src/HOL/Analysis/Complex_Analysis_Basics.thy
author paulson <lp15@cam.ac.uk>
Sat, 02 Nov 2019 15:52:47 +0000
changeset 71001 3e374c65f96b
parent 70817 dd675800469d
child 71029 934e0044e94b
permissions -rw-r--r--
reorganisation to eliminate Brouwer_Fixpoint from complex analysis
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     3
*)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
     5
section \<open>Complex Analysis Basics\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
theory Complex_Analysis_Basics
71001
3e374c65f96b reorganisation to eliminate Brouwer_Fixpoint from complex analysis
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
     8
  imports Derivative "HOL-Library.Nonpos_Ints"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
begin
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
69180
922833cc6839 Tagged some theories in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 69064
diff changeset
    11
(* TODO FIXME: A lot of the things in here have nothing to do with complex analysis *)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    12
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
    13
subsection\<^marker>\<open>tag unimportant\<close>\<open>General lemmas\<close>
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    14
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
    15
lemma nonneg_Reals_cmod_eq_Re: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> norm z = Re z"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
    16
  by (simp add: complex_nonneg_Reals_iff cmod_eq_Re)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    17
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    18
lemma fact_cancel:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    19
  fixes c :: "'a::real_field"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    20
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    21
  using of_nat_neq_0 by force
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
    22
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    23
lemma vector_derivative_cnj_within:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    24
  assumes "at x within A \<noteq> bot" and "f differentiable at x within A"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    25
  shows   "vector_derivative (\<lambda>z. cnj (f z)) (at x within A) = 
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    26
             cnj (vector_derivative f (at x within A))" (is "_ = cnj ?D")
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    27
proof -
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    28
  let ?D = "vector_derivative f (at x within A)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    29
  from assms have "(f has_vector_derivative ?D) (at x within A)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    30
    by (subst (asm) vector_derivative_works)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    31
  hence "((\<lambda>x. cnj (f x)) has_vector_derivative cnj ?D) (at x within A)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    32
    by (rule has_vector_derivative_cnj)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    33
  thus ?thesis using assms by (auto dest: vector_derivative_within)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    34
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    35
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    36
lemma vector_derivative_cnj:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    37
  assumes "f differentiable at x"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    38
  shows   "vector_derivative (\<lambda>z. cnj (f z)) (at x) = cnj (vector_derivative f (at x))"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    39
  using assms by (intro vector_derivative_cnj_within) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
    40
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
    41
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    42
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    43
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
    44
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    45
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    46
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
    47
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
    49
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    50
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    51
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
    52
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
  assumes "uniformly_continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    58
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    59
  by (rule continuous_norm [OF continuous_ident])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    62
  by (intro continuous_on_id continuous_on_norm)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
lemma DERIV_zero_unique:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    65
  assumes "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    66
      and d0: "\<And>x. x\<in>S \<Longrightarrow> (f has_field_derivative 0) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    67
      and "a \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    68
      and "x \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    70
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
    71
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
lemma DERIV_zero_connected_unique:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    74
  assumes "connected S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    75
      and "open S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    76
      and d0: "\<And>x. x\<in>S \<Longrightarrow> DERIV f x :> 0"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    77
      and "a \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    78
      and "x \<in> S"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    79
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    80
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    81
       (metis has_field_derivative_def lambda_zero d0)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
lemma DERIV_transform_within:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    84
  assumes "(f has_field_derivative f') (at a within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    85
      and "0 < d" "a \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    86
      and "\<And>x. x\<in>S \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    87
    shows "(g has_field_derivative f') (at a within S)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
  using assms unfolding has_field_derivative_def
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
    89
  by (blast intro: has_derivative_transform_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
lemma DERIV_transform_within_open:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
  assumes "DERIV f a :> f'"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    93
      and "open S" "a \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
    94
      and "\<And>x. x\<in>S \<Longrightarrow> f x = g x"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
  using assms unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
by (metis has_derivative_transform_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    99
lemma DERIV_transform_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
      and "0 < d"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
  by (blast intro: assms DERIV_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   106
(*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   107
lemma DERIV_zero_UNIV_unique:
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   108
  "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   109
  by (metis DERIV_zero_unique UNIV_I convex_UNIV)
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   110
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   111
lemma
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   112
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   113
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   114
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   115
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   116
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   117
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   118
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   119
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   120
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   121
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63092
diff changeset
   122
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63092
diff changeset
   123
            continuous_on_Im continuous_on_id continuous_on_const)+
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   124
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   125
lemma closed_complex_Reals: "closed (\<real> :: complex set)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   126
proof -
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   127
  have "(\<real> :: complex set) = {z. Im z = 0}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   128
    by (auto simp: complex_is_Real_iff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   129
  then show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   130
    by (metis closed_halfspace_Im_eq)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   131
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   132
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   133
lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   134
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   135
69180
922833cc6839 Tagged some theories in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 69064
diff changeset
   136
lemma closed_nonpos_Reals_complex [simp]: "closed (\<real>\<^sub>\<le>\<^sub>0 :: complex set)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   137
proof -
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   138
  have "\<real>\<^sub>\<le>\<^sub>0 = \<real> \<inter> {z. Re(z) \<le> 0}"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   139
    using complex_nonpos_Reals_iff complex_is_Real_iff by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   140
  then show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   141
    by (metis closed_Real_halfspace_Re_le)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   142
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   143
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   144
lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   145
  using closed_halfspace_Re_ge
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   146
  by (simp add: closed_Int closed_complex_Reals)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   147
69180
922833cc6839 Tagged some theories in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 69064
diff changeset
   148
lemma closed_nonneg_Reals_complex [simp]: "closed (\<real>\<^sub>\<ge>\<^sub>0 :: complex set)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   149
proof -
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   150
  have "\<real>\<^sub>\<ge>\<^sub>0 = \<real> \<inter> {z. Re(z) \<ge> 0}"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   151
    using complex_nonneg_Reals_iff complex_is_Real_iff by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   152
  then show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   153
    by (metis closed_Real_halfspace_Re_ge)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   154
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   155
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   156
lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   157
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   158
  have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   159
    by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   160
  then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   161
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   162
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   163
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   164
lemma real_lim:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   165
  fixes l::complex
69508
2a4c8a2a3f8e tuned headers; ~ -> \<not>
nipkow
parents: 69286
diff changeset
   166
  assumes "(f \<longlongrightarrow> l) F" and "\<not> trivial_limit F" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   167
  shows  "l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   168
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   169
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   170
    using assms(3, 4) by (auto intro: eventually_mono)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   171
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   172
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   173
lemma real_lim_sequentially:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   174
  fixes l::complex
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   175
  shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   176
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   177
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   178
lemma real_series:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   179
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   180
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   181
unfolding sums_def
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   182
by (metis real_lim_sequentially sum_in_Reals)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   183
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   184
lemma Lim_null_comparison_Re:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   185
  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F"
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
   186
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   188
subsection\<open>Holomorphic functions\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   190
definition\<^marker>\<open>tag important\<close> holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   191
           (infixl "(holomorphic'_on)" 50)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   192
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f field_differentiable (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   193
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   194
named_theorems\<^marker>\<open>tag important\<close> holomorphic_intros "structural introduction rules for holomorphic_on"
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   195
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   196
lemma holomorphic_onI [intro?]: "(\<And>x. x \<in> s \<Longrightarrow> f field_differentiable (at x within s)) \<Longrightarrow> f holomorphic_on s"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   197
  by (simp add: holomorphic_on_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   198
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   199
lemma holomorphic_onD [dest?]: "\<lbrakk>f holomorphic_on s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x within s)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   200
  by (simp add: holomorphic_on_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   201
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   202
lemma holomorphic_on_imp_differentiable_on:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   203
    "f holomorphic_on s \<Longrightarrow> f differentiable_on s"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   204
  unfolding holomorphic_on_def differentiable_on_def
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   205
  by (simp add: field_differentiable_imp_differentiable)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   206
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   207
lemma holomorphic_on_imp_differentiable_at:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   208
   "\<lbrakk>f holomorphic_on s; open s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   209
using at_within_open holomorphic_on_def by fastforce
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
   210
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   211
lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   212
  by (simp add: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   213
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   214
lemma holomorphic_on_open:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   215
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   216
  by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s])
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   217
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   218
lemma holomorphic_on_imp_continuous_on:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   219
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   220
  by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   221
62540
f2fc5485e3b0 Wenda Li's new material: residue theorem, argument_principle, Rouche_theorem
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
   222
lemma holomorphic_on_subset [elim]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   223
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   224
  unfolding holomorphic_on_def
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   225
  by (metis field_differentiable_within_subset subsetD)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   226
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   227
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   228
  by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   229
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   230
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   231
  by (metis holomorphic_transform)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   232
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
   233
lemma holomorphic_on_linear [simp, holomorphic_intros]: "((*) c) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   234
  unfolding holomorphic_on_def by (metis field_differentiable_linear)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   235
62217
527488dc8b90 Reorganised a huge proof
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
   236
lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   237
  unfolding holomorphic_on_def by (metis field_differentiable_const)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   238
62217
527488dc8b90 Reorganised a huge proof
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
   239
lemma holomorphic_on_ident [simp, holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   240
  unfolding holomorphic_on_def by (metis field_differentiable_ident)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   241
62217
527488dc8b90 Reorganised a huge proof
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
   242
lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   243
  unfolding id_def by (rule holomorphic_on_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   244
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   245
lemma holomorphic_on_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   246
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   247
  using field_differentiable_compose_within[of f _ s g]
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   248
  by (auto simp: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   249
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   250
lemma holomorphic_on_compose_gen:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   251
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   252
  by (metis holomorphic_on_compose holomorphic_on_subset)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   253
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   254
lemma holomorphic_on_balls_imp_entire:
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   255
  assumes "\<not>bdd_above A" "\<And>r. r \<in> A \<Longrightarrow> f holomorphic_on ball c r"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   256
  shows   "f holomorphic_on B"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   257
proof (rule holomorphic_on_subset)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   258
  show "f holomorphic_on UNIV" unfolding holomorphic_on_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   259
  proof
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   260
    fix z :: complex
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   261
    from \<open>\<not>bdd_above A\<close> obtain r where r: "r \<in> A" "r > norm (z - c)"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   262
      by (meson bdd_aboveI not_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   263
    with assms(2) have "f holomorphic_on ball c r" by blast
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   264
    moreover from r have "z \<in> ball c r" by (auto simp: dist_norm norm_minus_commute)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   265
    ultimately show "f field_differentiable at z"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   266
      by (auto simp: holomorphic_on_def at_within_open[of _ "ball c r"])
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   267
  qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   268
qed auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   269
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   270
lemma holomorphic_on_balls_imp_entire':
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   271
  assumes "\<And>r. r > 0 \<Longrightarrow> f holomorphic_on ball c r"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   272
  shows   "f holomorphic_on B"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   273
proof (rule holomorphic_on_balls_imp_entire)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   274
  {
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   275
    fix M :: real
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   276
    have "\<exists>x. x > max M 0" by (intro gt_ex)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   277
    hence "\<exists>x>0. x > M" by auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   278
  }
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   279
  thus "\<not>bdd_above {(0::real)<..}" unfolding bdd_above_def
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   280
    by (auto simp: not_le)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   281
qed (insert assms, auto)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68296
diff changeset
   282
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   283
lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   284
  by (metis field_differentiable_minus holomorphic_on_def)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   285
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   286
lemma holomorphic_on_add [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   287
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   288
  unfolding holomorphic_on_def by (metis field_differentiable_add)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   289
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   290
lemma holomorphic_on_diff [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   291
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   292
  unfolding holomorphic_on_def by (metis field_differentiable_diff)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   293
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   294
lemma holomorphic_on_mult [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   295
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   296
  unfolding holomorphic_on_def by (metis field_differentiable_mult)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   297
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   298
lemma holomorphic_on_inverse [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   299
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   300
  unfolding holomorphic_on_def by (metis field_differentiable_inverse)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   301
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   302
lemma holomorphic_on_divide [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   303
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   304
  unfolding holomorphic_on_def by (metis field_differentiable_divide)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   305
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   306
lemma holomorphic_on_power [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   307
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   308
  unfolding holomorphic_on_def by (metis field_differentiable_power)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   309
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   310
lemma holomorphic_on_sum [holomorphic_intros]:
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   311
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) holomorphic_on s"
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   312
  unfolding holomorphic_on_def by (metis field_differentiable_sum)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   313
67135
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
   314
lemma holomorphic_on_prod [holomorphic_intros]:
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
   315
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. prod (\<lambda>i. f i x) I) holomorphic_on s"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
   316
  by (induction I rule: infinite_finite_induct) (auto intro: holomorphic_intros)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
   317
66486
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   318
lemma holomorphic_pochhammer [holomorphic_intros]:
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   319
  "f holomorphic_on A \<Longrightarrow> (\<lambda>s. pochhammer (f s) n) holomorphic_on A"
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   320
  by (induction n) (auto intro!: holomorphic_intros simp: pochhammer_Suc)
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   321
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   322
lemma holomorphic_on_scaleR [holomorphic_intros]:
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   323
  "f holomorphic_on A \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) holomorphic_on A"
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   324
  by (auto simp: scaleR_conv_of_real intro!: holomorphic_intros)
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   325
67167
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   326
lemma holomorphic_on_Un [holomorphic_intros]:
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   327
  assumes "f holomorphic_on A" "f holomorphic_on B" "open A" "open B"
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   328
  shows   "f holomorphic_on (A \<union> B)"
68239
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   329
  using assms by (auto simp: holomorphic_on_def  at_within_open[of _ A]
67167
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   330
                             at_within_open[of _ B]  at_within_open[of _ "A \<union> B"] open_Un)
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   331
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   332
lemma holomorphic_on_If_Un [holomorphic_intros]:
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   333
  assumes "f holomorphic_on A" "g holomorphic_on B" "open A" "open B"
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   334
  assumes "\<And>z. z \<in> A \<Longrightarrow> z \<in> B \<Longrightarrow> f z = g z"
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   335
  shows   "(\<lambda>z. if z \<in> A then f z else g z) holomorphic_on (A \<union> B)" (is "?h holomorphic_on _")
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   336
proof (intro holomorphic_on_Un)
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   337
  note \<open>f holomorphic_on A\<close>
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   338
  also have "f holomorphic_on A \<longleftrightarrow> ?h holomorphic_on A"
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   339
    by (intro holomorphic_cong) auto
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   340
  finally show \<dots> .
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   341
next
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   342
  note \<open>g holomorphic_on B\<close>
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   343
  also have "g holomorphic_on B \<longleftrightarrow> ?h holomorphic_on B"
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   344
    using assms by (intro holomorphic_cong) auto
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   345
  finally show \<dots> .
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   346
qed (insert assms, auto)
88d1c9d86f48 Moved analysis material from AFP
Manuel Eberl <eberlm@in.tum.de>
parents: 67135
diff changeset
   347
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   348
lemma DERIV_deriv_iff_field_differentiable:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   349
  "DERIV f x :> deriv f x \<longleftrightarrow> f field_differentiable at x"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   350
  unfolding field_differentiable_def by (metis DERIV_imp_deriv)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   351
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   352
lemma holomorphic_derivI:
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   353
     "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   354
      \<Longrightarrow> (f has_field_derivative deriv f x) (at x within T)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   355
by (metis DERIV_deriv_iff_field_differentiable at_within_open  holomorphic_on_def has_field_derivative_at_within)
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   356
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   357
lemma complex_derivative_chain:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   358
  "f field_differentiable at x \<Longrightarrow> g field_differentiable at (f x)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   359
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   360
  by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   361
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   362
lemma deriv_linear [simp]: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   363
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   364
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   365
lemma deriv_ident [simp]: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   366
  by (metis DERIV_imp_deriv DERIV_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   367
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   368
lemma deriv_id [simp]: "deriv id = (\<lambda>z. 1)"
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   369
  by (simp add: id_def)
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   370
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62217
diff changeset
   371
lemma deriv_const [simp]: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   372
  by (metis DERIV_imp_deriv DERIV_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   373
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   374
lemma deriv_add [simp]:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   375
  "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   376
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   377
  unfolding DERIV_deriv_iff_field_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   378
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   379
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   380
lemma deriv_diff [simp]:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   381
  "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   382
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   383
  unfolding DERIV_deriv_iff_field_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   384
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   385
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   386
lemma deriv_mult [simp]:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   387
  "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   388
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   389
  unfolding DERIV_deriv_iff_field_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   390
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   391
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   392
lemma deriv_cmult:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   393
  "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   394
  by simp
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   395
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   396
lemma deriv_cmult_right:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   397
  "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   398
  by simp
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   399
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   400
lemma deriv_inverse [simp]:
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   401
  "\<lbrakk>f field_differentiable at z; f z \<noteq> 0\<rbrakk>
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   402
   \<Longrightarrow> deriv (\<lambda>w. inverse (f w)) z = - deriv f z / f z ^ 2"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   403
  unfolding DERIV_deriv_iff_field_differentiable[symmetric]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70707
diff changeset
   404
  by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: field_split_simps power2_eq_square)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   405
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   406
lemma deriv_divide [simp]:
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   407
  "\<lbrakk>f field_differentiable at z; g field_differentiable at z; g z \<noteq> 0\<rbrakk>
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   408
   \<Longrightarrow> deriv (\<lambda>w. f w / g w) z = (deriv f z * g z - f z * deriv g z) / g z ^ 2"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   409
  by (simp add: field_class.field_divide_inverse field_differentiable_inverse)
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70707
diff changeset
   410
     (simp add: field_split_simps power2_eq_square)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   411
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   412
lemma deriv_cdivide_right:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   413
  "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w / c) z = deriv f z / c"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   414
  by (simp add: field_class.field_divide_inverse)
62217
527488dc8b90 Reorganised a huge proof
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
   415
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   416
lemma complex_derivative_transform_within_open:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   417
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   418
   \<Longrightarrow> deriv f z = deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   419
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   420
  by (rule DERIV_imp_deriv)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   421
     (metis DERIV_deriv_iff_field_differentiable DERIV_transform_within_open at_within_open)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   422
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   423
lemma deriv_compose_linear:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   424
  "f field_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   425
apply (rule DERIV_imp_deriv)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   426
  unfolding DERIV_deriv_iff_field_differentiable [symmetric]
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   427
  by (metis (full_types) DERIV_chain2 DERIV_cmult_Id mult.commute)
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   428
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   429
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   430
lemma nonzero_deriv_nonconstant:
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   431
  assumes df: "DERIV f \<xi> :> df" and S: "open S" "\<xi> \<in> S" and "df \<noteq> 0"
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   432
    shows "\<not> f constant_on S"
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   433
unfolding constant_on_def
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   434
by (metis \<open>df \<noteq> 0\<close> DERIV_transform_within_open [OF df S] DERIV_const DERIV_unique)
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   435
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   436
lemma holomorphic_nonconstant:
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   437
  assumes holf: "f holomorphic_on S" and "open S" "\<xi> \<in> S" "deriv f \<xi> \<noteq> 0"
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   438
    shows "\<not> f constant_on S"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   439
  by (rule nonzero_deriv_nonconstant [of f "deriv f \<xi>" \<xi> S])
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   440
    (use assms in \<open>auto simp: holomorphic_derivI\<close>)
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62408
diff changeset
   441
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   442
subsection\<^marker>\<open>tag unimportant\<close>\<open>Caratheodory characterization\<close>
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   443
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   444
lemma field_differentiable_caratheodory_at:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   445
  "f field_differentiable (at z) \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   446
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   447
  using CARAT_DERIV [of f]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   448
  by (simp add: field_differentiable_def has_field_derivative_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   449
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   450
lemma field_differentiable_caratheodory_within:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   451
  "f field_differentiable (at z within s) \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   452
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   453
  using DERIV_caratheodory_within [of f]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   454
  by (simp add: field_differentiable_def has_field_derivative_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   455
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   456
subsection\<open>Analyticity on a set\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   457
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   458
definition\<^marker>\<open>tag important\<close> analytic_on (infixl "(analytic'_on)" 50)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   459
  where "f analytic_on S \<equiv> \<forall>x \<in> S. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   460
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   461
named_theorems\<^marker>\<open>tag important\<close> analytic_intros "introduction rules for proving analyticity"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   462
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   463
lemma analytic_imp_holomorphic: "f analytic_on S \<Longrightarrow> f holomorphic_on S"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   464
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   465
     (metis centre_in_ball field_differentiable_at_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   466
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   467
lemma analytic_on_open: "open S \<Longrightarrow> f analytic_on S \<longleftrightarrow> f holomorphic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   468
apply (auto simp: analytic_imp_holomorphic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   469
apply (auto simp: analytic_on_def holomorphic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   470
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   471
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   472
lemma analytic_on_imp_differentiable_at:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   473
  "f analytic_on S \<Longrightarrow> x \<in> S \<Longrightarrow> f field_differentiable (at x)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   474
 apply (auto simp: analytic_on_def holomorphic_on_def)
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66486
diff changeset
   475
by (metis open_ball centre_in_ball field_differentiable_within_open)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   476
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   477
lemma analytic_on_subset: "f analytic_on S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> f analytic_on T"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   478
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   479
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   480
lemma analytic_on_Un: "f analytic_on (S \<union> T) \<longleftrightarrow> f analytic_on S \<and> f analytic_on T"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   481
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   482
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   483
lemma analytic_on_Union: "f analytic_on (\<Union>\<T>) \<longleftrightarrow> (\<forall>T \<in> \<T>. f analytic_on T)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   484
  by (auto simp: analytic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   485
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   486
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. S i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (S i))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   487
  by (auto simp: analytic_on_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   488
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   489
lemma analytic_on_holomorphic:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   490
  "f analytic_on S \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f holomorphic_on T)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   491
  (is "?lhs = ?rhs")
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   492
proof -
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   493
  have "?lhs \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   494
  proof safe
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   495
    assume "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   496
    then show "\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   497
      apply (simp add: analytic_on_def)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   498
      apply (rule exI [where x="\<Union>{U. open U \<and> f analytic_on U}"], auto)
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66486
diff changeset
   499
      apply (metis open_ball analytic_on_open centre_in_ball)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   500
      by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   501
  next
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   502
    fix T
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   503
    assume "open T" "S \<subseteq> T" "f analytic_on T"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   504
    then show "f analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   505
        by (metis analytic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   506
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   507
  also have "... \<longleftrightarrow> ?rhs"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   508
    by (auto simp: analytic_on_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   509
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   510
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   511
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
   512
lemma analytic_on_linear [analytic_intros,simp]: "((*) c) analytic_on S"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   513
  by (auto simp add: analytic_on_holomorphic)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   514
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   515
lemma analytic_on_const [analytic_intros,simp]: "(\<lambda>z. c) analytic_on S"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   516
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   517
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   518
lemma analytic_on_ident [analytic_intros,simp]: "(\<lambda>x. x) analytic_on S"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   519
  by (simp add: analytic_on_def gt_ex)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   520
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   521
lemma analytic_on_id [analytic_intros]: "id analytic_on S"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   522
  unfolding id_def by (rule analytic_on_ident)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   523
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   524
lemma analytic_on_compose:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   525
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   526
      and g: "g analytic_on (f ` S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   527
    shows "(g o f) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   528
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   529
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   530
  fix x
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   531
  assume x: "x \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   532
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   533
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   534
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   535
    by (metis analytic_on_def g image_eqI x)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   536
  have "isCont f x"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   537
    by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   538
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   539
     by (auto simp: continuous_at_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   540
  have "g \<circ> f holomorphic_on ball x (min d e)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   541
    apply (rule holomorphic_on_compose)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   542
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   543
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   544
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   545
    by (metis d e min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   546
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   547
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
lemma analytic_on_compose_gen:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   549
  "f analytic_on S \<Longrightarrow> g analytic_on T \<Longrightarrow> (\<And>z. z \<in> S \<Longrightarrow> f z \<in> T)
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   550
             \<Longrightarrow> g o f analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   553
lemma analytic_on_neg [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   554
  "f analytic_on S \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
by (metis analytic_on_holomorphic holomorphic_on_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   557
lemma analytic_on_add [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   558
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   559
      and g: "g analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   560
    shows "(\<lambda>z. f z + g z) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   562
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   563
  fix z
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   564
  assume z: "z \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   565
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   566
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   568
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   569
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   570
    apply (rule holomorphic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   571
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   577
lemma analytic_on_diff [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   578
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   579
      and g: "g analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   580
    shows "(\<lambda>z. f z - g z) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   582
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   583
  fix z
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   584
  assume z: "z \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   588
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   589
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   590
    apply (rule holomorphic_on_diff)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   592
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   596
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   597
lemma analytic_on_mult [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   598
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   599
      and g: "g analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   600
    shows "(\<lambda>z. f z * g z) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   602
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
  fix z
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   604
  assume z: "z \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   608
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   609
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   610
    apply (rule holomorphic_on_mult)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   614
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   615
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   616
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   617
lemma analytic_on_inverse [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   618
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   619
      and nz: "(\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 0)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   620
    shows "(\<lambda>z. inverse (f z)) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
  fix z
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   624
  assume z: "z \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
  have "continuous_on (ball z e) f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
    by (metis fh holomorphic_on_imp_continuous_on)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   629
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0"
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66486
diff changeset
   630
    by (metis open_ball centre_in_ball continuous_on_open_avoid e z nz)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   631
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
    apply (rule holomorphic_on_inverse)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   634
    by (metis nz' mem_ball min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   639
lemma analytic_on_divide [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   640
  assumes f: "f analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   641
      and g: "g analytic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   642
      and nz: "(\<And>z. z \<in> S \<Longrightarrow> g z \<noteq> 0)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   643
    shows "(\<lambda>z. f z / g z) analytic_on S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
unfolding divide_inverse
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
by (metis analytic_on_inverse analytic_on_mult f g nz)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   647
lemma analytic_on_power [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   648
  "f analytic_on S \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on S"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   649
by (induct n) (auto simp: analytic_on_mult)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
   651
lemma analytic_on_sum [analytic_intros]:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   652
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on S) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) analytic_on S"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   653
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
62408
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   655
lemma deriv_left_inverse:
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   656
  assumes "f holomorphic_on S" and "g holomorphic_on T"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   657
      and "open S" and "open T"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   658
      and "f ` S \<subseteq> T"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   659
      and [simp]: "\<And>z. z \<in> S \<Longrightarrow> g (f z) = z"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   660
      and "w \<in> S"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   661
    shows "deriv f w * deriv g (f w) = 1"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   662
proof -
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   663
  have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   664
    by (simp add: algebra_simps)
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   665
  also have "... = deriv (g o f) w"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   666
    using assms
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   667
    by (metis analytic_on_imp_differentiable_at analytic_on_open complex_derivative_chain image_subset_iff)
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   668
  also have "... = deriv id w"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   669
  proof (rule complex_derivative_transform_within_open [where s=S])
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   670
    show "g \<circ> f holomorphic_on S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   671
      by (rule assms holomorphic_on_compose_gen holomorphic_intros)+
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   672
  qed (use assms in auto)
62408
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   673
  also have "... = 1"
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   674
    by simp
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   675
  finally show ?thesis .
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   676
qed
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   677
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   678
subsection\<^marker>\<open>tag unimportant\<close>\<open>Analyticity at a point\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
lemma analytic_at_ball:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
by (metis analytic_on_def singleton_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
lemma analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   688
lemma analytic_on_analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   689
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   690
by (metis analytic_at_ball analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
lemma analytic_at_two:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
  (is "?lhs = ?rhs")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   696
proof
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
  assume ?lhs
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   698
  then obtain s t
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
    where st: "open s" "z \<in> s" "f holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
              "open t" "z \<in> t" "g holomorphic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
    by (auto simp: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
  show ?rhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
    apply (rule_tac x="s \<inter> t" in exI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
    using st
69286
nipkow
parents: 69180
diff changeset
   705
    apply (auto simp: holomorphic_on_subset)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   708
  assume ?rhs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   709
  then show ?lhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   710
    by (force simp add: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   711
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   712
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   713
subsection\<^marker>\<open>tag unimportant\<close>\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   714
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   715
lemma
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
  assumes "f analytic_on {z}" "g analytic_on {z}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   717
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   718
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   719
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   720
           f z * deriv g z + deriv f z * g z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
    using assms by (metis analytic_at_two)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   724
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   725
    apply (rule DERIV_imp_deriv [OF DERIV_add])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
    using s
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   727
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   729
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   730
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
    using s
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   732
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   733
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   734
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   735
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   736
    using s
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   737
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   738
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   739
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   741
lemma deriv_cmult_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   742
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   743
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   745
lemma deriv_cmult_right_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   746
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   747
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   749
subsection\<^marker>\<open>tag unimportant\<close>\<open>Complex differentiation of sequences and series\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   751
(* TODO: Could probably be simplified using Uniform_Limit *)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
lemma has_complex_derivative_sequence:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   753
  fixes S :: "complex set"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   754
  assumes cvs: "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   755
      and df:  "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   756
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S \<longrightarrow> norm (f' n x - g' x) \<le> e"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   757
      and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   758
    shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and>
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   759
                       (g has_field_derivative (g' x)) (at x within S)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   760
proof -
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   761
  from assms obtain x l where x: "x \<in> S" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   762
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   763
  { fix e::real assume e: "e > 0"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   764
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> S \<longrightarrow> cmod (f' n x - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   765
      by (metis conv)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   766
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
      fix n y h
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   769
      assume "N \<le> n" "y \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   770
      then have "cmod (f' n y - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   772
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   775
        by (simp add: norm_mult [symmetric] field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   776
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   777
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
  show ?thesis
68055
2cab37094fc4 more defer/prefer
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
   779
    unfolding has_field_derivative_def
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
  proof (rule has_derivative_sequence [OF cvs _ _ x])
68239
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   781
    show "(\<lambda>n. f n x) \<longlonglongrightarrow> l"
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   782
      by (rule tf)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   783
  next show "\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
68239
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   784
      unfolding eventually_sequentially by (blast intro: **)
68055
2cab37094fc4 more defer/prefer
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
   785
  qed (metis has_field_derivative_def df)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   786
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   787
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   788
lemma has_complex_derivative_series:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   789
  fixes S :: "complex set"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   790
  assumes cvs: "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   791
      and df:  "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   792
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   793
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   794
      and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) sums l)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   795
    shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within S))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
proof -
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   797
  from assms obtain x l where x: "x \<in> S" and sf: "((\<lambda>n. f n x) sums l)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   799
  { fix e::real assume e: "e > 0"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   800
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> S
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   802
      by (metis conv)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   803
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   804
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   805
      fix n y h
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   806
      assume "N \<le> n" "y \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   807
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   808
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   809
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   810
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   812
        by (simp add: norm_mult [symmetric] field_simps sum_distrib_left)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   815
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
  proof (rule has_derivative_series [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
    fix n x
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   819
    assume "x \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   820
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within S)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
      by (metis df has_field_derivative_def mult_commute_abs)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   822
  next show " ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
    by (rule sf)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   824
  next show "\<And>e. e>0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
68239
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   825
      unfolding eventually_sequentially by (blast intro: **)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   829
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   830
lemma field_differentiable_series:
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   831
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach} \<Rightarrow> 'a"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   832
  assumes "convex S" "open S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   833
  assumes "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   834
  assumes "uniformly_convergent_on S (\<lambda>n x. \<Sum>i<n. f' i x)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   835
  assumes "x0 \<in> S" "summable (\<lambda>n. f n x0)" and x: "x \<in> S"
68055
2cab37094fc4 more defer/prefer
paulson <lp15@cam.ac.uk>
parents: 67979
diff changeset
   836
  shows  "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   837
proof -
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   838
  from assms(4) obtain g' where A: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   839
    unfolding uniformly_convergent_on_def by blast
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   840
  from x and \<open>open S\<close> have S: "at x within S = at x" by (rule at_within_open)
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   841
  have "\<exists>g. \<forall>x\<in>S. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   842
    by (intro has_field_derivative_series[of S f f' g' x0] assms A has_field_derivative_at_within)
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   843
  then obtain g where g: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. f n x) sums g x"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   844
    "\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative g' x) (at x within S)" by blast
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
   845
  from g(2)[OF x] have g': "(g has_derivative (*) (g' x)) (at x)"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   846
    by (simp add: has_field_derivative_def S)
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
   847
  have "((\<lambda>x. \<Sum>n. f n x) has_derivative (*) (g' x)) (at x)"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   848
    by (rule has_derivative_transform_within_open[OF g' \<open>open S\<close> x])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   849
       (insert g, auto simp: sums_iff)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   850
  thus "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" unfolding differentiable_def
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   851
    by (auto simp: summable_def field_differentiable_def has_field_derivative_def)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   852
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   853
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   854
subsection\<^marker>\<open>tag unimportant\<close>\<open>Bound theorem\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   856
lemma field_differentiable_bound:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   857
  fixes S :: "'a::real_normed_field set"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   858
  assumes cvs: "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   859
      and df:  "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   860
      and dn:  "\<And>z. z \<in> S \<Longrightarrow> norm (f' z) \<le> B"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   861
      and "x \<in> S"  "y \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   862
    shows "norm(f x - f y) \<le> B * norm(x - y)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   863
  apply (rule differentiable_bound [OF cvs])
68239
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   864
  apply (erule df [unfolded has_field_derivative_def])
0764ee22a4d1 tidy up of Derivative
paulson <lp15@cam.ac.uk>
parents: 68055
diff changeset
   865
  apply (rule onorm_le, simp_all add: norm_mult mult_right_mono assms)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   868
subsection\<^marker>\<open>tag unimportant\<close>\<open>Inverse function theorem for complex derivatives\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   870
lemma has_field_derivative_inverse_basic:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
  shows "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
        f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   873
        continuous (at y) g \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   874
        open t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
        y \<in> t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   877
        \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
  apply (rule has_derivative_inverse_basic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
  apply (auto simp:  bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
   883
subsection\<^marker>\<open>tag unimportant\<close> \<open>Taylor on Complex Numbers\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   885
lemma sum_Suc_reindex:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   887
    shows  "sum f {0..n} = f 0 - f (Suc n) + sum (\<lambda>i. f (Suc i)) {0..n}"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
by (induct n) auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69508
diff changeset
   890
lemma field_Taylor:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   891
  assumes S: "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   892
      and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   893
      and B: "\<And>x. x \<in> S \<Longrightarrow> norm (f (Suc n) x) \<le> B"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   894
      and w: "w \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   895
      and z: "z \<in> S"
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   896
    shows "norm(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   897
          \<le> B * norm(z - w)^(Suc n) / fact n"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   898
proof -
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   899
  have wzs: "closed_segment w z \<subseteq> S" using assms
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   900
    by (metis convex_contains_segment)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   901
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   902
    assume "u \<in> closed_segment w z"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   903
    then have "u \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   904
      by (metis wzs subsetD)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   905
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   906
                      f (Suc i) u * (z-u)^i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   907
              f (Suc n) u * (z-u) ^ n / (fact n)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   908
    proof (induction n)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   909
      case 0 show ?case by simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   910
    next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   911
      case (Suc n)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   912
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   913
                             f (Suc i) u * (z-u) ^ i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   914
           f (Suc n) u * (z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   915
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   916
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
   917
        using Suc by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   918
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   919
      proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   920
        have "(fact(Suc n)) *
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   921
             (f(Suc n) u *(z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   922
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   923
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   924
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   925
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   926
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63332
diff changeset
   927
          by (simp add: algebra_simps del: fact_Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   928
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   929
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   930
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63332
diff changeset
   931
          by (simp del: fact_Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   932
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   933
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   934
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63332
diff changeset
   935
          by (simp only: fact_Suc of_nat_mult ac_simps) simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   936
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   937
          by (simp add: algebra_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   938
        finally show ?thesis
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63332
diff changeset
   939
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact_Suc)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   940
      qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
      finally show ?case .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
    qed
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   943
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i)))
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   944
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   945
               (at u within S)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   946
      apply (intro derivative_eq_intros)
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   947
      apply (blast intro: assms \<open>u \<in> S\<close>)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
      apply (rule refl)+
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
      apply (auto simp: field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
      done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
  } note sum_deriv = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
    assume u: "u \<in> closed_segment w z"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   954
    then have us: "u \<in> S"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
      by (metis wzs subsetD)
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   956
    have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> norm (f (Suc n) u) * norm (u - z) ^ n"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
      by (metis norm_minus_commute order_refl)
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   958
    also have "... \<le> norm (f (Suc n) u) * norm (z - w) ^ n"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   960
    also have "... \<le> B * norm (z - w) ^ n"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   962
    finally have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> B * norm (z - w) ^ n" .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
  } note cmod_bound = this
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   964
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
    by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   966
  also have "\<dots> = f 0 z / (fact 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
   967
    by (subst sum_zero_power) simp
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   968
  finally have "norm (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)))
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   969
                \<le> norm ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   970
                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
    by (simp add: norm_minus_commute)
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   972
  also have "... \<le> B * norm (z - w) ^ n / (fact n) * norm (w - z)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   973
    apply (rule field_differentiable_bound
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   974
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   975
         and S = "closed_segment w z", OF convex_closed_segment])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   976
    apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs]
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
    done
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   979
  also have "...  \<le> B * norm (z - w) ^ Suc n / (fact n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   980
    by (simp add: algebra_simps norm_minus_commute)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   982
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69508
diff changeset
   984
lemma complex_Taylor:
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   985
  assumes S: "convex S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   986
      and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   987
      and B: "\<And>x. x \<in> S \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   988
      and w: "w \<in> S"
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 68239
diff changeset
   989
      and z: "z \<in> S"
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   990
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   991
          \<le> B * cmod(z - w)^(Suc n) / fact n"
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69508
diff changeset
   992
  using assms by (rule field_Taylor)
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   993
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 66089
diff changeset
   994
62408
86f27b264d3d Conformal_mappings: a big development in complex analysis (+ some lemmas)
paulson <lp15@cam.ac.uk>
parents: 62397
diff changeset
   995
text\<open>Something more like the traditional MVT for real components\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   996
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
   997
lemma complex_mvt_line:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   998
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
   999
    shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1000
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1001
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1002
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1003
  note assms[unfolded has_field_derivative_def, derivative_intros]
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1004
  show ?thesis
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1005
    apply (cut_tac mvt_simple
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1006
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1007
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1008
    apply auto
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1009
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1010
    apply (auto simp: closed_segment_def twz) []
67979
53323937ee25 new material about vec, real^1, etc.
paulson <lp15@cam.ac.uk>
parents: 67968
diff changeset
  1011
    apply (intro derivative_eq_intros has_derivative_at_withinI, simp_all)
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1012
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1013
    apply (force simp: twz closed_segment_def)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1014
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1015
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1016
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69508
diff changeset
  1017
lemma complex_Taylor_mvt:
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1018
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1019
    shows "\<exists>u. u \<in> closed_segment w z \<and>
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1020
            Re (f 0 z) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1021
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1022
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1023
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1024
  { fix u
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1025
    assume u: "u \<in> closed_segment w z"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1026
    have "(\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1027
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1028
               (fact i)) =
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1029
          f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1030
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1031
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1032
             (\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1033
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1034
                 (fact (Suc i)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
  1035
       by (subst sum_Suc_reindex) simp
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1036
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1037
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1038
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1039
             (\<Sum>i = 0..n.
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1040
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1041
                 f (Suc i) u * (z-u) ^ i / (fact i))"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1042
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1043
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1044
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1045
             (fact (Suc n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1046
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63941
diff changeset
  1047
      by (subst sum_Suc_diff) auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1048
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1049
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1050
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1051
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1052
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1053
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1054
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1055
      apply (intro derivative_eq_intros)+
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1056
      apply (force intro: u assms)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1057
      apply (rule refl)+
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1058
      apply (auto simp: ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1059
      done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1060
  }
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1061
  then show ?thesis
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1062
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1063
               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1064
    apply (auto simp add: intro: open_closed_segment)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1065
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1066
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1067
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1068
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69529
diff changeset
  1069
subsection\<^marker>\<open>tag unimportant\<close> \<open>Polynomal function extremal theorem, from HOL Light\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1070
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1071
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1072
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1073
  assumes "0 < e"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1074
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1075
proof (induct n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1076
  case 0 with assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1077
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1078
    apply (rule_tac x="norm (c 0) / e" in exI)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1079
    apply (auto simp: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1080
    done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1081
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1082
  case (Suc n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1083
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1084
    using Suc assms by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1085
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1086
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1087
    fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1088
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1089
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1090
      using assms by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1091
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1092
      using M [OF z1] by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1093
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1094
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1095
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1096
      by (blast intro: norm_triangle_le elim: )
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1097
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1098
      by (simp add: norm_power norm_mult algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1099
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1100
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1101
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  1102
      by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1103
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1104
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1105
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1106
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1107
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1108
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1109
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1110
using kn
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1111
proof (induction n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1112
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1113
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1114
    using k  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1115
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1116
  case (Suc m)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1117
  let ?even = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1118
  show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1119
  proof (cases "c (Suc m) = 0")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1120
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1121
    then show ?even using Suc k
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1122
      by auto (metis antisym_conv less_eq_Suc_le not_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1123
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1124
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1125
    then obtain M where M:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1126
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1127
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1128
      by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1129
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1130
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1131
      fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1132
      assume z1: "M \<le> norm z" "1 \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1133
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1134
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1135
        using False by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1136
      have nz: "norm z \<le> norm z ^ Suc m"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1137
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1138
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1139
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1140
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1141
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1142
        using M [of z] Suc z1  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1143
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1144
        using nz by (simp add: mult_mono del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1145
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1146
        using Suc.IH
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1147
        apply (auto simp: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1148
        apply (rule *)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1149
        apply (simp add: field_simps norm_mult norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1150
        done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1151
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1152
    then show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1153
      by (simp add: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1154
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1155
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1156
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1157
end