| author | Andreas Lochbihler | 
| Thu, 17 Oct 2013 17:14:06 +0200 | |
| changeset 54366 | 13bfdbcfbbfb | 
| parent 50282 | fe4d4bb9f4c2 | 
| permissions | -rw-r--r-- | 
| 24197 | 1 | (* Title: HOL/Library/Abstract_Rat.thy | 
| 2 | Author: Amine Chaieb | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Abstract rational numbers *}
 | |
| 6 | ||
| 7 | theory Abstract_Rat | |
| 36411 | 8 | imports Complex_Main | 
| 24197 | 9 | begin | 
| 10 | ||
| 42463 | 11 | type_synonym Num = "int \<times> int" | 
| 25005 | 12 | |
| 44780 | 13 | abbreviation Num0_syn :: Num  ("0\<^sub>N")
 | 
| 44779 | 14 | where "0\<^sub>N \<equiv> (0, 0)" | 
| 25005 | 15 | |
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 16 | abbreviation Numi_syn :: "int \<Rightarrow> Num"  ("'((_)')\<^sub>N")
 | 
| 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 17 | where "(i)\<^sub>N \<equiv> (i, 1)" | 
| 24197 | 18 | |
| 44779 | 19 | definition isnormNum :: "Num \<Rightarrow> bool" where | 
| 31706 | 20 | "isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> gcd a b = 1))" | 
| 24197 | 21 | |
| 44779 | 22 | definition normNum :: "Num \<Rightarrow> Num" where | 
| 23 | "normNum = (\<lambda>(a,b). | |
| 24 | (if a=0 \<or> b = 0 then (0,0) else | |
| 44780 | 25 | (let g = gcd a b | 
| 44779 | 26 | in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" | 
| 24197 | 27 | |
| 44779 | 28 | declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger] | 
| 29 | ||
| 24197 | 30 | lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" | 
| 31 | proof - | |
| 44780 | 32 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 33 |   { assume "a=0 \<or> b = 0" hence ?thesis by (simp add: x normNum_def isnormNum_def) }
 | |
| 24197 | 34 | moreover | 
| 44779 | 35 |   { assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0"
 | 
| 31706 | 36 | let ?g = "gcd a b" | 
| 24197 | 37 | let ?a' = "a div ?g" | 
| 38 | let ?b' = "b div ?g" | |
| 31706 | 39 | let ?g' = "gcd ?a' ?b'" | 
| 44779 | 40 | from anz bnz have "?g \<noteq> 0" by simp with gcd_ge_0_int[of a b] | 
| 41528 | 41 | have gpos: "?g > 0" by arith | 
| 44779 | 42 | have gdvd: "?g dvd a" "?g dvd b" by arith+ | 
| 47162 | 43 | from dvd_mult_div_cancel[OF gdvd(1)] dvd_mult_div_cancel[OF gdvd(2)] anz bnz | 
| 44780 | 44 | have nz': "?a' \<noteq> 0" "?b' \<noteq> 0" by - (rule notI, simp)+ | 
| 44779 | 45 | from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 46 | from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" . | 
| 24197 | 47 | from bnz have "b < 0 \<or> b > 0" by arith | 
| 48 | moreover | |
| 44779 | 49 |     { assume b: "b > 0"
 | 
| 50 | from b have "?b' \<ge> 0" | |
| 51 | by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) | |
| 44780 | 52 | with nz' have b': "?b' > 0" by arith | 
| 53 | from b b' anz bnz nz' gp1 have ?thesis | |
| 54 | by (simp add: x isnormNum_def normNum_def Let_def split_def) } | |
| 44779 | 55 |     moreover {
 | 
| 56 | assume b: "b < 0" | |
| 44780 | 57 |       { assume b': "?b' \<ge> 0"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 58 | from gpos have th: "?g \<ge> 0" by arith | 
| 47162 | 59 | from mult_nonneg_nonneg[OF th b'] dvd_mult_div_cancel[OF gdvd(2)] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 60 | have False using b by arith } | 
| 44779 | 61 | hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) | 
| 44780 | 62 | from anz bnz nz' b b' gp1 have ?thesis | 
| 63 | by (simp add: x isnormNum_def normNum_def Let_def split_def) } | |
| 24197 | 64 | ultimately have ?thesis by blast | 
| 65 | } | |
| 66 | ultimately show ?thesis by blast | |
| 67 | qed | |
| 68 | ||
| 69 | text {* Arithmetic over Num *}
 | |
| 70 | ||
| 44780 | 71 | definition Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60) where | 
| 44779 | 72 | "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') | 
| 44780 | 73 | else if a'=0 \<or> b' = 0 then normNum(a,b) | 
| 24197 | 74 | else normNum(a*b' + b*a', b*b'))" | 
| 75 | ||
| 44780 | 76 | definition Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60) where | 
| 77 | "Nmul = (\<lambda>(a,b) (a',b'). let g = gcd (a*a') (b*b') | |
| 24197 | 78 | in (a*a' div g, b*b' div g))" | 
| 79 | ||
| 44779 | 80 | definition Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
 | 
| 81 | where "Nneg \<equiv> (\<lambda>(a,b). (-a,b))" | |
| 24197 | 82 | |
| 44780 | 83 | definition Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60) | 
| 44779 | 84 | where "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)" | 
| 24197 | 85 | |
| 44779 | 86 | definition Ninv :: "Num \<Rightarrow> Num" | 
| 87 | where "Ninv = (\<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a))" | |
| 24197 | 88 | |
| 44780 | 89 | definition Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60) | 
| 44779 | 90 | where "Ndiv = (\<lambda>a b. a *\<^sub>N Ninv b)" | 
| 24197 | 91 | |
| 92 | lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)" | |
| 44779 | 93 | by (simp add: isnormNum_def Nneg_def split_def) | 
| 94 | ||
| 24197 | 95 | lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" | 
| 96 | by (simp add: Nadd_def split_def) | |
| 44779 | 97 | |
| 24197 | 98 | lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)" | 
| 99 | by (simp add: Nsub_def split_def) | |
| 44779 | 100 | |
| 101 | lemma Nmul_normN[simp]: | |
| 44780 | 102 | assumes xn: "isnormNum x" and yn: "isnormNum y" | 
| 24197 | 103 | shows "isnormNum (x *\<^sub>N y)" | 
| 44779 | 104 | proof - | 
| 44780 | 105 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 106 | obtain a' b' where y: "y = (a', b')" by (cases y) | |
| 107 |   { assume "a = 0"
 | |
| 108 | hence ?thesis using xn x y | |
| 109 | by (simp add: isnormNum_def Let_def Nmul_def split_def) } | |
| 24197 | 110 | moreover | 
| 44780 | 111 |   { assume "a' = 0"
 | 
| 112 | hence ?thesis using yn x y | |
| 113 | by (simp add: isnormNum_def Let_def Nmul_def split_def) } | |
| 24197 | 114 | moreover | 
| 44780 | 115 |   { assume a: "a \<noteq>0" and a': "a'\<noteq>0"
 | 
| 116 | hence bp: "b > 0" "b' > 0" using xn yn x y by (simp_all add: isnormNum_def) | |
| 117 | from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a * a', b * b')" | |
| 118 | using x y a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) | |
| 119 | hence ?thesis by simp } | |
| 24197 | 120 | ultimately show ?thesis by blast | 
| 121 | qed | |
| 122 | ||
| 123 | lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)" | |
| 25005 | 124 | by (simp add: Ninv_def isnormNum_def split_def) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 125 | (cases "fst x = 0", auto simp add: gcd_commute_int) | 
| 24197 | 126 | |
| 44780 | 127 | lemma isnormNum_int[simp]: | 
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 128 | "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \<noteq> 0 \<Longrightarrow> isnormNum (i)\<^sub>N" | 
| 31706 | 129 | by (simp_all add: isnormNum_def) | 
| 24197 | 130 | |
| 131 | ||
| 132 | text {* Relations over Num *}
 | |
| 133 | ||
| 44780 | 134 | definition Nlt0:: "Num \<Rightarrow> bool"  ("0>\<^sub>N")
 | 
| 44779 | 135 | where "Nlt0 = (\<lambda>(a,b). a < 0)" | 
| 24197 | 136 | |
| 44780 | 137 | definition Nle0:: "Num \<Rightarrow> bool"  ("0\<ge>\<^sub>N")
 | 
| 44779 | 138 | where "Nle0 = (\<lambda>(a,b). a \<le> 0)" | 
| 24197 | 139 | |
| 44780 | 140 | definition Ngt0:: "Num \<Rightarrow> bool"  ("0<\<^sub>N")
 | 
| 44779 | 141 | where "Ngt0 = (\<lambda>(a,b). a > 0)" | 
| 24197 | 142 | |
| 44780 | 143 | definition Nge0:: "Num \<Rightarrow> bool"  ("0\<le>\<^sub>N")
 | 
| 44779 | 144 | where "Nge0 = (\<lambda>(a,b). a \<ge> 0)" | 
| 24197 | 145 | |
| 44780 | 146 | definition Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55) | 
| 44779 | 147 | where "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))" | 
| 24197 | 148 | |
| 44779 | 149 | definition Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55) | 
| 150 | where "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))" | |
| 24197 | 151 | |
| 44779 | 152 | definition "INum = (\<lambda>(a,b). of_int a / of_int b)" | 
| 24197 | 153 | |
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 154 | lemma INum_int [simp]: "INum (i)\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" | 
| 24197 | 155 | by (simp_all add: INum_def) | 
| 156 | ||
| 44780 | 157 | lemma isnormNum_unique[simp]: | 
| 158 | assumes na: "isnormNum x" and nb: "isnormNum y" | |
| 36409 | 159 |   shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
 | 
| 24197 | 160 | proof | 
| 44780 | 161 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 162 | obtain a' b' where y: "y = (a', b')" by (cases y) | |
| 163 | assume H: ?lhs | |
| 44779 | 164 |   { assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0"
 | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
31967diff
changeset | 165 | hence ?rhs using na nb H | 
| 44780 | 166 | by (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) } | 
| 24197 | 167 | moreover | 
| 168 |   { assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
 | |
| 44780 | 169 | from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: x y isnormNum_def) | 
| 170 | from H bz b'z have eq: "a * b' = a'*b" | |
| 171 | by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) | |
| 172 | from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" | |
| 173 | by (simp_all add: x y isnormNum_def add: gcd_commute_int) | |
| 174 | from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'" | |
| 175 | apply - | |
| 27668 | 176 | apply algebra | 
| 177 | apply algebra | |
| 178 | apply simp | |
| 179 | apply algebra | |
| 24197 | 180 | done | 
| 33657 | 181 | from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] | 
| 44780 | 182 | coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] | 
| 41528 | 183 | have eq1: "b = b'" using pos by arith | 
| 24197 | 184 | with eq have "a = a'" using pos by simp | 
| 44780 | 185 | with eq1 have ?rhs by (simp add: x y) } | 
| 24197 | 186 | ultimately show ?rhs by blast | 
| 187 | next | |
| 188 | assume ?rhs thus ?lhs by simp | |
| 189 | qed | |
| 190 | ||
| 191 | ||
| 44779 | 192 | lemma isnormNum0[simp]: | 
| 193 |     "isnormNum x \<Longrightarrow> (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)"
 | |
| 24197 | 194 | unfolding INum_int(2)[symmetric] | 
| 44779 | 195 | by (rule isnormNum_unique) simp_all | 
| 24197 | 196 | |
| 44780 | 197 | lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = | 
| 24197 | 198 | of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" | 
| 199 | proof - | |
| 200 | assume "d ~= 0" | |
| 201 | let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" | |
| 202 | let ?f = "\<lambda>x. x / of_int d" | |
| 203 | have "x = (x div d) * d + x mod d" | |
| 204 | by auto | |
| 205 | then have eq: "of_int x = ?t" | |
| 206 | by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) | |
| 44780 | 207 | then have "of_int x / of_int d = ?t / of_int d" | 
| 24197 | 208 | using cong[OF refl[of ?f] eq] by simp | 
| 41528 | 209 | then show ?thesis by (simp add: add_divide_distrib algebra_simps `d ~= 0`) | 
| 24197 | 210 | qed | 
| 211 | ||
| 212 | lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> | |
| 36409 | 213 | (of_int(n div d)::'a::field_char_0) = of_int n / of_int d" | 
| 24197 | 214 | apply (frule of_int_div_aux [of d n, where ?'a = 'a]) | 
| 215 | apply simp | |
| 30042 | 216 | apply (simp add: dvd_eq_mod_eq_0) | 
| 44779 | 217 | done | 
| 24197 | 218 | |
| 219 | ||
| 36409 | 220 | lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})"
 | 
| 44779 | 221 | proof - | 
| 44780 | 222 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 223 |   { assume "a = 0 \<or> b = 0"
 | |
| 224 | hence ?thesis by (simp add: x INum_def normNum_def split_def Let_def) } | |
| 225 | moreover | |
| 226 |   { assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
 | |
| 31706 | 227 | let ?g = "gcd a b" | 
| 24197 | 228 | from a b have g: "?g \<noteq> 0"by simp | 
| 229 | from of_int_div[OF g, where ?'a = 'a] | |
| 44779 | 230 | have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) } | 
| 24197 | 231 | ultimately show ?thesis by blast | 
| 232 | qed | |
| 233 | ||
| 44779 | 234 | lemma INum_normNum_iff: | 
| 235 |   "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \<longleftrightarrow> normNum x = normNum y"
 | |
| 236 | (is "?lhs = ?rhs") | |
| 24197 | 237 | proof - | 
| 238 | have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)" | |
| 239 | by (simp del: normNum) | |
| 240 | also have "\<dots> = ?lhs" by simp | |
| 241 | finally show ?thesis by simp | |
| 242 | qed | |
| 243 | ||
| 36409 | 244 | lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})"
 | 
| 44779 | 245 | proof - | 
| 246 | let ?z = "0:: 'a" | |
| 44780 | 247 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 248 | obtain a' b' where y: "y = (a', b')" by (cases y) | |
| 44779 | 249 |   { assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0"
 | 
| 44780 | 250 | hence ?thesis | 
| 251 | apply (cases "a=0", simp_all add: x y Nadd_def) | |
| 44779 | 252 | apply (cases "b= 0", simp_all add: INum_def) | 
| 253 | apply (cases "a'= 0", simp_all) | |
| 254 | apply (cases "b'= 0", simp_all) | |
| 24197 | 255 | done } | 
| 44780 | 256 | moreover | 
| 257 |   { assume aa': "a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0"
 | |
| 44779 | 258 |     { assume z: "a * b' + b * a' = 0"
 | 
| 24197 | 259 | hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp | 
| 44780 | 260 | hence "of_int b' * of_int a / (of_int b * of_int b') + | 
| 261 | of_int b * of_int a' / (of_int b * of_int b') = ?z" | |
| 262 | by (simp add:add_divide_distrib) | |
| 44779 | 263 | hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' | 
| 44780 | 264 | by simp | 
| 265 | from z aa' bb' have ?thesis | |
| 266 | by (simp add: x y th Nadd_def normNum_def INum_def split_def) } | |
| 44779 | 267 |     moreover {
 | 
| 268 | assume z: "a * b' + b * a' \<noteq> 0" | |
| 31706 | 269 | let ?g = "gcd (a * b' + b * a') (b*b')" | 
| 24197 | 270 | have gz: "?g \<noteq> 0" using z by simp | 
| 271 | have ?thesis using aa' bb' z gz | |
| 44779 | 272 | of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] | 
| 273 | of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] | |
| 44780 | 274 | by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) } | 
| 44779 | 275 | ultimately have ?thesis using aa' bb' | 
| 44780 | 276 | by (simp add: x y Nadd_def INum_def normNum_def Let_def) } | 
| 24197 | 277 | ultimately show ?thesis by blast | 
| 278 | qed | |
| 279 | ||
| 44779 | 280 | lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})"
 | 
| 281 | proof - | |
| 24197 | 282 | let ?z = "0::'a" | 
| 44780 | 283 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 284 | obtain a' b' where y: "y = (a', b')" by (cases y) | |
| 44779 | 285 |   { assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0"
 | 
| 44780 | 286 | hence ?thesis | 
| 44779 | 287 | apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def) | 
| 288 | apply (cases "b=0", simp_all) | |
| 44780 | 289 | apply (cases "a'=0", simp_all) | 
| 24197 | 290 | done } | 
| 291 | moreover | |
| 44779 | 292 |   { assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
 | 
| 31706 | 293 | let ?g="gcd (a*a') (b*b')" | 
| 24197 | 294 | have gz: "?g \<noteq> 0" using z by simp | 
| 44779 | 295 | from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] | 
| 44780 | 296 | of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] | 
| 44779 | 297 | have ?thesis by (simp add: Nmul_def x y Let_def INum_def) } | 
| 24197 | 298 | ultimately show ?thesis by blast | 
| 299 | qed | |
| 300 | ||
| 301 | lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" | |
| 302 | by (simp add: Nneg_def split_def INum_def) | |
| 303 | ||
| 44779 | 304 | lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})"
 | 
| 305 | by (simp add: Nsub_def split_def) | |
| 24197 | 306 | |
| 36409 | 307 | lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)" | 
| 24197 | 308 | by (simp add: Ninv_def INum_def split_def) | 
| 309 | ||
| 44779 | 310 | lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})"
 | 
| 311 | by (simp add: Ndiv_def) | |
| 24197 | 312 | |
| 44779 | 313 | lemma Nlt0_iff[simp]: | 
| 44780 | 314 | assumes nx: "isnormNum x" | 
| 44779 | 315 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x"
 | 
| 316 | proof - | |
| 44780 | 317 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 318 |   { assume "a = 0" hence ?thesis by (simp add: x Nlt0_def INum_def) }
 | |
| 24197 | 319 | moreover | 
| 44780 | 320 |   { assume a: "a \<noteq> 0" hence b: "(of_int b::'a) > 0"
 | 
| 321 | using nx by (simp add: x isnormNum_def) | |
| 24197 | 322 | from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] | 
| 44780 | 323 | have ?thesis by (simp add: x Nlt0_def INum_def) } | 
| 24197 | 324 | ultimately show ?thesis by blast | 
| 325 | qed | |
| 326 | ||
| 44779 | 327 | lemma Nle0_iff[simp]: | 
| 328 | assumes nx: "isnormNum x" | |
| 36409 | 329 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<le> 0) = 0\<ge>\<^sub>N x"
 | 
| 44779 | 330 | proof - | 
| 44780 | 331 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 332 |   { assume "a = 0" hence ?thesis by (simp add: x Nle0_def INum_def) }
 | |
| 24197 | 333 | moreover | 
| 44780 | 334 |   { assume a: "a \<noteq> 0" hence b: "(of_int b :: 'a) > 0"
 | 
| 335 | using nx by (simp add: x isnormNum_def) | |
| 24197 | 336 | from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] | 
| 44780 | 337 | have ?thesis by (simp add: x Nle0_def INum_def) } | 
| 24197 | 338 | ultimately show ?thesis by blast | 
| 339 | qed | |
| 340 | ||
| 44779 | 341 | lemma Ngt0_iff[simp]: | 
| 342 | assumes nx: "isnormNum x" | |
| 343 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x"
 | |
| 344 | proof - | |
| 44780 | 345 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 346 |   { assume "a = 0" hence ?thesis by (simp add: x Ngt0_def INum_def) }
 | |
| 24197 | 347 | moreover | 
| 44780 | 348 |   { assume a: "a \<noteq> 0" hence b: "(of_int b::'a) > 0" using nx
 | 
| 349 | by (simp add: x isnormNum_def) | |
| 24197 | 350 | from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] | 
| 44780 | 351 | have ?thesis by (simp add: x Ngt0_def INum_def) } | 
| 24197 | 352 | ultimately show ?thesis by blast | 
| 353 | qed | |
| 354 | ||
| 44779 | 355 | lemma Nge0_iff[simp]: | 
| 356 | assumes nx: "isnormNum x" | |
| 357 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<ge> 0) = 0\<le>\<^sub>N x"
 | |
| 358 | proof - | |
| 44780 | 359 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 360 |   { assume "a = 0" hence ?thesis by (simp add: x Nge0_def INum_def) }
 | |
| 44779 | 361 | moreover | 
| 362 |   { assume "a \<noteq> 0" hence b: "(of_int b::'a) > 0" using nx
 | |
| 44780 | 363 | by (simp add: x isnormNum_def) | 
| 44779 | 364 | from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] | 
| 44780 | 365 | have ?thesis by (simp add: x Nge0_def INum_def) } | 
| 44779 | 366 | ultimately show ?thesis by blast | 
| 367 | qed | |
| 368 | ||
| 369 | lemma Nlt_iff[simp]: | |
| 370 | assumes nx: "isnormNum x" and ny: "isnormNum y" | |
| 36409 | 371 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)"
 | 
| 44779 | 372 | proof - | 
| 24197 | 373 | let ?z = "0::'a" | 
| 44779 | 374 | have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" | 
| 375 | using nx ny by simp | |
| 376 | also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" | |
| 377 | using Nlt0_iff[OF Nsub_normN[OF ny]] by simp | |
| 24197 | 378 | finally show ?thesis by (simp add: Nlt_def) | 
| 379 | qed | |
| 380 | ||
| 44779 | 381 | lemma Nle_iff[simp]: | 
| 382 | assumes nx: "isnormNum x" and ny: "isnormNum y" | |
| 36409 | 383 |   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\<le> INum y) = (x \<le>\<^sub>N y)"
 | 
| 44779 | 384 | proof - | 
| 385 | have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" | |
| 386 | using nx ny by simp | |
| 387 | also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" | |
| 388 | using Nle0_iff[OF Nsub_normN[OF ny]] by simp | |
| 24197 | 389 | finally show ?thesis by (simp add: Nle_def) | 
| 390 | qed | |
| 391 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 392 | lemma Nadd_commute: | 
| 36409 | 393 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 394 | shows "x +\<^sub>N y = y +\<^sub>N x" | 
| 44779 | 395 | proof - | 
| 24197 | 396 | have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all | 
| 31964 | 397 | have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp | 
| 24197 | 398 | with isnormNum_unique[OF n] show ?thesis by simp | 
| 399 | qed | |
| 400 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 401 | lemma [simp]: | 
| 36409 | 402 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 403 | shows "(0, b) +\<^sub>N y = normNum y" | 
| 44780 | 404 | and "(a, 0) +\<^sub>N y = normNum y" | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 405 | and "x +\<^sub>N (0, b) = normNum x" | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 406 | and "x +\<^sub>N (a, 0) = normNum x" | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 407 | apply (simp add: Nadd_def split_def) | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 408 | apply (simp add: Nadd_def split_def) | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 409 | apply (subst Nadd_commute, simp add: Nadd_def split_def) | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 410 | apply (subst Nadd_commute, simp add: Nadd_def split_def) | 
| 24197 | 411 | done | 
| 412 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 413 | lemma normNum_nilpotent_aux[simp]: | 
| 36409 | 414 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 44780 | 415 | assumes nx: "isnormNum x" | 
| 24197 | 416 | shows "normNum x = x" | 
| 44779 | 417 | proof - | 
| 24197 | 418 | let ?a = "normNum x" | 
| 419 | have n: "isnormNum ?a" by simp | |
| 44779 | 420 | have th: "INum ?a = (INum x ::'a)" by simp | 
| 421 | with isnormNum_unique[OF n nx] show ?thesis by simp | |
| 24197 | 422 | qed | 
| 423 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 424 | lemma normNum_nilpotent[simp]: | 
| 36409 | 425 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 426 | shows "normNum (normNum x) = normNum x" | 
| 24197 | 427 | by simp | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 428 | |
| 24197 | 429 | lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N" | 
| 430 | by (simp_all add: normNum_def) | |
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 431 | |
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 432 | lemma normNum_Nadd: | 
| 36409 | 433 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 434 | shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 435 | |
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 436 | lemma Nadd_normNum1[simp]: | 
| 36409 | 437 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 438 | shows "normNum x +\<^sub>N y = x +\<^sub>N y" | 
| 44779 | 439 | proof - | 
| 24197 | 440 | have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all | 
| 31964 | 441 | have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp | 
| 24197 | 442 | also have "\<dots> = INum (x +\<^sub>N y)" by simp | 
| 443 | finally show ?thesis using isnormNum_unique[OF n] by simp | |
| 444 | qed | |
| 445 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 446 | lemma Nadd_normNum2[simp]: | 
| 36409 | 447 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 448 | shows "x +\<^sub>N normNum y = x +\<^sub>N y" | 
| 44779 | 449 | proof - | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 450 | have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all | 
| 31964 | 451 | have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 452 | also have "\<dots> = INum (x +\<^sub>N y)" by simp | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 453 | finally show ?thesis using isnormNum_unique[OF n] by simp | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 454 | qed | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 455 | |
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 456 | lemma Nadd_assoc: | 
| 36409 | 457 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 458 | shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" | 
| 44779 | 459 | proof - | 
| 24197 | 460 | have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all | 
| 31964 | 461 | have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp | 
| 24197 | 462 | with isnormNum_unique[OF n] show ?thesis by simp | 
| 463 | qed | |
| 464 | ||
| 465 | lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 466 | by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute) | 
| 24197 | 467 | |
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 468 | lemma Nmul_assoc: | 
| 36409 | 469 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 44780 | 470 | assumes nx: "isnormNum x" and ny: "isnormNum y" and nz: "isnormNum z" | 
| 24197 | 471 | shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" | 
| 44779 | 472 | proof - | 
| 44780 | 473 | from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" | 
| 24197 | 474 | by simp_all | 
| 31964 | 475 | have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp | 
| 24197 | 476 | with isnormNum_unique[OF n] show ?thesis by simp | 
| 477 | qed | |
| 478 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 479 | lemma Nsub0: | 
| 36409 | 480 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 44780 | 481 | assumes x: "isnormNum x" and y: "isnormNum y" | 
| 482 | shows "x -\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = y" | |
| 44779 | 483 | proof - | 
| 484 | fix h :: 'a | |
| 44780 | 485 | from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] | 
| 44779 | 486 | have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp | 
| 487 | also have "\<dots> = (INum x = (INum y :: 'a))" by simp | |
| 488 | also have "\<dots> = (x = y)" using x y by simp | |
| 489 | finally show ?thesis . | |
| 24197 | 490 | qed | 
| 491 | ||
| 492 | lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" | |
| 493 | by (simp_all add: Nmul_def Let_def split_def) | |
| 494 | ||
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 495 | lemma Nmul_eq0[simp]: | 
| 36409 | 496 |   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
 | 
| 44780 | 497 | assumes nx: "isnormNum x" and ny: "isnormNum y" | 
| 498 | shows "x*\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = 0\<^sub>N \<or> y = 0\<^sub>N" | |
| 44779 | 499 | proof - | 
| 500 | fix h :: 'a | |
| 44780 | 501 | obtain a b where x: "x = (a, b)" by (cases x) | 
| 502 | obtain a' b' where y: "y = (a', b')" by (cases y) | |
| 44779 | 503 | have n0: "isnormNum 0\<^sub>N" by simp | 
| 44780 | 504 | show ?thesis using nx ny | 
| 44779 | 505 | apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] | 
| 506 | Nmul[where ?'a = 'a]) | |
| 44780 | 507 | apply (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) | 
| 44779 | 508 | done | 
| 24197 | 509 | qed | 
| 44779 | 510 | |
| 24197 | 511 | lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" | 
| 512 | by (simp add: Nneg_def split_def) | |
| 513 | ||
| 44780 | 514 | lemma Nmul1[simp]: | 
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 515 | "isnormNum c \<Longrightarrow> (1)\<^sub>N *\<^sub>N c = c" | 
| 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
47162diff
changeset | 516 | "isnormNum c \<Longrightarrow> c *\<^sub>N (1)\<^sub>N = c" | 
| 24197 | 517 | apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) | 
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 518 | apply (cases "fst c = 0", simp_all, cases c, simp_all)+ | 
| 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 519 | done | 
| 24197 | 520 | |
| 28615 
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
 wenzelm parents: 
27668diff
changeset | 521 | end |