author | haftmann |
Mon, 06 Jul 2009 14:19:13 +0200 | |
changeset 31949 | 3f933687fae9 |
parent 31380 | f25536c0bb80 |
child 32236 | 0203e1006f1b |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 3 |
Copyright 1997-2003 TU Muenchen |
3981 | 4 |
|
5 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
6 |
*) |
|
7 |
||
13914 | 8 |
header {* Maps *} |
9 |
||
15131 | 10 |
theory Map |
15140 | 11 |
imports List |
15131 | 12 |
begin |
3981 | 13 |
|
30935 | 14 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr "~=>" 0) |
14100 | 15 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 16 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
17 |
syntax (xsymbols) |
25490 | 18 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
19 |
|
19378 | 20 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
21 |
empty :: "'a ~=> 'b" where |
19378 | 22 |
"empty == %x. None" |
23 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
24 |
definition |
25670 | 25 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where |
20800 | 26 |
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
19378 | 27 |
|
21210 | 28 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
29 |
map_comp (infixl "\<circ>\<^sub>m" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
30 |
|
20800 | 31 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
32 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where |
20800 | 33 |
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" |
34 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
35 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where |
20800 | 37 |
"m|`A = (\<lambda>x. if x : A then m x else None)" |
13910 | 38 |
|
21210 | 39 |
notation (latex output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
40 |
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
41 |
|
20800 | 42 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
43 |
dom :: "('a ~=> 'b) => 'a set" where |
20800 | 44 |
"dom m = {a. m a ~= None}" |
45 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
46 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
47 |
ran :: "('a ~=> 'b) => 'b set" where |
20800 | 48 |
"ran m = {b. EX a. m a = Some b}" |
49 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
50 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
51 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where |
20800 | 52 |
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" |
53 |
||
54 |
consts |
|
55 |
map_of :: "('a * 'b) list => 'a ~=> 'b" |
|
56 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
|
57 |
||
14180 | 58 |
nonterminals |
59 |
maplets maplet |
|
60 |
||
5300 | 61 |
syntax |
14180 | 62 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
63 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
64 |
"" :: "maplet => maplets" ("_") |
|
65 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
66 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
67 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 68 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
69 |
syntax (xsymbols) |
14180 | 70 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
71 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
72 |
||
5300 | 73 |
translations |
14180 | 74 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
75 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
76 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
19947 | 77 |
"_Map ms" == "_MapUpd (CONST empty) ms" |
14180 | 78 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
79 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
80 |
||
5183 | 81 |
primrec |
82 |
"map_of [] = empty" |
|
5300 | 83 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
84 |
||
25965 | 85 |
declare map_of.simps [code del] |
86 |
||
87 |
lemma map_of_Cons_code [code]: |
|
88 |
"map_of [] k = None" |
|
89 |
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" |
|
90 |
by simp_all |
|
91 |
||
20800 | 92 |
defs |
28562 | 93 |
map_upds_def [code]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
20800 | 94 |
|
95 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
96 |
subsection {* @{term [source] empty} *} |
13908 | 97 |
|
20800 | 98 |
lemma empty_upd_none [simp]: "empty(x := None) = empty" |
24331 | 99 |
by (rule ext) simp |
13908 | 100 |
|
101 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
102 |
subsection {* @{term [source] map_upd} *} |
13908 | 103 |
|
104 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
24331 | 105 |
by (rule ext) simp |
13908 | 106 |
|
20800 | 107 |
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" |
108 |
proof |
|
109 |
assume "t(k \<mapsto> x) = empty" |
|
110 |
then have "(t(k \<mapsto> x)) k = None" by simp |
|
111 |
then show False by simp |
|
112 |
qed |
|
13908 | 113 |
|
20800 | 114 |
lemma map_upd_eqD1: |
115 |
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" |
|
116 |
shows "x = y" |
|
117 |
proof - |
|
118 |
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp |
|
119 |
then show ?thesis by simp |
|
120 |
qed |
|
14100 | 121 |
|
20800 | 122 |
lemma map_upd_Some_unfold: |
24331 | 123 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
124 |
by auto |
|
14100 | 125 |
|
20800 | 126 |
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
24331 | 127 |
by auto |
15303 | 128 |
|
13908 | 129 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
24331 | 130 |
unfolding image_def |
131 |
apply (simp (no_asm_use) add:full_SetCompr_eq) |
|
132 |
apply (rule finite_subset) |
|
133 |
prefer 2 apply assumption |
|
134 |
apply (auto) |
|
135 |
done |
|
13908 | 136 |
|
137 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
138 |
subsection {* @{term [source] map_of} *} |
13908 | 139 |
|
15304 | 140 |
lemma map_of_eq_None_iff: |
24331 | 141 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
142 |
by (induct xys) simp_all |
|
15304 | 143 |
|
24331 | 144 |
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
145 |
apply (induct xys) |
|
146 |
apply simp |
|
147 |
apply (clarsimp split: if_splits) |
|
148 |
done |
|
15304 | 149 |
|
20800 | 150 |
lemma map_of_eq_Some_iff [simp]: |
24331 | 151 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
152 |
apply (induct xys) |
|
153 |
apply simp |
|
154 |
apply (auto simp: map_of_eq_None_iff [symmetric]) |
|
155 |
done |
|
15304 | 156 |
|
20800 | 157 |
lemma Some_eq_map_of_iff [simp]: |
24331 | 158 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
159 |
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) |
|
15304 | 160 |
|
17724 | 161 |
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
20800 | 162 |
\<Longrightarrow> map_of xys x = Some y" |
24331 | 163 |
apply (induct xys) |
164 |
apply simp |
|
165 |
apply force |
|
166 |
done |
|
15304 | 167 |
|
20800 | 168 |
lemma map_of_zip_is_None [simp]: |
24331 | 169 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
170 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
171 |
|
26443 | 172 |
lemma map_of_zip_is_Some: |
173 |
assumes "length xs = length ys" |
|
174 |
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" |
|
175 |
using assms by (induct rule: list_induct2) simp_all |
|
176 |
||
177 |
lemma map_of_zip_upd: |
|
178 |
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" |
|
179 |
assumes "length ys = length xs" |
|
180 |
and "length zs = length xs" |
|
181 |
and "x \<notin> set xs" |
|
182 |
and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" |
|
183 |
shows "map_of (zip xs ys) = map_of (zip xs zs)" |
|
184 |
proof |
|
185 |
fix x' :: 'a |
|
186 |
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" |
|
187 |
proof (cases "x = x'") |
|
188 |
case True |
|
189 |
from assms True map_of_zip_is_None [of xs ys x'] |
|
190 |
have "map_of (zip xs ys) x' = None" by simp |
|
191 |
moreover from assms True map_of_zip_is_None [of xs zs x'] |
|
192 |
have "map_of (zip xs zs) x' = None" by simp |
|
193 |
ultimately show ?thesis by simp |
|
194 |
next |
|
195 |
case False from assms |
|
196 |
have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto |
|
197 |
with False show ?thesis by simp |
|
198 |
qed |
|
199 |
qed |
|
200 |
||
201 |
lemma map_of_zip_inject: |
|
202 |
assumes "length ys = length xs" |
|
203 |
and "length zs = length xs" |
|
204 |
and dist: "distinct xs" |
|
205 |
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" |
|
206 |
shows "ys = zs" |
|
207 |
using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) |
|
208 |
case Nil show ?case by simp |
|
209 |
next |
|
210 |
case (Cons y ys x xs z zs) |
|
211 |
from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))` |
|
212 |
have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp |
|
213 |
from Cons have "length ys = length xs" and "length zs = length xs" |
|
214 |
and "x \<notin> set xs" by simp_all |
|
215 |
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) |
|
216 |
with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp |
|
217 |
moreover from map_of have "y = z" by (rule map_upd_eqD1) |
|
218 |
ultimately show ?case by simp |
|
219 |
qed |
|
220 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
221 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
24331 | 222 |
apply (induct xys) |
223 |
apply (simp_all add: image_constant) |
|
224 |
apply (rule finite_subset) |
|
225 |
prefer 2 apply assumption |
|
226 |
apply auto |
|
227 |
done |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
228 |
|
20800 | 229 |
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" |
24331 | 230 |
by (induct xs) (simp, atomize (full), auto) |
13908 | 231 |
|
20800 | 232 |
lemma map_of_mapk_SomeI: |
24331 | 233 |
"inj f ==> map_of t k = Some x ==> |
234 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
235 |
by (induct t) (auto simp add: inj_eq) |
|
13908 | 236 |
|
20800 | 237 |
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" |
24331 | 238 |
by (induct l) auto |
13908 | 239 |
|
20800 | 240 |
lemma map_of_filter_in: |
24331 | 241 |
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" |
242 |
by (induct xs) auto |
|
13908 | 243 |
|
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
29622
diff
changeset
|
244 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = Option.map f (map_of xs x)" |
24331 | 245 |
by (induct xs) auto |
13908 | 246 |
|
247 |
||
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
29622
diff
changeset
|
248 |
subsection {* @{const Option.map} related *} |
13908 | 249 |
|
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
29622
diff
changeset
|
250 |
lemma option_map_o_empty [simp]: "Option.map f o empty = empty" |
24331 | 251 |
by (rule ext) simp |
13908 | 252 |
|
20800 | 253 |
lemma option_map_o_map_upd [simp]: |
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
29622
diff
changeset
|
254 |
"Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)" |
24331 | 255 |
by (rule ext) simp |
20800 | 256 |
|
13908 | 257 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
258 |
subsection {* @{term [source] map_comp} related *} |
17391 | 259 |
|
20800 | 260 |
lemma map_comp_empty [simp]: |
24331 | 261 |
"m \<circ>\<^sub>m empty = empty" |
262 |
"empty \<circ>\<^sub>m m = empty" |
|
263 |
by (auto simp add: map_comp_def intro: ext split: option.splits) |
|
17391 | 264 |
|
20800 | 265 |
lemma map_comp_simps [simp]: |
24331 | 266 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
267 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
268 |
by (auto simp add: map_comp_def) |
|
17391 | 269 |
|
270 |
lemma map_comp_Some_iff: |
|
24331 | 271 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
272 |
by (auto simp add: map_comp_def split: option.splits) |
|
17391 | 273 |
|
274 |
lemma map_comp_None_iff: |
|
24331 | 275 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
276 |
by (auto simp add: map_comp_def split: option.splits) |
|
13908 | 277 |
|
20800 | 278 |
|
14100 | 279 |
subsection {* @{text "++"} *} |
13908 | 280 |
|
14025 | 281 |
lemma map_add_empty[simp]: "m ++ empty = m" |
24331 | 282 |
by(simp add: map_add_def) |
13908 | 283 |
|
14025 | 284 |
lemma empty_map_add[simp]: "empty ++ m = m" |
24331 | 285 |
by (rule ext) (simp add: map_add_def split: option.split) |
13908 | 286 |
|
14025 | 287 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
24331 | 288 |
by (rule ext) (simp add: map_add_def split: option.split) |
20800 | 289 |
|
290 |
lemma map_add_Some_iff: |
|
24331 | 291 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
292 |
by (simp add: map_add_def split: option.split) |
|
14025 | 293 |
|
20800 | 294 |
lemma map_add_SomeD [dest!]: |
24331 | 295 |
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" |
296 |
by (rule map_add_Some_iff [THEN iffD1]) |
|
13908 | 297 |
|
20800 | 298 |
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
24331 | 299 |
by (subst map_add_Some_iff) fast |
13908 | 300 |
|
14025 | 301 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
24331 | 302 |
by (simp add: map_add_def split: option.split) |
13908 | 303 |
|
14025 | 304 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
24331 | 305 |
by (rule ext) (simp add: map_add_def) |
13908 | 306 |
|
14186 | 307 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
24331 | 308 |
by (simp add: map_upds_def) |
14186 | 309 |
|
20800 | 310 |
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" |
24331 | 311 |
unfolding map_add_def |
312 |
apply (induct xs) |
|
313 |
apply simp |
|
314 |
apply (rule ext) |
|
315 |
apply (simp split add: option.split) |
|
316 |
done |
|
13908 | 317 |
|
14025 | 318 |
lemma finite_range_map_of_map_add: |
20800 | 319 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
24331 | 320 |
apply (induct l) |
321 |
apply (auto simp del: fun_upd_apply) |
|
322 |
apply (erule finite_range_updI) |
|
323 |
done |
|
13908 | 324 |
|
20800 | 325 |
lemma inj_on_map_add_dom [iff]: |
24331 | 326 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
327 |
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) |
|
20800 | 328 |
|
15304 | 329 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
330 |
subsection {* @{term [source] restrict_map} *} |
14100 | 331 |
|
20800 | 332 |
lemma restrict_map_to_empty [simp]: "m|`{} = empty" |
24331 | 333 |
by (simp add: restrict_map_def) |
14186 | 334 |
|
31380 | 335 |
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" |
336 |
by (auto simp add: restrict_map_def intro: ext) |
|
337 |
||
20800 | 338 |
lemma restrict_map_empty [simp]: "empty|`D = empty" |
24331 | 339 |
by (simp add: restrict_map_def) |
14186 | 340 |
|
15693 | 341 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
24331 | 342 |
by (simp add: restrict_map_def) |
14100 | 343 |
|
15693 | 344 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
24331 | 345 |
by (simp add: restrict_map_def) |
14100 | 346 |
|
15693 | 347 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
24331 | 348 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
14100 | 349 |
|
15693 | 350 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
24331 | 351 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
14100 | 352 |
|
15693 | 353 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
24331 | 354 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 355 |
|
15693 | 356 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
24331 | 357 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 358 |
|
20800 | 359 |
lemma restrict_fun_upd [simp]: |
24331 | 360 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
361 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 362 |
|
20800 | 363 |
lemma fun_upd_None_restrict [simp]: |
24331 | 364 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
365 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 366 |
|
20800 | 367 |
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
24331 | 368 |
by (simp add: restrict_map_def expand_fun_eq) |
14186 | 369 |
|
20800 | 370 |
lemma fun_upd_restrict_conv [simp]: |
24331 | 371 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
372 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 373 |
|
14100 | 374 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
375 |
subsection {* @{term [source] map_upds} *} |
14025 | 376 |
|
20800 | 377 |
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" |
24331 | 378 |
by (simp add: map_upds_def) |
14025 | 379 |
|
20800 | 380 |
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" |
24331 | 381 |
by (simp add:map_upds_def) |
20800 | 382 |
|
383 |
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
24331 | 384 |
by (simp add:map_upds_def) |
14025 | 385 |
|
20800 | 386 |
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
24331 | 387 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
388 |
apply(induct xs) |
|
389 |
apply (clarsimp simp add: neq_Nil_conv) |
|
390 |
apply (case_tac ys) |
|
391 |
apply simp |
|
392 |
apply simp |
|
393 |
done |
|
14187 | 394 |
|
20800 | 395 |
lemma map_upds_list_update2_drop [simp]: |
396 |
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
397 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
24331 | 398 |
apply (induct xs arbitrary: m ys i) |
399 |
apply simp |
|
400 |
apply (case_tac ys) |
|
401 |
apply simp |
|
402 |
apply (simp split: nat.split) |
|
403 |
done |
|
14025 | 404 |
|
20800 | 405 |
lemma map_upd_upds_conv_if: |
406 |
"(f(x|->y))(xs [|->] ys) = |
|
407 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
408 |
else (f(xs [|->] ys))(x|->y))" |
|
24331 | 409 |
apply (induct xs arbitrary: x y ys f) |
410 |
apply simp |
|
411 |
apply (case_tac ys) |
|
412 |
apply (auto split: split_if simp: fun_upd_twist) |
|
413 |
done |
|
14025 | 414 |
|
415 |
lemma map_upds_twist [simp]: |
|
24331 | 416 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
417 |
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) |
|
14025 | 418 |
|
20800 | 419 |
lemma map_upds_apply_nontin [simp]: |
24331 | 420 |
"x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
421 |
apply (induct xs arbitrary: ys) |
|
422 |
apply simp |
|
423 |
apply (case_tac ys) |
|
424 |
apply (auto simp: map_upd_upds_conv_if) |
|
425 |
done |
|
14025 | 426 |
|
20800 | 427 |
lemma fun_upds_append_drop [simp]: |
24331 | 428 |
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
429 |
apply (induct xs arbitrary: m ys) |
|
430 |
apply simp |
|
431 |
apply (case_tac ys) |
|
432 |
apply simp_all |
|
433 |
done |
|
14300 | 434 |
|
20800 | 435 |
lemma fun_upds_append2_drop [simp]: |
24331 | 436 |
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
437 |
apply (induct xs arbitrary: m ys) |
|
438 |
apply simp |
|
439 |
apply (case_tac ys) |
|
440 |
apply simp_all |
|
441 |
done |
|
14300 | 442 |
|
443 |
||
20800 | 444 |
lemma restrict_map_upds[simp]: |
445 |
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
446 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
|
24331 | 447 |
apply (induct xs arbitrary: m ys) |
448 |
apply simp |
|
449 |
apply (case_tac ys) |
|
450 |
apply simp |
|
451 |
apply (simp add: Diff_insert [symmetric] insert_absorb) |
|
452 |
apply (simp add: map_upd_upds_conv_if) |
|
453 |
done |
|
14186 | 454 |
|
455 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
456 |
subsection {* @{term [source] dom} *} |
13908 | 457 |
|
31080 | 458 |
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty" |
459 |
by(auto intro!:ext simp: dom_def) |
|
460 |
||
13908 | 461 |
lemma domI: "m a = Some b ==> a : dom m" |
24331 | 462 |
by(simp add:dom_def) |
14100 | 463 |
(* declare domI [intro]? *) |
13908 | 464 |
|
15369 | 465 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
24331 | 466 |
by (cases "m a") (auto simp add: dom_def) |
13908 | 467 |
|
20800 | 468 |
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" |
24331 | 469 |
by(simp add:dom_def) |
13908 | 470 |
|
20800 | 471 |
lemma dom_empty [simp]: "dom empty = {}" |
24331 | 472 |
by(simp add:dom_def) |
13908 | 473 |
|
20800 | 474 |
lemma dom_fun_upd [simp]: |
24331 | 475 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
476 |
by(auto simp add:dom_def) |
|
13908 | 477 |
|
13937 | 478 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
24331 | 479 |
by (induct xys) (auto simp del: fun_upd_apply) |
13937 | 480 |
|
15304 | 481 |
lemma dom_map_of_conv_image_fst: |
24331 | 482 |
"dom(map_of xys) = fst ` (set xys)" |
483 |
by(force simp: dom_map_of) |
|
15304 | 484 |
|
20800 | 485 |
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> |
24331 | 486 |
dom(map_of(zip xs ys)) = set xs" |
487 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
488 |
|
13908 | 489 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
24331 | 490 |
by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) |
13908 | 491 |
|
20800 | 492 |
lemma dom_map_upds [simp]: |
24331 | 493 |
"dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
494 |
apply (induct xs arbitrary: m ys) |
|
495 |
apply simp |
|
496 |
apply (case_tac ys) |
|
497 |
apply auto |
|
498 |
done |
|
13910 | 499 |
|
20800 | 500 |
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" |
24331 | 501 |
by(auto simp:dom_def) |
13910 | 502 |
|
20800 | 503 |
lemma dom_override_on [simp]: |
504 |
"dom(override_on f g A) = |
|
505 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
24331 | 506 |
by(auto simp: dom_def override_on_def) |
13908 | 507 |
|
14027 | 508 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
24331 | 509 |
by (rule ext) (force simp: map_add_def dom_def split: option.split) |
20800 | 510 |
|
29622 | 511 |
lemma dom_const [simp]: |
512 |
"dom (\<lambda>x. Some y) = UNIV" |
|
513 |
by auto |
|
514 |
||
515 |
lemma dom_if: |
|
516 |
"dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}" |
|
517 |
by (auto split: if_splits) |
|
518 |
||
519 |
||
22230 | 520 |
(* Due to John Matthews - could be rephrased with dom *) |
521 |
lemma finite_map_freshness: |
|
522 |
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> |
|
523 |
\<exists>x. f x = None" |
|
524 |
by(bestsimp dest:ex_new_if_finite) |
|
14027 | 525 |
|
28790 | 526 |
lemma dom_minus: |
527 |
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A" |
|
528 |
unfolding dom_def by simp |
|
529 |
||
530 |
lemma insert_dom: |
|
531 |
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f" |
|
532 |
unfolding dom_def by auto |
|
533 |
||
534 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
535 |
subsection {* @{term [source] ran} *} |
14100 | 536 |
|
20800 | 537 |
lemma ranI: "m a = Some b ==> b : ran m" |
24331 | 538 |
by(auto simp: ran_def) |
14100 | 539 |
(* declare ranI [intro]? *) |
13908 | 540 |
|
20800 | 541 |
lemma ran_empty [simp]: "ran empty = {}" |
24331 | 542 |
by(auto simp: ran_def) |
13908 | 543 |
|
20800 | 544 |
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
24331 | 545 |
unfolding ran_def |
546 |
apply auto |
|
547 |
apply (subgoal_tac "aa ~= a") |
|
548 |
apply auto |
|
549 |
done |
|
20800 | 550 |
|
13910 | 551 |
|
14100 | 552 |
subsection {* @{text "map_le"} *} |
13910 | 553 |
|
13912 | 554 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
24331 | 555 |
by (simp add: map_le_def) |
13910 | 556 |
|
17724 | 557 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
24331 | 558 |
by (force simp add: map_le_def) |
14187 | 559 |
|
13910 | 560 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
24331 | 561 |
by (fastsimp simp add: map_le_def) |
13910 | 562 |
|
17724 | 563 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
24331 | 564 |
by (force simp add: map_le_def) |
14187 | 565 |
|
20800 | 566 |
lemma map_le_upds [simp]: |
24331 | 567 |
"f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
568 |
apply (induct as arbitrary: f g bs) |
|
569 |
apply simp |
|
570 |
apply (case_tac bs) |
|
571 |
apply auto |
|
572 |
done |
|
13908 | 573 |
|
14033 | 574 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
24331 | 575 |
by (fastsimp simp add: map_le_def dom_def) |
14033 | 576 |
|
577 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
24331 | 578 |
by (simp add: map_le_def) |
14033 | 579 |
|
14187 | 580 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
24331 | 581 |
by (auto simp add: map_le_def dom_def) |
14033 | 582 |
|
583 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
24331 | 584 |
unfolding map_le_def |
585 |
apply (rule ext) |
|
586 |
apply (case_tac "x \<in> dom f", simp) |
|
587 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
588 |
done |
|
14033 | 589 |
|
590 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
24331 | 591 |
by (fastsimp simp add: map_le_def) |
14033 | 592 |
|
15304 | 593 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
24331 | 594 |
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits) |
15304 | 595 |
|
15303 | 596 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
24331 | 597 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
15303 | 598 |
|
599 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
24331 | 600 |
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) |
15303 | 601 |
|
31080 | 602 |
|
603 |
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])" |
|
604 |
proof(rule iffI) |
|
605 |
assume "\<exists>v. f = [x \<mapsto> v]" |
|
606 |
thus "dom f = {x}" by(auto split: split_if_asm) |
|
607 |
next |
|
608 |
assume "dom f = {x}" |
|
609 |
then obtain v where "f x = Some v" by auto |
|
610 |
hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def) |
|
611 |
moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v` |
|
612 |
by(auto simp add: map_le_def) |
|
613 |
ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym) |
|
614 |
thus "\<exists>v. f = [x \<mapsto> v]" by blast |
|
615 |
qed |
|
616 |
||
3981 | 617 |
end |