)
-done
+  done
 
-lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x";
+lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x"
   by (auto simp add: SRStar_SR_prop StandardRes_SR_prop)
 
 lemma StandardRes_SRStar_prop4: "[| zprime p; 2 < p; x \<in> SRStar p |] 
-     ==> StandardRes p x \<in> SRStar p";
+     ==> StandardRes p x \<in> SRStar p"
   by (frule StandardRes_SRStar_prop3, auto)
 
 lemma SRStar_mult_prop1: "[| zprime p; 2 < p; x \<in> SRStar p; y \<in> SRStar p|] 
-     ==> (StandardRes p (x * y)):SRStar p";
+     ==> (StandardRes p (x * y)):SRStar p"
   apply (frule_tac x = x in StandardRes_SRStar_prop4, auto)
   apply (frule_tac x = y in StandardRes_SRStar_prop4, auto)
   apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
-done
+  done
 
 lemma SRStar_mult_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)); 
      x \<in> SRStar p |] 
-     ==> StandardRes p (a * MultInv p x) \<in> SRStar p";
+     ==> StandardRes p (a * MultInv p x) \<in> SRStar p"
   apply (frule_tac x = x in StandardRes_SRStar_prop2, auto)
   apply (frule_tac x = "MultInv p x" in StandardRes_SRStar_prop1)
   apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
-done
+  done
 
-lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1";
+lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1"
   by (auto simp add: SRStar_def int_card_bdd_int_set_l_l)
 
-lemma SRStar_finite: "2 < p ==> finite( SRStar p)";
+lemma SRStar_finite: "2 < p ==> finite( SRStar p)"
   by (auto simp add: SRStar_def bdd_int_set_l_l_finite)
 
 (******************************************************************)
@@ -139,40 +140,42 @@
 
 subsection {* Properties relating ResSets with StandardRes *}
 
-lemma aux: "x mod m = y mod m ==> [x = y] (mod m)";
-  apply (subgoal_tac "x = y ==> [x = y](mod m)");
-  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)");
+lemma aux: "x mod m = y mod m ==> [x = y] (mod m)"
+  apply (subgoal_tac "x = y ==> [x = y](mod m)")
+  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)")
   apply (auto simp add: zcong_zmod [of x y m])
-done
+  done
 
-lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)";
+lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)"
   apply (auto simp add: ResSet_def StandardRes_def inj_on_def)
   apply (drule_tac m = m in aux, auto)
-done
+  done
 
 lemma StandardRes_Sum: "[| finite X; 0 < m |] 
-     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)"; 
+     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)" 
   apply (rule_tac F = X in finite_induct)
   apply (auto intro!: zcong_zadd simp add: StandardRes_prop1)
-done
+  done
 
-lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}";
+lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}"
   by (auto simp add: StandardRes_ubound StandardRes_lbound)
 
-lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X";
+lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X"
   apply (rule_tac f = "StandardRes m" in finite_imageD) 
-  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset);
-by (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
+  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset)
+  apply (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
+  done
 
-lemma mod_mod_is_mod: "[x = x mod m](mod m)";
+lemma mod_mod_is_mod: "[x = x mod m](mod m)"
   by (auto simp add: zcong_zmod)
 
 lemma StandardRes_prod: "[| finite X; 0 < m |] 
-     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)";
+     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)"
   apply (rule_tac F = X in finite_induct)
-by (auto intro!: zcong_zmult simp add: StandardRes_prop1)
+  apply (auto intro!: zcong_zmult simp add: StandardRes_prop1)
+  done
 
-lemma ResSet_image: "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==> ResSet m (f ` A)";
+lemma ResSet_image: "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==> ResSet m (f ` A)"
   by (auto simp add: ResSet_def)
 
 (****************************************************************)
@@ -181,7 +184,7 @@
 (*                                                              *)
 (****************************************************************)
 
-lemma ResSet_SRStar_prop: "ResSet p (SRStar p)";
+lemma ResSet_SRStar_prop: "ResSet p (SRStar p)"
   by (auto simp add: SRStar_def ResSet_def zcong_zless_imp_eq)
 
-end;
\ No newline at end of file
+end
--- a/src/HOL/NumberTheory/WilsonRuss.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/WilsonRuss.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -2,9 +2,6 @@
     ID:         $Id$
     Author:     Thomas M. Rasmussen
     Copyright   2000  University of Cambridge
-
-Changes by Jeremy Avigad, 2003/02/21:
-    repaired proof of prime_g_5
 *)
 
 header {* Wilson's Theorem according to Russinoff *}
@@ -165,19 +162,16 @@
 declare wset.simps [simp del]
 
 lemma wset_induct:
-  "(!!a p. P {} a p) \<Longrightarrow>
-    (!!a p. 1 < (a::int) \<Longrightarrow> P (wset (a - 1, p)) (a - 1) p
-      ==> P (wset (a, p)) a p)
-    ==> P (wset (u, v)) u v"
-proof -
-  case rule_context
-  show ?thesis
-    apply (rule wset.induct, safe)
-     apply (case_tac [2] "1 < a")
-      apply (rule_tac [2] rule_context, simp_all)
-      apply (simp_all add: wset.simps rule_context)
-    done
-qed
+  assumes "!!a p. P {} a p"
+    and "!!a p. 1 < (a::int) \<Longrightarrow> P (wset (a - 1, p)) (a - 1) p ==> P (wset (a, p)) a p"
+  shows "P (wset (u, v)) u v"
+  apply (rule wset.induct, safe)
+   prefer 2
+   apply (case_tac "1 < a")
+    apply (rule prems)
+     apply simp_all
+   apply (simp_all add: wset.simps prems)
+  done
 
 lemma wset_mem_imp_or [rule_format]:
   "1 < a \<Longrightarrow> b \<notin> wset (a - 1, p)