| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30738 | 0842e906300c | 
| child 30935 | db5dcc1f276d | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 3 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 4 | |
| 5 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 6 | *) | |
| 7 | ||
| 13914 | 8 | header {* Maps *}
 | 
| 9 | ||
| 15131 | 10 | theory Map | 
| 15140 | 11 | imports List | 
| 15131 | 12 | begin | 
| 3981 | 13 | |
| 25490 | 14 | types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
 | 
| 14100 | 15 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 16 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 17 | syntax (xsymbols) | 
| 25490 | 18 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 19 | |
| 19378 | 20 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 21 | empty :: "'a ~=> 'b" where | 
| 19378 | 22 | "empty == %x. None" | 
| 23 | ||
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 24 | definition | 
| 25670 | 25 |   map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 26 | "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | 
| 19378 | 27 | |
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 29 | map_comp (infixl "\<circ>\<^sub>m" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 30 | |
| 20800 | 31 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 32 |   map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 33 | "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" | 
| 34 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 35 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 36 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 37 | "m|`A = (\<lambda>x. if x : A then m x else None)" | 
| 13910 | 38 | |
| 21210 | 39 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 40 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 41 | |
| 20800 | 42 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 43 |   dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 44 |   "dom m = {a. m a ~= None}"
 | 
| 45 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 46 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 |   ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 48 |   "ran m = {b. EX a. m a = Some b}"
 | 
| 49 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 50 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 51 |   map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 52 | "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" | 
| 53 | ||
| 54 | consts | |
| 55 |   map_of :: "('a * 'b) list => 'a ~=> 'b"
 | |
| 56 |   map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
 | |
| 57 | ||
| 14180 | 58 | nonterminals | 
| 59 | maplets maplet | |
| 60 | ||
| 5300 | 61 | syntax | 
| 14180 | 62 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
| 63 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 64 |   ""         :: "maplet => maplets"             ("_")
 | |
| 65 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 66 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 67 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 68 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 69 | syntax (xsymbols) | 
| 14180 | 70 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 71 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 72 | ||
| 5300 | 73 | translations | 
| 14180 | 74 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 75 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 76 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 19947 | 77 | "_Map ms" == "_MapUpd (CONST empty) ms" | 
| 14180 | 78 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | 
| 79 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 80 | ||
| 5183 | 81 | primrec | 
| 82 | "map_of [] = empty" | |
| 5300 | 83 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 84 | ||
| 25965 | 85 | declare map_of.simps [code del] | 
| 86 | ||
| 87 | lemma map_of_Cons_code [code]: | |
| 88 | "map_of [] k = None" | |
| 89 | "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" | |
| 90 | by simp_all | |
| 91 | ||
| 20800 | 92 | defs | 
| 28562 | 93 | map_upds_def [code]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | 
| 20800 | 94 | |
| 95 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 96 | subsection {* @{term [source] empty} *}
 | 
| 13908 | 97 | |
| 20800 | 98 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 24331 | 99 | by (rule ext) simp | 
| 13908 | 100 | |
| 101 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 102 | subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 103 | |
| 104 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 24331 | 105 | by (rule ext) simp | 
| 13908 | 106 | |
| 20800 | 107 | lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" | 
| 108 | proof | |
| 109 | assume "t(k \<mapsto> x) = empty" | |
| 110 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 111 | then show False by simp | |
| 112 | qed | |
| 13908 | 113 | |
| 20800 | 114 | lemma map_upd_eqD1: | 
| 115 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 116 | shows "x = y" | |
| 117 | proof - | |
| 118 | from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | |
| 119 | then show ?thesis by simp | |
| 120 | qed | |
| 14100 | 121 | |
| 20800 | 122 | lemma map_upd_Some_unfold: | 
| 24331 | 123 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | 
| 124 | by auto | |
| 14100 | 125 | |
| 20800 | 126 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 24331 | 127 | by auto | 
| 15303 | 128 | |
| 13908 | 129 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 24331 | 130 | unfolding image_def | 
| 131 | apply (simp (no_asm_use) add:full_SetCompr_eq) | |
| 132 | apply (rule finite_subset) | |
| 133 | prefer 2 apply assumption | |
| 134 | apply (auto) | |
| 135 | done | |
| 13908 | 136 | |
| 137 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 138 | subsection {* @{term [source] map_of} *}
 | 
| 13908 | 139 | |
| 15304 | 140 | lemma map_of_eq_None_iff: | 
| 24331 | 141 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 142 | by (induct xys) simp_all | |
| 15304 | 143 | |
| 24331 | 144 | lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | 
| 145 | apply (induct xys) | |
| 146 | apply simp | |
| 147 | apply (clarsimp split: if_splits) | |
| 148 | done | |
| 15304 | 149 | |
| 20800 | 150 | lemma map_of_eq_Some_iff [simp]: | 
| 24331 | 151 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | 
| 152 | apply (induct xys) | |
| 153 | apply simp | |
| 154 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 155 | done | |
| 15304 | 156 | |
| 20800 | 157 | lemma Some_eq_map_of_iff [simp]: | 
| 24331 | 158 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | 
| 159 | by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) | |
| 15304 | 160 | |
| 17724 | 161 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 162 | \<Longrightarrow> map_of xys x = Some y" | 
| 24331 | 163 | apply (induct xys) | 
| 164 | apply simp | |
| 165 | apply force | |
| 166 | done | |
| 15304 | 167 | |
| 20800 | 168 | lemma map_of_zip_is_None [simp]: | 
| 24331 | 169 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 170 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 171 | |
| 26443 | 172 | lemma map_of_zip_is_Some: | 
| 173 | assumes "length xs = length ys" | |
| 174 | shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" | |
| 175 | using assms by (induct rule: list_induct2) simp_all | |
| 176 | ||
| 177 | lemma map_of_zip_upd: | |
| 178 | fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" | |
| 179 | assumes "length ys = length xs" | |
| 180 | and "length zs = length xs" | |
| 181 | and "x \<notin> set xs" | |
| 182 | and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" | |
| 183 | shows "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 184 | proof | |
| 185 | fix x' :: 'a | |
| 186 | show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" | |
| 187 | proof (cases "x = x'") | |
| 188 | case True | |
| 189 | from assms True map_of_zip_is_None [of xs ys x'] | |
| 190 | have "map_of (zip xs ys) x' = None" by simp | |
| 191 | moreover from assms True map_of_zip_is_None [of xs zs x'] | |
| 192 | have "map_of (zip xs zs) x' = None" by simp | |
| 193 | ultimately show ?thesis by simp | |
| 194 | next | |
| 195 | case False from assms | |
| 196 | have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto | |
| 197 | with False show ?thesis by simp | |
| 198 | qed | |
| 199 | qed | |
| 200 | ||
| 201 | lemma map_of_zip_inject: | |
| 202 | assumes "length ys = length xs" | |
| 203 | and "length zs = length xs" | |
| 204 | and dist: "distinct xs" | |
| 205 | and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 206 | shows "ys = zs" | |
| 207 | using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) | |
| 208 | case Nil show ?case by simp | |
| 209 | next | |
| 210 | case (Cons y ys x xs z zs) | |
| 211 | from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))` | |
| 212 | have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp | |
| 213 | from Cons have "length ys = length xs" and "length zs = length xs" | |
| 214 | and "x \<notin> set xs" by simp_all | |
| 215 | then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) | |
| 216 | with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp | |
| 217 | moreover from map_of have "y = z" by (rule map_upd_eqD1) | |
| 218 | ultimately show ?case by simp | |
| 219 | qed | |
| 220 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 221 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 24331 | 222 | apply (induct xys) | 
| 223 | apply (simp_all add: image_constant) | |
| 224 | apply (rule finite_subset) | |
| 225 | prefer 2 apply assumption | |
| 226 | apply auto | |
| 227 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 228 | |
| 20800 | 229 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 24331 | 230 | by (induct xs) (simp, atomize (full), auto) | 
| 13908 | 231 | |
| 20800 | 232 | lemma map_of_mapk_SomeI: | 
| 24331 | 233 | "inj f ==> map_of t k = Some x ==> | 
| 234 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 235 | by (induct t) (auto simp add: inj_eq) | |
| 13908 | 236 | |
| 20800 | 237 | lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" | 
| 24331 | 238 | by (induct l) auto | 
| 13908 | 239 | |
| 20800 | 240 | lemma map_of_filter_in: | 
| 24331 | 241 | "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" | 
| 242 | by (induct xs) auto | |
| 13908 | 243 | |
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 244 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = Option.map f (map_of xs x)" | 
| 24331 | 245 | by (induct xs) auto | 
| 13908 | 246 | |
| 247 | ||
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 248 | subsection {* @{const Option.map} related *}
 | 
| 13908 | 249 | |
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 250 | lemma option_map_o_empty [simp]: "Option.map f o empty = empty" | 
| 24331 | 251 | by (rule ext) simp | 
| 13908 | 252 | |
| 20800 | 253 | lemma option_map_o_map_upd [simp]: | 
| 30235 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 nipkow parents: 
29622diff
changeset | 254 | "Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)" | 
| 24331 | 255 | by (rule ext) simp | 
| 20800 | 256 | |
| 13908 | 257 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 258 | subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 259 | |
| 20800 | 260 | lemma map_comp_empty [simp]: | 
| 24331 | 261 | "m \<circ>\<^sub>m empty = empty" | 
| 262 | "empty \<circ>\<^sub>m m = empty" | |
| 263 | by (auto simp add: map_comp_def intro: ext split: option.splits) | |
| 17391 | 264 | |
| 20800 | 265 | lemma map_comp_simps [simp]: | 
| 24331 | 266 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | 
| 267 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 268 | by (auto simp add: map_comp_def) | |
| 17391 | 269 | |
| 270 | lemma map_comp_Some_iff: | |
| 24331 | 271 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 272 | by (auto simp add: map_comp_def split: option.splits) | |
| 17391 | 273 | |
| 274 | lemma map_comp_None_iff: | |
| 24331 | 275 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 276 | by (auto simp add: map_comp_def split: option.splits) | |
| 13908 | 277 | |
| 20800 | 278 | |
| 14100 | 279 | subsection {* @{text "++"} *}
 | 
| 13908 | 280 | |
| 14025 | 281 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 24331 | 282 | by(simp add: map_add_def) | 
| 13908 | 283 | |
| 14025 | 284 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 24331 | 285 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 13908 | 286 | |
| 14025 | 287 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 24331 | 288 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 20800 | 289 | |
| 290 | lemma map_add_Some_iff: | |
| 24331 | 291 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | 
| 292 | by (simp add: map_add_def split: option.split) | |
| 14025 | 293 | |
| 20800 | 294 | lemma map_add_SomeD [dest!]: | 
| 24331 | 295 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | 
| 296 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 297 | |
| 20800 | 298 | lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 24331 | 299 | by (subst map_add_Some_iff) fast | 
| 13908 | 300 | |
| 14025 | 301 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 24331 | 302 | by (simp add: map_add_def split: option.split) | 
| 13908 | 303 | |
| 14025 | 304 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 24331 | 305 | by (rule ext) (simp add: map_add_def) | 
| 13908 | 306 | |
| 14186 | 307 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 24331 | 308 | by (simp add: map_upds_def) | 
| 14186 | 309 | |
| 20800 | 310 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 24331 | 311 | unfolding map_add_def | 
| 312 | apply (induct xs) | |
| 313 | apply simp | |
| 314 | apply (rule ext) | |
| 315 | apply (simp split add: option.split) | |
| 316 | done | |
| 13908 | 317 | |
| 14025 | 318 | lemma finite_range_map_of_map_add: | 
| 20800 | 319 | "finite (range f) ==> finite (range (f ++ map_of l))" | 
| 24331 | 320 | apply (induct l) | 
| 321 | apply (auto simp del: fun_upd_apply) | |
| 322 | apply (erule finite_range_updI) | |
| 323 | done | |
| 13908 | 324 | |
| 20800 | 325 | lemma inj_on_map_add_dom [iff]: | 
| 24331 | 326 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | 
| 327 | by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) | |
| 20800 | 328 | |
| 15304 | 329 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 330 | subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 331 | |
| 20800 | 332 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 333 | by (simp add: restrict_map_def) | 
| 14186 | 334 | |
| 20800 | 335 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 24331 | 336 | by (simp add: restrict_map_def) | 
| 14186 | 337 | |
| 15693 | 338 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 24331 | 339 | by (simp add: restrict_map_def) | 
| 14100 | 340 | |
| 15693 | 341 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 24331 | 342 | by (simp add: restrict_map_def) | 
| 14100 | 343 | |
| 15693 | 344 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 24331 | 345 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 14100 | 346 | |
| 15693 | 347 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 24331 | 348 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 14100 | 349 | |
| 15693 | 350 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 351 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 352 | |
| 15693 | 353 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 24331 | 354 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 355 | |
| 20800 | 356 | lemma restrict_fun_upd [simp]: | 
| 24331 | 357 |   "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 358 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 359 | |
| 20800 | 360 | lemma fun_upd_None_restrict [simp]: | 
| 24331 | 361 |   "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | 
| 362 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 363 | |
| 20800 | 364 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 24331 | 365 | by (simp add: restrict_map_def expand_fun_eq) | 
| 14186 | 366 | |
| 20800 | 367 | lemma fun_upd_restrict_conv [simp]: | 
| 24331 | 368 |   "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 369 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 370 | |
| 14100 | 371 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 372 | subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 373 | |
| 20800 | 374 | lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" | 
| 24331 | 375 | by (simp add: map_upds_def) | 
| 14025 | 376 | |
| 20800 | 377 | lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" | 
| 24331 | 378 | by (simp add:map_upds_def) | 
| 20800 | 379 | |
| 380 | lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 24331 | 381 | by (simp add:map_upds_def) | 
| 14025 | 382 | |
| 20800 | 383 | lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 24331 | 384 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | 
| 385 | apply(induct xs) | |
| 386 | apply (clarsimp simp add: neq_Nil_conv) | |
| 387 | apply (case_tac ys) | |
| 388 | apply simp | |
| 389 | apply simp | |
| 390 | done | |
| 14187 | 391 | |
| 20800 | 392 | lemma map_upds_list_update2_drop [simp]: | 
| 393 | "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 394 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 24331 | 395 | apply (induct xs arbitrary: m ys i) | 
| 396 | apply simp | |
| 397 | apply (case_tac ys) | |
| 398 | apply simp | |
| 399 | apply (simp split: nat.split) | |
| 400 | done | |
| 14025 | 401 | |
| 20800 | 402 | lemma map_upd_upds_conv_if: | 
| 403 | "(f(x|->y))(xs [|->] ys) = | |
| 404 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 405 | else (f(xs [|->] ys))(x|->y))" | |
| 24331 | 406 | apply (induct xs arbitrary: x y ys f) | 
| 407 | apply simp | |
| 408 | apply (case_tac ys) | |
| 409 | apply (auto split: split_if simp: fun_upd_twist) | |
| 410 | done | |
| 14025 | 411 | |
| 412 | lemma map_upds_twist [simp]: | |
| 24331 | 413 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | 
| 414 | using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) | |
| 14025 | 415 | |
| 20800 | 416 | lemma map_upds_apply_nontin [simp]: | 
| 24331 | 417 | "x ~: set xs ==> (f(xs[|->]ys)) x = f x" | 
| 418 | apply (induct xs arbitrary: ys) | |
| 419 | apply simp | |
| 420 | apply (case_tac ys) | |
| 421 | apply (auto simp: map_upd_upds_conv_if) | |
| 422 | done | |
| 14025 | 423 | |
| 20800 | 424 | lemma fun_upds_append_drop [simp]: | 
| 24331 | 425 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | 
| 426 | apply (induct xs arbitrary: m ys) | |
| 427 | apply simp | |
| 428 | apply (case_tac ys) | |
| 429 | apply simp_all | |
| 430 | done | |
| 14300 | 431 | |
| 20800 | 432 | lemma fun_upds_append2_drop [simp]: | 
| 24331 | 433 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | 
| 434 | apply (induct xs arbitrary: m ys) | |
| 435 | apply simp | |
| 436 | apply (case_tac ys) | |
| 437 | apply simp_all | |
| 438 | done | |
| 14300 | 439 | |
| 440 | ||
| 20800 | 441 | lemma restrict_map_upds[simp]: | 
| 442 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 443 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 24331 | 444 | apply (induct xs arbitrary: m ys) | 
| 445 | apply simp | |
| 446 | apply (case_tac ys) | |
| 447 | apply simp | |
| 448 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 449 | apply (simp add: map_upd_upds_conv_if) | |
| 450 | done | |
| 14186 | 451 | |
| 452 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 453 | subsection {* @{term [source] dom} *}
 | 
| 13908 | 454 | |
| 455 | lemma domI: "m a = Some b ==> a : dom m" | |
| 24331 | 456 | by(simp add:dom_def) | 
| 14100 | 457 | (* declare domI [intro]? *) | 
| 13908 | 458 | |
| 15369 | 459 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 24331 | 460 | by (cases "m a") (auto simp add: dom_def) | 
| 13908 | 461 | |
| 20800 | 462 | lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" | 
| 24331 | 463 | by(simp add:dom_def) | 
| 13908 | 464 | |
| 20800 | 465 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 24331 | 466 | by(simp add:dom_def) | 
| 13908 | 467 | |
| 20800 | 468 | lemma dom_fun_upd [simp]: | 
| 24331 | 469 |   "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | 
| 470 | by(auto simp add:dom_def) | |
| 13908 | 471 | |
| 13937 | 472 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 24331 | 473 | by (induct xys) (auto simp del: fun_upd_apply) | 
| 13937 | 474 | |
| 15304 | 475 | lemma dom_map_of_conv_image_fst: | 
| 24331 | 476 | "dom(map_of xys) = fst ` (set xys)" | 
| 477 | by(force simp: dom_map_of) | |
| 15304 | 478 | |
| 20800 | 479 | lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 24331 | 480 | dom(map_of(zip xs ys)) = set xs" | 
| 481 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 482 | |
| 13908 | 483 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 24331 | 484 | by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) | 
| 13908 | 485 | |
| 20800 | 486 | lemma dom_map_upds [simp]: | 
| 24331 | 487 | "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | 
| 488 | apply (induct xs arbitrary: m ys) | |
| 489 | apply simp | |
| 490 | apply (case_tac ys) | |
| 491 | apply auto | |
| 492 | done | |
| 13910 | 493 | |
| 20800 | 494 | lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" | 
| 24331 | 495 | by(auto simp:dom_def) | 
| 13910 | 496 | |
| 20800 | 497 | lemma dom_override_on [simp]: | 
| 498 | "dom(override_on f g A) = | |
| 499 |     (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 24331 | 500 | by(auto simp: dom_def override_on_def) | 
| 13908 | 501 | |
| 14027 | 502 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 24331 | 503 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | 
| 20800 | 504 | |
| 29622 | 505 | lemma dom_const [simp]: | 
| 506 | "dom (\<lambda>x. Some y) = UNIV" | |
| 507 | by auto | |
| 508 | ||
| 509 | lemma dom_if: | |
| 510 |   "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
 | |
| 511 | by (auto split: if_splits) | |
| 512 | ||
| 513 | ||
| 22230 | 514 | (* Due to John Matthews - could be rephrased with dom *) | 
| 515 | lemma finite_map_freshness: | |
| 516 | "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> | |
| 517 | \<exists>x. f x = None" | |
| 518 | by(bestsimp dest:ex_new_if_finite) | |
| 14027 | 519 | |
| 28790 | 520 | lemma dom_minus: | 
| 521 | "f x = None \<Longrightarrow> dom f - insert x A = dom f - A" | |
| 522 | unfolding dom_def by simp | |
| 523 | ||
| 524 | lemma insert_dom: | |
| 525 | "f x = Some y \<Longrightarrow> insert x (dom f) = dom f" | |
| 526 | unfolding dom_def by auto | |
| 527 | ||
| 528 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 529 | subsection {* @{term [source] ran} *}
 | 
| 14100 | 530 | |
| 20800 | 531 | lemma ranI: "m a = Some b ==> b : ran m" | 
| 24331 | 532 | by(auto simp: ran_def) | 
| 14100 | 533 | (* declare ranI [intro]? *) | 
| 13908 | 534 | |
| 20800 | 535 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 24331 | 536 | by(auto simp: ran_def) | 
| 13908 | 537 | |
| 20800 | 538 | lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 24331 | 539 | unfolding ran_def | 
| 540 | apply auto | |
| 541 | apply (subgoal_tac "aa ~= a") | |
| 542 | apply auto | |
| 543 | done | |
| 20800 | 544 | |
| 13910 | 545 | |
| 14100 | 546 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 547 | |
| 13912 | 548 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 24331 | 549 | by (simp add: map_le_def) | 
| 13910 | 550 | |
| 17724 | 551 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 24331 | 552 | by (force simp add: map_le_def) | 
| 14187 | 553 | |
| 13910 | 554 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 24331 | 555 | by (fastsimp simp add: map_le_def) | 
| 13910 | 556 | |
| 17724 | 557 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 24331 | 558 | by (force simp add: map_le_def) | 
| 14187 | 559 | |
| 20800 | 560 | lemma map_le_upds [simp]: | 
| 24331 | 561 | "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | 
| 562 | apply (induct as arbitrary: f g bs) | |
| 563 | apply simp | |
| 564 | apply (case_tac bs) | |
| 565 | apply auto | |
| 566 | done | |
| 13908 | 567 | |
| 14033 | 568 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 24331 | 569 | by (fastsimp simp add: map_le_def dom_def) | 
| 14033 | 570 | |
| 571 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 24331 | 572 | by (simp add: map_le_def) | 
| 14033 | 573 | |
| 14187 | 574 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 24331 | 575 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 576 | |
| 577 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 24331 | 578 | unfolding map_le_def | 
| 579 | apply (rule ext) | |
| 580 | apply (case_tac "x \<in> dom f", simp) | |
| 581 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 582 | done | |
| 14033 | 583 | |
| 584 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 24331 | 585 | by (fastsimp simp add: map_le_def) | 
| 14033 | 586 | |
| 15304 | 587 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 24331 | 588 | by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits) | 
| 15304 | 589 | |
| 15303 | 590 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 24331 | 591 | by (fastsimp simp add: map_le_def map_add_def dom_def) | 
| 15303 | 592 | |
| 593 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 24331 | 594 | by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) | 
| 15303 | 595 | |
| 3981 | 596 | end |