| author | huffman | 
| Tue, 12 Oct 2010 06:20:05 -0700 | |
| changeset 40006 | 116e94f9543b | 
| parent 39379 | ab1b070aa412 | 
| child 39992 | f225a499a8e5 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 3 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 4 | |
| 5 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 6 | *) | |
| 7 | ||
| 13914 | 8 | header {* Maps *}
 | 
| 9 | ||
| 15131 | 10 | theory Map | 
| 15140 | 11 | imports List | 
| 15131 | 12 | begin | 
| 3981 | 13 | |
| 35565 | 14 | types ('a,'b) "map" = "'a => 'b option" (infixr "~=>" 0)
 | 
| 35427 | 15 | translations (type) "'a ~=> 'b" <= (type) "'a => 'b option" | 
| 3981 | 16 | |
| 35427 | 17 | type_notation (xsymbols) | 
| 35565 | 18 | "map" (infixr "\<rightharpoonup>" 0) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 19 | |
| 19378 | 20 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 21 | empty :: "'a ~=> 'b" where | 
| 19378 | 22 | "empty == %x. None" | 
| 23 | ||
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 24 | definition | 
| 25670 | 25 |   map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 26 | "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | 
| 19378 | 27 | |
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 29 | map_comp (infixl "\<circ>\<^sub>m" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 30 | |
| 20800 | 31 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 32 |   map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 33 | "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" | 
| 34 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 35 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 36 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 37 | "m|`A = (\<lambda>x. if x : A then m x else None)" | 
| 13910 | 38 | |
| 21210 | 39 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 40 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 41 | |
| 20800 | 42 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 43 |   dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 44 |   "dom m = {a. m a ~= None}"
 | 
| 45 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 46 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 |   ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 48 |   "ran m = {b. EX a. m a = Some b}"
 | 
| 49 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 50 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 51 |   map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 52 | "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" | 
| 53 | ||
| 14180 | 54 | nonterminals | 
| 55 | maplets maplet | |
| 56 | ||
| 5300 | 57 | syntax | 
| 14180 | 58 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
| 59 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 60 |   ""         :: "maplet => maplets"             ("_")
 | |
| 61 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 62 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 63 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 64 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 65 | syntax (xsymbols) | 
| 14180 | 66 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 67 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 68 | ||
| 5300 | 69 | translations | 
| 14180 | 70 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 35115 | 71 | "_MapUpd m (_maplet x y)" == "m(x := CONST Some y)" | 
| 19947 | 72 | "_Map ms" == "_MapUpd (CONST empty) ms" | 
| 14180 | 73 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | 
| 74 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 75 | ||
| 5183 | 76 | primrec | 
| 34941 | 77 |   map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where
 | 
| 78 | "map_of [] = empty" | |
| 79 | | "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)" | |
| 5300 | 80 | |
| 34941 | 81 | definition | 
| 82 |   map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where
 | |
| 83 | "map_upds m xs ys = m ++ map_of (rev (zip xs ys))" | |
| 84 | ||
| 85 | translations | |
| 86 | "_MapUpd m (_maplets x y)" == "CONST map_upds m x y" | |
| 25965 | 87 | |
| 88 | lemma map_of_Cons_code [code]: | |
| 89 | "map_of [] k = None" | |
| 90 | "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" | |
| 91 | by simp_all | |
| 92 | ||
| 20800 | 93 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 94 | subsection {* @{term [source] empty} *}
 | 
| 13908 | 95 | |
| 20800 | 96 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 24331 | 97 | by (rule ext) simp | 
| 13908 | 98 | |
| 99 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 100 | subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 101 | |
| 102 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 24331 | 103 | by (rule ext) simp | 
| 13908 | 104 | |
| 20800 | 105 | lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" | 
| 106 | proof | |
| 107 | assume "t(k \<mapsto> x) = empty" | |
| 108 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 109 | then show False by simp | |
| 110 | qed | |
| 13908 | 111 | |
| 20800 | 112 | lemma map_upd_eqD1: | 
| 113 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 114 | shows "x = y" | |
| 115 | proof - | |
| 116 | from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | |
| 117 | then show ?thesis by simp | |
| 118 | qed | |
| 14100 | 119 | |
| 20800 | 120 | lemma map_upd_Some_unfold: | 
| 24331 | 121 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | 
| 122 | by auto | |
| 14100 | 123 | |
| 20800 | 124 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 24331 | 125 | by auto | 
| 15303 | 126 | |
| 13908 | 127 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 24331 | 128 | unfolding image_def | 
| 129 | apply (simp (no_asm_use) add:full_SetCompr_eq) | |
| 130 | apply (rule finite_subset) | |
| 131 | prefer 2 apply assumption | |
| 132 | apply (auto) | |
| 133 | done | |
| 13908 | 134 | |
| 135 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 136 | subsection {* @{term [source] map_of} *}
 | 
| 13908 | 137 | |
| 15304 | 138 | lemma map_of_eq_None_iff: | 
| 24331 | 139 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 140 | by (induct xys) simp_all | |
| 15304 | 141 | |
| 24331 | 142 | lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | 
| 143 | apply (induct xys) | |
| 144 | apply simp | |
| 145 | apply (clarsimp split: if_splits) | |
| 146 | done | |
| 15304 | 147 | |
| 20800 | 148 | lemma map_of_eq_Some_iff [simp]: | 
| 24331 | 149 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | 
| 150 | apply (induct xys) | |
| 151 | apply simp | |
| 152 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 153 | done | |
| 15304 | 154 | |
| 20800 | 155 | lemma Some_eq_map_of_iff [simp]: | 
| 24331 | 156 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | 
| 157 | by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) | |
| 15304 | 158 | |
| 17724 | 159 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 160 | \<Longrightarrow> map_of xys x = Some y" | 
| 24331 | 161 | apply (induct xys) | 
| 162 | apply simp | |
| 163 | apply force | |
| 164 | done | |
| 15304 | 165 | |
| 20800 | 166 | lemma map_of_zip_is_None [simp]: | 
| 24331 | 167 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 168 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 169 | |
| 26443 | 170 | lemma map_of_zip_is_Some: | 
| 171 | assumes "length xs = length ys" | |
| 172 | shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" | |
| 173 | using assms by (induct rule: list_induct2) simp_all | |
| 174 | ||
| 175 | lemma map_of_zip_upd: | |
| 176 | fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" | |
| 177 | assumes "length ys = length xs" | |
| 178 | and "length zs = length xs" | |
| 179 | and "x \<notin> set xs" | |
| 180 | and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" | |
| 181 | shows "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 182 | proof | |
| 183 | fix x' :: 'a | |
| 184 | show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" | |
| 185 | proof (cases "x = x'") | |
| 186 | case True | |
| 187 | from assms True map_of_zip_is_None [of xs ys x'] | |
| 188 | have "map_of (zip xs ys) x' = None" by simp | |
| 189 | moreover from assms True map_of_zip_is_None [of xs zs x'] | |
| 190 | have "map_of (zip xs zs) x' = None" by simp | |
| 191 | ultimately show ?thesis by simp | |
| 192 | next | |
| 193 | case False from assms | |
| 194 | have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto | |
| 195 | with False show ?thesis by simp | |
| 196 | qed | |
| 197 | qed | |
| 198 | ||
| 199 | lemma map_of_zip_inject: | |
| 200 | assumes "length ys = length xs" | |
| 201 | and "length zs = length xs" | |
| 202 | and dist: "distinct xs" | |
| 203 | and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 204 | shows "ys = zs" | |
| 205 | using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) | |
| 206 | case Nil show ?case by simp | |
| 207 | next | |
| 208 | case (Cons y ys x xs z zs) | |
| 209 | from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))` | |
| 210 | have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp | |
| 211 | from Cons have "length ys = length xs" and "length zs = length xs" | |
| 212 | and "x \<notin> set xs" by simp_all | |
| 213 | then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) | |
| 214 | with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp | |
| 215 | moreover from map_of have "y = z" by (rule map_upd_eqD1) | |
| 216 | ultimately show ?case by simp | |
| 217 | qed | |
| 218 | ||
| 33635 | 219 | lemma map_of_zip_map: | 
| 220 | "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 221 | by (induct xs) (simp_all add: fun_eq_iff) | 
| 33635 | 222 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 223 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 24331 | 224 | apply (induct xys) | 
| 225 | apply (simp_all add: image_constant) | |
| 226 | apply (rule finite_subset) | |
| 227 | prefer 2 apply assumption | |
| 228 | apply auto | |
| 229 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 230 | |
| 20800 | 231 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 24331 | 232 | by (induct xs) (simp, atomize (full), auto) | 
| 13908 | 233 | |
| 20800 | 234 | lemma map_of_mapk_SomeI: | 
| 24331 | 235 | "inj f ==> map_of t k = Some x ==> | 
| 236 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 237 | by (induct t) (auto simp add: inj_eq) | |
| 13908 | 238 | |
| 20800 | 239 | lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" | 
| 24331 | 240 | by (induct l) auto | 
| 13908 | 241 | |
| 20800 | 242 | lemma map_of_filter_in: | 
| 24331 | 243 | "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" | 
| 244 | by (induct xs) auto | |
| 13908 | 245 | |
| 35607 | 246 | lemma map_of_map: | 
| 247 | "map_of (map (\<lambda>(k, v). (k, f v)) xs) = Option.map f \<circ> map_of xs" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 248 | by (induct xs) (auto simp add: fun_eq_iff) | 
| 35607 | 249 | |
| 250 | lemma dom_option_map: | |
| 251 | "dom (\<lambda>k. Option.map (f k) (m k)) = dom m" | |
| 252 | by (simp add: dom_def) | |
| 13908 | 253 | |
| 254 | ||
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 255 | subsection {* @{const Option.map} related *}
 | 
| 13908 | 256 | |
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 257 | lemma option_map_o_empty [simp]: "Option.map f o empty = empty" | 
| 24331 | 258 | by (rule ext) simp | 
| 13908 | 259 | |
| 20800 | 260 | lemma option_map_o_map_upd [simp]: | 
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 261 | "Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)" | 
| 24331 | 262 | by (rule ext) simp | 
| 20800 | 263 | |
| 13908 | 264 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 265 | subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 266 | |
| 20800 | 267 | lemma map_comp_empty [simp]: | 
| 24331 | 268 | "m \<circ>\<^sub>m empty = empty" | 
| 269 | "empty \<circ>\<^sub>m m = empty" | |
| 270 | by (auto simp add: map_comp_def intro: ext split: option.splits) | |
| 17391 | 271 | |
| 20800 | 272 | lemma map_comp_simps [simp]: | 
| 24331 | 273 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | 
| 274 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 275 | by (auto simp add: map_comp_def) | |
| 17391 | 276 | |
| 277 | lemma map_comp_Some_iff: | |
| 24331 | 278 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 279 | by (auto simp add: map_comp_def split: option.splits) | |
| 17391 | 280 | |
| 281 | lemma map_comp_None_iff: | |
| 24331 | 282 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 283 | by (auto simp add: map_comp_def split: option.splits) | |
| 13908 | 284 | |
| 20800 | 285 | |
| 14100 | 286 | subsection {* @{text "++"} *}
 | 
| 13908 | 287 | |
| 14025 | 288 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 24331 | 289 | by(simp add: map_add_def) | 
| 13908 | 290 | |
| 14025 | 291 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 24331 | 292 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 13908 | 293 | |
| 14025 | 294 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 24331 | 295 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 20800 | 296 | |
| 297 | lemma map_add_Some_iff: | |
| 24331 | 298 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | 
| 299 | by (simp add: map_add_def split: option.split) | |
| 14025 | 300 | |
| 20800 | 301 | lemma map_add_SomeD [dest!]: | 
| 24331 | 302 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | 
| 303 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 304 | |
| 20800 | 305 | lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 24331 | 306 | by (subst map_add_Some_iff) fast | 
| 13908 | 307 | |
| 14025 | 308 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 24331 | 309 | by (simp add: map_add_def split: option.split) | 
| 13908 | 310 | |
| 14025 | 311 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 24331 | 312 | by (rule ext) (simp add: map_add_def) | 
| 13908 | 313 | |
| 14186 | 314 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 24331 | 315 | by (simp add: map_upds_def) | 
| 14186 | 316 | |
| 32236 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 317 | lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)" | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 318 | by (rule ext) (auto simp: map_add_def dom_def split: option.split) | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 319 | |
| 20800 | 320 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 24331 | 321 | unfolding map_add_def | 
| 322 | apply (induct xs) | |
| 323 | apply simp | |
| 324 | apply (rule ext) | |
| 325 | apply (simp split add: option.split) | |
| 326 | done | |
| 13908 | 327 | |
| 14025 | 328 | lemma finite_range_map_of_map_add: | 
| 20800 | 329 | "finite (range f) ==> finite (range (f ++ map_of l))" | 
| 24331 | 330 | apply (induct l) | 
| 331 | apply (auto simp del: fun_upd_apply) | |
| 332 | apply (erule finite_range_updI) | |
| 333 | done | |
| 13908 | 334 | |
| 20800 | 335 | lemma inj_on_map_add_dom [iff]: | 
| 24331 | 336 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | 
| 337 | by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) | |
| 20800 | 338 | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 339 | lemma map_upds_fold_map_upd: | 
| 35552 | 340 | "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)" | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 341 | unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 342 | fix ks :: "'a list" and vs :: "'b list" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 343 | assume "length ks = length vs" | 
| 35552 | 344 | then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))" | 
| 345 | by(induct arbitrary: m rule: list_induct2) simp_all | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 346 | qed | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 347 | |
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 348 | lemma map_add_map_of_foldr: | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 349 | "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 350 | by (induct ps) (auto simp add: fun_eq_iff map_add_def) | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 351 | |
| 15304 | 352 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 353 | subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 354 | |
| 20800 | 355 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 356 | by (simp add: restrict_map_def) | 
| 14186 | 357 | |
| 31380 | 358 | lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" | 
| 359 | by (auto simp add: restrict_map_def intro: ext) | |
| 360 | ||
| 20800 | 361 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 24331 | 362 | by (simp add: restrict_map_def) | 
| 14186 | 363 | |
| 15693 | 364 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 24331 | 365 | by (simp add: restrict_map_def) | 
| 14100 | 366 | |
| 15693 | 367 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 24331 | 368 | by (simp add: restrict_map_def) | 
| 14100 | 369 | |
| 15693 | 370 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 24331 | 371 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 14100 | 372 | |
| 15693 | 373 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 24331 | 374 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 14100 | 375 | |
| 15693 | 376 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 377 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 378 | |
| 15693 | 379 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 24331 | 380 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 381 | |
| 20800 | 382 | lemma restrict_fun_upd [simp]: | 
| 24331 | 383 |   "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 384 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 385 | |
| 20800 | 386 | lemma fun_upd_None_restrict [simp]: | 
| 24331 | 387 |   "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 388 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 389 | |
| 20800 | 390 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 391 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 392 | |
| 20800 | 393 | lemma fun_upd_restrict_conv [simp]: | 
| 24331 | 394 |   "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 395 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 396 | |
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 397 | lemma map_of_map_restrict: | 
| 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 398 | "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 399 | by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert) | 
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 400 | |
| 35619 | 401 | lemma restrict_complement_singleton_eq: | 
| 402 |   "f |` (- {x}) = f(x := None)"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 403 | by (simp add: restrict_map_def fun_eq_iff) | 
| 35619 | 404 | |
| 14100 | 405 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 406 | subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 407 | |
| 20800 | 408 | lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" | 
| 24331 | 409 | by (simp add: map_upds_def) | 
| 14025 | 410 | |
| 20800 | 411 | lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" | 
| 24331 | 412 | by (simp add:map_upds_def) | 
| 20800 | 413 | |
| 414 | lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 24331 | 415 | by (simp add:map_upds_def) | 
| 14025 | 416 | |
| 20800 | 417 | lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 24331 | 418 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | 
| 419 | apply(induct xs) | |
| 420 | apply (clarsimp simp add: neq_Nil_conv) | |
| 421 | apply (case_tac ys) | |
| 422 | apply simp | |
| 423 | apply simp | |
| 424 | done | |
| 14187 | 425 | |
| 20800 | 426 | lemma map_upds_list_update2_drop [simp]: | 
| 427 | "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 428 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 24331 | 429 | apply (induct xs arbitrary: m ys i) | 
| 430 | apply simp | |
| 431 | apply (case_tac ys) | |
| 432 | apply simp | |
| 433 | apply (simp split: nat.split) | |
| 434 | done | |
| 14025 | 435 | |
| 20800 | 436 | lemma map_upd_upds_conv_if: | 
| 437 | "(f(x|->y))(xs [|->] ys) = | |
| 438 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 439 | else (f(xs [|->] ys))(x|->y))" | |
| 24331 | 440 | apply (induct xs arbitrary: x y ys f) | 
| 441 | apply simp | |
| 442 | apply (case_tac ys) | |
| 443 | apply (auto split: split_if simp: fun_upd_twist) | |
| 444 | done | |
| 14025 | 445 | |
| 446 | lemma map_upds_twist [simp]: | |
| 24331 | 447 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | 
| 448 | using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) | |
| 14025 | 449 | |
| 20800 | 450 | lemma map_upds_apply_nontin [simp]: | 
| 24331 | 451 | "x ~: set xs ==> (f(xs[|->]ys)) x = f x" | 
| 452 | apply (induct xs arbitrary: ys) | |
| 453 | apply simp | |
| 454 | apply (case_tac ys) | |
| 455 | apply (auto simp: map_upd_upds_conv_if) | |
| 456 | done | |
| 14025 | 457 | |
| 20800 | 458 | lemma fun_upds_append_drop [simp]: | 
| 24331 | 459 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | 
| 460 | apply (induct xs arbitrary: m ys) | |
| 461 | apply simp | |
| 462 | apply (case_tac ys) | |
| 463 | apply simp_all | |
| 464 | done | |
| 14300 | 465 | |
| 20800 | 466 | lemma fun_upds_append2_drop [simp]: | 
| 24331 | 467 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | 
| 468 | apply (induct xs arbitrary: m ys) | |
| 469 | apply simp | |
| 470 | apply (case_tac ys) | |
| 471 | apply simp_all | |
| 472 | done | |
| 14300 | 473 | |
| 474 | ||
| 20800 | 475 | lemma restrict_map_upds[simp]: | 
| 476 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 477 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 24331 | 478 | apply (induct xs arbitrary: m ys) | 
| 479 | apply simp | |
| 480 | apply (case_tac ys) | |
| 481 | apply simp | |
| 482 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 483 | apply (simp add: map_upd_upds_conv_if) | |
| 484 | done | |
| 14186 | 485 | |
| 486 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 487 | subsection {* @{term [source] dom} *}
 | 
| 13908 | 488 | |
| 31080 | 489 | lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
 | 
| 490 | by(auto intro!:ext simp: dom_def) | |
| 491 | ||
| 13908 | 492 | lemma domI: "m a = Some b ==> a : dom m" | 
| 24331 | 493 | by(simp add:dom_def) | 
| 14100 | 494 | (* declare domI [intro]? *) | 
| 13908 | 495 | |
| 15369 | 496 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 24331 | 497 | by (cases "m a") (auto simp add: dom_def) | 
| 13908 | 498 | |
| 20800 | 499 | lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" | 
| 24331 | 500 | by(simp add:dom_def) | 
| 13908 | 501 | |
| 20800 | 502 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 24331 | 503 | by(simp add:dom_def) | 
| 13908 | 504 | |
| 20800 | 505 | lemma dom_fun_upd [simp]: | 
| 24331 | 506 |   "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | 
| 507 | by(auto simp add:dom_def) | |
| 13908 | 508 | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 509 | lemma dom_if: | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 510 |   "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
 | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 511 | by (auto split: if_splits) | 
| 13937 | 512 | |
| 15304 | 513 | lemma dom_map_of_conv_image_fst: | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 514 | "dom (map_of xys) = fst ` set xys" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 515 | by (induct xys) (auto simp add: dom_if) | 
| 15304 | 516 | |
| 20800 | 517 | lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 24331 | 518 | dom(map_of(zip xs ys)) = set xs" | 
| 519 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 520 | |
| 13908 | 521 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 24331 | 522 | by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) | 
| 13908 | 523 | |
| 20800 | 524 | lemma dom_map_upds [simp]: | 
| 24331 | 525 | "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | 
| 526 | apply (induct xs arbitrary: m ys) | |
| 527 | apply simp | |
| 528 | apply (case_tac ys) | |
| 529 | apply auto | |
| 530 | done | |
| 13910 | 531 | |
| 20800 | 532 | lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" | 
| 24331 | 533 | by(auto simp:dom_def) | 
| 13910 | 534 | |
| 20800 | 535 | lemma dom_override_on [simp]: | 
| 536 | "dom(override_on f g A) = | |
| 537 |     (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 24331 | 538 | by(auto simp: dom_def override_on_def) | 
| 13908 | 539 | |
| 14027 | 540 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 24331 | 541 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | 
| 20800 | 542 | |
| 32236 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 543 | lemma map_add_dom_app_simps: | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 544 | "\<lbrakk> m\<in>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m" | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 545 | "\<lbrakk> m\<notin>dom l1 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m" | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 546 | "\<lbrakk> m\<notin>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l1 m" | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 547 | by (auto simp add: map_add_def split: option.split_asm) | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 548 | |
| 29622 | 549 | lemma dom_const [simp]: | 
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 550 | "dom (\<lambda>x. Some (f x)) = UNIV" | 
| 29622 | 551 | by auto | 
| 552 | ||
| 22230 | 553 | (* Due to John Matthews - could be rephrased with dom *) | 
| 554 | lemma finite_map_freshness: | |
| 555 | "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> | |
| 556 | \<exists>x. f x = None" | |
| 557 | by(bestsimp dest:ex_new_if_finite) | |
| 14027 | 558 | |
| 28790 | 559 | lemma dom_minus: | 
| 560 | "f x = None \<Longrightarrow> dom f - insert x A = dom f - A" | |
| 561 | unfolding dom_def by simp | |
| 562 | ||
| 563 | lemma insert_dom: | |
| 564 | "f x = Some y \<Longrightarrow> insert x (dom f) = dom f" | |
| 565 | unfolding dom_def by auto | |
| 566 | ||
| 35607 | 567 | lemma map_of_map_keys: | 
| 568 | "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m" | |
| 569 | by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def) | |
| 570 | ||
| 39379 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 571 | lemma map_of_eqI: | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 572 | assumes set_eq: "set (map fst xs) = set (map fst ys)" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 573 | assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 574 | shows "map_of xs = map_of ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 575 | proof (rule ext) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 576 | fix k show "map_of xs k = map_of ys k" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 577 | proof (cases "map_of xs k") | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 578 | case None then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 579 | with set_eq have "k \<notin> set (map fst ys)" by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 580 | then have "map_of ys k = None" by (simp add: map_of_eq_None_iff) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 581 | with None show ?thesis by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 582 | next | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 583 | case (Some v) then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric]) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 584 | with map_eq show ?thesis by auto | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 585 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 586 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 587 | |
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 588 | lemma map_of_eq_dom: | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 589 | assumes "map_of xs = map_of ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 590 | shows "fst ` set xs = fst ` set ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 591 | proof - | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 592 | from assms have "dom (map_of xs) = dom (map_of ys)" by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 593 | then show ?thesis by (simp add: dom_map_of_conv_image_fst) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 594 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 595 | |
| 28790 | 596 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 597 | subsection {* @{term [source] ran} *}
 | 
| 14100 | 598 | |
| 20800 | 599 | lemma ranI: "m a = Some b ==> b : ran m" | 
| 24331 | 600 | by(auto simp: ran_def) | 
| 14100 | 601 | (* declare ranI [intro]? *) | 
| 13908 | 602 | |
| 20800 | 603 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 24331 | 604 | by(auto simp: ran_def) | 
| 13908 | 605 | |
| 20800 | 606 | lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 24331 | 607 | unfolding ran_def | 
| 608 | apply auto | |
| 609 | apply (subgoal_tac "aa ~= a") | |
| 610 | apply auto | |
| 611 | done | |
| 20800 | 612 | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 613 | lemma ran_distinct: | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 614 | assumes dist: "distinct (map fst al)" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 615 | shows "ran (map_of al) = snd ` set al" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 616 | using assms proof (induct al) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 617 | case Nil then show ?case by simp | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 618 | next | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 619 | case (Cons kv al) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 620 | then have "ran (map_of al) = snd ` set al" by simp | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 621 | moreover from Cons.prems have "map_of al (fst kv) = None" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 622 | by (simp add: map_of_eq_None_iff) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 623 | ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 624 | qed | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 625 | |
| 13910 | 626 | |
| 14100 | 627 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 628 | |
| 13912 | 629 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 24331 | 630 | by (simp add: map_le_def) | 
| 13910 | 631 | |
| 17724 | 632 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 24331 | 633 | by (force simp add: map_le_def) | 
| 14187 | 634 | |
| 13910 | 635 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 24331 | 636 | by (fastsimp simp add: map_le_def) | 
| 13910 | 637 | |
| 17724 | 638 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 24331 | 639 | by (force simp add: map_le_def) | 
| 14187 | 640 | |
| 20800 | 641 | lemma map_le_upds [simp]: | 
| 24331 | 642 | "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | 
| 643 | apply (induct as arbitrary: f g bs) | |
| 644 | apply simp | |
| 645 | apply (case_tac bs) | |
| 646 | apply auto | |
| 647 | done | |
| 13908 | 648 | |
| 14033 | 649 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 24331 | 650 | by (fastsimp simp add: map_le_def dom_def) | 
| 14033 | 651 | |
| 652 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 24331 | 653 | by (simp add: map_le_def) | 
| 14033 | 654 | |
| 14187 | 655 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 24331 | 656 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 657 | |
| 658 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 24331 | 659 | unfolding map_le_def | 
| 660 | apply (rule ext) | |
| 661 | apply (case_tac "x \<in> dom f", simp) | |
| 662 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 663 | done | |
| 14033 | 664 | |
| 665 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 24331 | 666 | by (fastsimp simp add: map_le_def) | 
| 14033 | 667 | |
| 15304 | 668 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 669 | by(fastsimp simp: map_add_def map_le_def fun_eq_iff split: option.splits) | 
| 15304 | 670 | |
| 15303 | 671 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 24331 | 672 | by (fastsimp simp add: map_le_def map_add_def dom_def) | 
| 15303 | 673 | |
| 674 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 24331 | 675 | by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) | 
| 15303 | 676 | |
| 31080 | 677 | lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
 | 
| 678 | proof(rule iffI) | |
| 679 | assume "\<exists>v. f = [x \<mapsto> v]" | |
| 680 |   thus "dom f = {x}" by(auto split: split_if_asm)
 | |
| 681 | next | |
| 682 |   assume "dom f = {x}"
 | |
| 683 | then obtain v where "f x = Some v" by auto | |
| 684 | hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def) | |
| 685 |   moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v`
 | |
| 686 | by(auto simp add: map_le_def) | |
| 687 | ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym) | |
| 688 | thus "\<exists>v. f = [x \<mapsto> v]" by blast | |
| 689 | qed | |
| 690 | ||
| 35565 | 691 | |
| 692 | subsection {* Various *}
 | |
| 693 | ||
| 694 | lemma set_map_of_compr: | |
| 695 | assumes distinct: "distinct (map fst xs)" | |
| 696 |   shows "set xs = {(k, v). map_of xs k = Some v}"
 | |
| 697 | using assms proof (induct xs) | |
| 698 | case Nil then show ?case by simp | |
| 699 | next | |
| 700 | case (Cons x xs) | |
| 701 | obtain k v where "x = (k, v)" by (cases x) blast | |
| 702 | with Cons.prems have "k \<notin> dom (map_of xs)" | |
| 703 | by (simp add: dom_map_of_conv_image_fst) | |
| 704 |   then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
 | |
| 705 |     {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
 | |
| 706 | by (auto split: if_splits) | |
| 707 |   from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
 | |
| 708 | with * `x = (k, v)` show ?case by simp | |
| 709 | qed | |
| 710 | ||
| 711 | lemma map_of_inject_set: | |
| 712 | assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)" | |
| 713 | shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 714 | proof | |
| 715 | assume ?lhs | |
| 716 |   moreover from `distinct (map fst xs)` have "set xs = {(k, v). map_of xs k = Some v}"
 | |
| 717 | by (rule set_map_of_compr) | |
| 718 |   moreover from `distinct (map fst ys)` have "set ys = {(k, v). map_of ys k = Some v}"
 | |
| 719 | by (rule set_map_of_compr) | |
| 720 | ultimately show ?rhs by simp | |
| 721 | next | |
| 722 | assume ?rhs show ?lhs proof | |
| 723 | fix k | |
| 724 | show "map_of xs k = map_of ys k" proof (cases "map_of xs k") | |
| 725 | case None | |
| 726 | moreover with `?rhs` have "map_of ys k = None" | |
| 727 | by (simp add: map_of_eq_None_iff) | |
| 728 | ultimately show ?thesis by simp | |
| 729 | next | |
| 730 | case (Some v) | |
| 731 | moreover with distinct `?rhs` have "map_of ys k = Some v" | |
| 732 | by simp | |
| 733 | ultimately show ?thesis by simp | |
| 734 | qed | |
| 735 | qed | |
| 736 | qed | |
| 737 | ||
| 3981 | 738 | end |