| author | huffman | 
| Tue, 18 May 2010 06:28:42 -0700 | |
| changeset 36978 | 4ec5131c6f46 | 
| parent 35619 | b5f6481772f3 | 
| child 39198 | f967a16dfcdd | 
| permissions | -rw-r--r-- | 
| 3981 | 1  | 
(* Title: HOL/Map.thy  | 
2  | 
Author: Tobias Nipkow, based on a theory by David von Oheimb  | 
|
| 13908 | 3  | 
Copyright 1997-2003 TU Muenchen  | 
| 3981 | 4  | 
|
5  | 
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.  | 
|
6  | 
*)  | 
|
7  | 
||
| 13914 | 8  | 
header {* Maps *}
 | 
9  | 
||
| 15131 | 10  | 
theory Map  | 
| 15140 | 11  | 
imports List  | 
| 15131 | 12  | 
begin  | 
| 3981 | 13  | 
|
| 35565 | 14  | 
types ('a,'b) "map" = "'a => 'b option" (infixr "~=>" 0)
 | 
| 35427 | 15  | 
translations (type) "'a ~=> 'b" <= (type) "'a => 'b option"  | 
| 3981 | 16  | 
|
| 35427 | 17  | 
type_notation (xsymbols)  | 
| 35565 | 18  | 
"map" (infixr "\<rightharpoonup>" 0)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
19  | 
|
| 19378 | 20  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
21  | 
empty :: "'a ~=> 'b" where  | 
| 19378 | 22  | 
"empty == %x. None"  | 
23  | 
||
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
24  | 
definition  | 
| 25670 | 25  | 
  map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 26  | 
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"  | 
| 19378 | 27  | 
|
| 21210 | 28  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
29  | 
map_comp (infixl "\<circ>\<^sub>m" 55)  | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
30  | 
|
| 20800 | 31  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
32  | 
  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 33  | 
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"  | 
34  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
35  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
36  | 
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 37  | 
"m|`A = (\<lambda>x. if x : A then m x else None)"  | 
| 13910 | 38  | 
|
| 21210 | 39  | 
notation (latex output)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
40  | 
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
41  | 
|
| 20800 | 42  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
43  | 
  dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 44  | 
  "dom m = {a. m a ~= None}"
 | 
45  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
46  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
47  | 
  ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 48  | 
  "ran m = {b. EX a. m a = Some b}"
 | 
49  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
50  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
51  | 
  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 52  | 
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"  | 
53  | 
||
| 14180 | 54  | 
nonterminals  | 
55  | 
maplets maplet  | 
|
56  | 
||
| 5300 | 57  | 
syntax  | 
| 14180 | 58  | 
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
59  | 
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | 
|
60  | 
  ""         :: "maplet => maplets"             ("_")
 | 
|
61  | 
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | 
|
62  | 
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | 
|
63  | 
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | 
|
| 3981 | 64  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
10137 
diff
changeset
 | 
65  | 
syntax (xsymbols)  | 
| 14180 | 66  | 
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
67  | 
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | 
|
68  | 
||
| 5300 | 69  | 
translations  | 
| 14180 | 70  | 
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms"  | 
| 35115 | 71  | 
"_MapUpd m (_maplet x y)" == "m(x := CONST Some y)"  | 
| 19947 | 72  | 
"_Map ms" == "_MapUpd (CONST empty) ms"  | 
| 14180 | 73  | 
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2"  | 
74  | 
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"  | 
|
75  | 
||
| 5183 | 76  | 
primrec  | 
| 34941 | 77  | 
  map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where
 | 
78  | 
"map_of [] = empty"  | 
|
79  | 
| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"  | 
|
| 5300 | 80  | 
|
| 34941 | 81  | 
definition  | 
82  | 
  map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where
 | 
|
83  | 
"map_upds m xs ys = m ++ map_of (rev (zip xs ys))"  | 
|
84  | 
||
85  | 
translations  | 
|
86  | 
"_MapUpd m (_maplets x y)" == "CONST map_upds m x y"  | 
|
| 25965 | 87  | 
|
88  | 
lemma map_of_Cons_code [code]:  | 
|
89  | 
"map_of [] k = None"  | 
|
90  | 
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"  | 
|
91  | 
by simp_all  | 
|
92  | 
||
| 20800 | 93  | 
|
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
94  | 
subsection {* @{term [source] empty} *}
 | 
| 13908 | 95  | 
|
| 20800 | 96  | 
lemma empty_upd_none [simp]: "empty(x := None) = empty"  | 
| 24331 | 97  | 
by (rule ext) simp  | 
| 13908 | 98  | 
|
99  | 
||
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
100  | 
subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 101  | 
|
102  | 
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"  | 
|
| 24331 | 103  | 
by (rule ext) simp  | 
| 13908 | 104  | 
|
| 20800 | 105  | 
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"  | 
106  | 
proof  | 
|
107  | 
assume "t(k \<mapsto> x) = empty"  | 
|
108  | 
then have "(t(k \<mapsto> x)) k = None" by simp  | 
|
109  | 
then show False by simp  | 
|
110  | 
qed  | 
|
| 13908 | 111  | 
|
| 20800 | 112  | 
lemma map_upd_eqD1:  | 
113  | 
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"  | 
|
114  | 
shows "x = y"  | 
|
115  | 
proof -  | 
|
116  | 
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp  | 
|
117  | 
then show ?thesis by simp  | 
|
118  | 
qed  | 
|
| 14100 | 119  | 
|
| 20800 | 120  | 
lemma map_upd_Some_unfold:  | 
| 24331 | 121  | 
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"  | 
122  | 
by auto  | 
|
| 14100 | 123  | 
|
| 20800 | 124  | 
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"  | 
| 24331 | 125  | 
by auto  | 
| 15303 | 126  | 
|
| 13908 | 127  | 
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"  | 
| 24331 | 128  | 
unfolding image_def  | 
129  | 
apply (simp (no_asm_use) add:full_SetCompr_eq)  | 
|
130  | 
apply (rule finite_subset)  | 
|
131  | 
prefer 2 apply assumption  | 
|
132  | 
apply (auto)  | 
|
133  | 
done  | 
|
| 13908 | 134  | 
|
135  | 
||
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
136  | 
subsection {* @{term [source] map_of} *}
 | 
| 13908 | 137  | 
|
| 15304 | 138  | 
lemma map_of_eq_None_iff:  | 
| 24331 | 139  | 
"(map_of xys x = None) = (x \<notin> fst ` (set xys))"  | 
140  | 
by (induct xys) simp_all  | 
|
| 15304 | 141  | 
|
| 24331 | 142  | 
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"  | 
143  | 
apply (induct xys)  | 
|
144  | 
apply simp  | 
|
145  | 
apply (clarsimp split: if_splits)  | 
|
146  | 
done  | 
|
| 15304 | 147  | 
|
| 20800 | 148  | 
lemma map_of_eq_Some_iff [simp]:  | 
| 24331 | 149  | 
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"  | 
150  | 
apply (induct xys)  | 
|
151  | 
apply simp  | 
|
152  | 
apply (auto simp: map_of_eq_None_iff [symmetric])  | 
|
153  | 
done  | 
|
| 15304 | 154  | 
|
| 20800 | 155  | 
lemma Some_eq_map_of_iff [simp]:  | 
| 24331 | 156  | 
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"  | 
157  | 
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])  | 
|
| 15304 | 158  | 
|
| 17724 | 159  | 
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>  | 
| 20800 | 160  | 
\<Longrightarrow> map_of xys x = Some y"  | 
| 24331 | 161  | 
apply (induct xys)  | 
162  | 
apply simp  | 
|
163  | 
apply force  | 
|
164  | 
done  | 
|
| 15304 | 165  | 
|
| 20800 | 166  | 
lemma map_of_zip_is_None [simp]:  | 
| 24331 | 167  | 
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"  | 
168  | 
by (induct rule: list_induct2) simp_all  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
169  | 
|
| 26443 | 170  | 
lemma map_of_zip_is_Some:  | 
171  | 
assumes "length xs = length ys"  | 
|
172  | 
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"  | 
|
173  | 
using assms by (induct rule: list_induct2) simp_all  | 
|
174  | 
||
175  | 
lemma map_of_zip_upd:  | 
|
176  | 
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"  | 
|
177  | 
assumes "length ys = length xs"  | 
|
178  | 
and "length zs = length xs"  | 
|
179  | 
and "x \<notin> set xs"  | 
|
180  | 
and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"  | 
|
181  | 
shows "map_of (zip xs ys) = map_of (zip xs zs)"  | 
|
182  | 
proof  | 
|
183  | 
fix x' :: 'a  | 
|
184  | 
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"  | 
|
185  | 
proof (cases "x = x'")  | 
|
186  | 
case True  | 
|
187  | 
from assms True map_of_zip_is_None [of xs ys x']  | 
|
188  | 
have "map_of (zip xs ys) x' = None" by simp  | 
|
189  | 
moreover from assms True map_of_zip_is_None [of xs zs x']  | 
|
190  | 
have "map_of (zip xs zs) x' = None" by simp  | 
|
191  | 
ultimately show ?thesis by simp  | 
|
192  | 
next  | 
|
193  | 
case False from assms  | 
|
194  | 
have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto  | 
|
195  | 
with False show ?thesis by simp  | 
|
196  | 
qed  | 
|
197  | 
qed  | 
|
198  | 
||
199  | 
lemma map_of_zip_inject:  | 
|
200  | 
assumes "length ys = length xs"  | 
|
201  | 
and "length zs = length xs"  | 
|
202  | 
and dist: "distinct xs"  | 
|
203  | 
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"  | 
|
204  | 
shows "ys = zs"  | 
|
205  | 
using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3)  | 
|
206  | 
case Nil show ?case by simp  | 
|
207  | 
next  | 
|
208  | 
case (Cons y ys x xs z zs)  | 
|
209  | 
from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))`  | 
|
210  | 
have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp  | 
|
211  | 
from Cons have "length ys = length xs" and "length zs = length xs"  | 
|
212  | 
and "x \<notin> set xs" by simp_all  | 
|
213  | 
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)  | 
|
214  | 
with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp  | 
|
215  | 
moreover from map_of have "y = z" by (rule map_upd_eqD1)  | 
|
216  | 
ultimately show ?case by simp  | 
|
217  | 
qed  | 
|
218  | 
||
| 33635 | 219  | 
lemma map_of_zip_map:  | 
220  | 
"map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"  | 
|
221  | 
by (induct xs) (simp_all add: expand_fun_eq)  | 
|
222  | 
||
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
223  | 
lemma finite_range_map_of: "finite (range (map_of xys))"  | 
| 24331 | 224  | 
apply (induct xys)  | 
225  | 
apply (simp_all add: image_constant)  | 
|
226  | 
apply (rule finite_subset)  | 
|
227  | 
prefer 2 apply assumption  | 
|
228  | 
apply auto  | 
|
229  | 
done  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
230  | 
|
| 20800 | 231  | 
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"  | 
| 24331 | 232  | 
by (induct xs) (simp, atomize (full), auto)  | 
| 13908 | 233  | 
|
| 20800 | 234  | 
lemma map_of_mapk_SomeI:  | 
| 24331 | 235  | 
"inj f ==> map_of t k = Some x ==>  | 
236  | 
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"  | 
|
237  | 
by (induct t) (auto simp add: inj_eq)  | 
|
| 13908 | 238  | 
|
| 20800 | 239  | 
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"  | 
| 24331 | 240  | 
by (induct l) auto  | 
| 13908 | 241  | 
|
| 20800 | 242  | 
lemma map_of_filter_in:  | 
| 24331 | 243  | 
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"  | 
244  | 
by (induct xs) auto  | 
|
| 13908 | 245  | 
|
| 35607 | 246  | 
lemma map_of_map:  | 
247  | 
"map_of (map (\<lambda>(k, v). (k, f v)) xs) = Option.map f \<circ> map_of xs"  | 
|
248  | 
by (induct xs) (auto simp add: expand_fun_eq)  | 
|
249  | 
||
250  | 
lemma dom_option_map:  | 
|
251  | 
"dom (\<lambda>k. Option.map (f k) (m k)) = dom m"  | 
|
252  | 
by (simp add: dom_def)  | 
|
| 13908 | 253  | 
|
254  | 
||
| 
30235
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
29622 
diff
changeset
 | 
255  | 
subsection {* @{const Option.map} related *}
 | 
| 13908 | 256  | 
|
| 
30235
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
29622 
diff
changeset
 | 
257  | 
lemma option_map_o_empty [simp]: "Option.map f o empty = empty"  | 
| 24331 | 258  | 
by (rule ext) simp  | 
| 13908 | 259  | 
|
| 20800 | 260  | 
lemma option_map_o_map_upd [simp]:  | 
| 
30235
 
58d147683393
Made Option a separate theory and renamed option_map to Option.map
 
nipkow 
parents: 
29622 
diff
changeset
 | 
261  | 
"Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)"  | 
| 24331 | 262  | 
by (rule ext) simp  | 
| 20800 | 263  | 
|
| 13908 | 264  | 
|
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
265  | 
subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 266  | 
|
| 20800 | 267  | 
lemma map_comp_empty [simp]:  | 
| 24331 | 268  | 
"m \<circ>\<^sub>m empty = empty"  | 
269  | 
"empty \<circ>\<^sub>m m = empty"  | 
|
270  | 
by (auto simp add: map_comp_def intro: ext split: option.splits)  | 
|
| 17391 | 271  | 
|
| 20800 | 272  | 
lemma map_comp_simps [simp]:  | 
| 24331 | 273  | 
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"  | 
274  | 
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"  | 
|
275  | 
by (auto simp add: map_comp_def)  | 
|
| 17391 | 276  | 
|
277  | 
lemma map_comp_Some_iff:  | 
|
| 24331 | 278  | 
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"  | 
279  | 
by (auto simp add: map_comp_def split: option.splits)  | 
|
| 17391 | 280  | 
|
281  | 
lemma map_comp_None_iff:  | 
|
| 24331 | 282  | 
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "  | 
283  | 
by (auto simp add: map_comp_def split: option.splits)  | 
|
| 13908 | 284  | 
|
| 20800 | 285  | 
|
| 14100 | 286  | 
subsection {* @{text "++"} *}
 | 
| 13908 | 287  | 
|
| 14025 | 288  | 
lemma map_add_empty[simp]: "m ++ empty = m"  | 
| 24331 | 289  | 
by(simp add: map_add_def)  | 
| 13908 | 290  | 
|
| 14025 | 291  | 
lemma empty_map_add[simp]: "empty ++ m = m"  | 
| 24331 | 292  | 
by (rule ext) (simp add: map_add_def split: option.split)  | 
| 13908 | 293  | 
|
| 14025 | 294  | 
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"  | 
| 24331 | 295  | 
by (rule ext) (simp add: map_add_def split: option.split)  | 
| 20800 | 296  | 
|
297  | 
lemma map_add_Some_iff:  | 
|
| 24331 | 298  | 
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"  | 
299  | 
by (simp add: map_add_def split: option.split)  | 
|
| 14025 | 300  | 
|
| 20800 | 301  | 
lemma map_add_SomeD [dest!]:  | 
| 24331 | 302  | 
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"  | 
303  | 
by (rule map_add_Some_iff [THEN iffD1])  | 
|
| 13908 | 304  | 
|
| 20800 | 305  | 
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"  | 
| 24331 | 306  | 
by (subst map_add_Some_iff) fast  | 
| 13908 | 307  | 
|
| 14025 | 308  | 
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"  | 
| 24331 | 309  | 
by (simp add: map_add_def split: option.split)  | 
| 13908 | 310  | 
|
| 14025 | 311  | 
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"  | 
| 24331 | 312  | 
by (rule ext) (simp add: map_add_def)  | 
| 13908 | 313  | 
|
| 14186 | 314  | 
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"  | 
| 24331 | 315  | 
by (simp add: map_upds_def)  | 
| 14186 | 316  | 
|
| 
32236
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
317  | 
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
318  | 
by (rule ext) (auto simp: map_add_def dom_def split: option.split)  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
319  | 
|
| 20800 | 320  | 
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"  | 
| 24331 | 321  | 
unfolding map_add_def  | 
322  | 
apply (induct xs)  | 
|
323  | 
apply simp  | 
|
324  | 
apply (rule ext)  | 
|
325  | 
apply (simp split add: option.split)  | 
|
326  | 
done  | 
|
| 13908 | 327  | 
|
| 14025 | 328  | 
lemma finite_range_map_of_map_add:  | 
| 20800 | 329  | 
"finite (range f) ==> finite (range (f ++ map_of l))"  | 
| 24331 | 330  | 
apply (induct l)  | 
331  | 
apply (auto simp del: fun_upd_apply)  | 
|
332  | 
apply (erule finite_range_updI)  | 
|
333  | 
done  | 
|
| 13908 | 334  | 
|
| 20800 | 335  | 
lemma inj_on_map_add_dom [iff]:  | 
| 24331 | 336  | 
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')"  | 
337  | 
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits)  | 
|
| 20800 | 338  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
339  | 
lemma map_upds_fold_map_upd:  | 
| 35552 | 340  | 
"m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"  | 
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
341  | 
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
342  | 
fix ks :: "'a list" and vs :: "'b list"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
343  | 
assume "length ks = length vs"  | 
| 35552 | 344  | 
then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"  | 
345  | 
by(induct arbitrary: m rule: list_induct2) simp_all  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
346  | 
qed  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
347  | 
|
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
348  | 
lemma map_add_map_of_foldr:  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
349  | 
"m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
350  | 
by (induct ps) (auto simp add: expand_fun_eq map_add_def)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
351  | 
|
| 15304 | 352  | 
|
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
353  | 
subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 354  | 
|
| 20800 | 355  | 
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 356  | 
by (simp add: restrict_map_def)  | 
| 14186 | 357  | 
|
| 31380 | 358  | 
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"  | 
359  | 
by (auto simp add: restrict_map_def intro: ext)  | 
|
360  | 
||
| 20800 | 361  | 
lemma restrict_map_empty [simp]: "empty|`D = empty"  | 
| 24331 | 362  | 
by (simp add: restrict_map_def)  | 
| 14186 | 363  | 
|
| 15693 | 364  | 
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"  | 
| 24331 | 365  | 
by (simp add: restrict_map_def)  | 
| 14100 | 366  | 
|
| 15693 | 367  | 
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"  | 
| 24331 | 368  | 
by (simp add: restrict_map_def)  | 
| 14100 | 369  | 
|
| 15693 | 370  | 
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"  | 
| 24331 | 371  | 
by (auto simp: restrict_map_def ran_def split: split_if_asm)  | 
| 14100 | 372  | 
|
| 15693 | 373  | 
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"  | 
| 24331 | 374  | 
by (auto simp: restrict_map_def dom_def split: split_if_asm)  | 
| 14100 | 375  | 
|
| 15693 | 376  | 
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 377  | 
by (rule ext) (auto simp: restrict_map_def)  | 
| 14100 | 378  | 
|
| 15693 | 379  | 
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"  | 
| 24331 | 380  | 
by (rule ext) (auto simp: restrict_map_def)  | 
| 14100 | 381  | 
|
| 20800 | 382  | 
lemma restrict_fun_upd [simp]:  | 
| 24331 | 383  | 
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
384  | 
by (simp add: restrict_map_def expand_fun_eq)  | 
|
| 14186 | 385  | 
|
| 20800 | 386  | 
lemma fun_upd_None_restrict [simp]:  | 
| 24331 | 387  | 
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | 
388  | 
by (simp add: restrict_map_def expand_fun_eq)  | 
|
| 14186 | 389  | 
|
| 20800 | 390  | 
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 24331 | 391  | 
by (simp add: restrict_map_def expand_fun_eq)  | 
| 14186 | 392  | 
|
| 20800 | 393  | 
lemma fun_upd_restrict_conv [simp]:  | 
| 24331 | 394  | 
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
395  | 
by (simp add: restrict_map_def expand_fun_eq)  | 
|
| 14186 | 396  | 
|
| 
35159
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
397  | 
lemma map_of_map_restrict:  | 
| 
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
398  | 
"map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"  | 
| 
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
399  | 
by (induct ks) (simp_all add: expand_fun_eq restrict_map_insert)  | 
| 
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
400  | 
|
| 35619 | 401  | 
lemma restrict_complement_singleton_eq:  | 
402  | 
  "f |` (- {x}) = f(x := None)"
 | 
|
403  | 
by (simp add: restrict_map_def expand_fun_eq)  | 
|
404  | 
||
| 14100 | 405  | 
|
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
406  | 
subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 407  | 
|
| 20800 | 408  | 
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"  | 
| 24331 | 409  | 
by (simp add: map_upds_def)  | 
| 14025 | 410  | 
|
| 20800 | 411  | 
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"  | 
| 24331 | 412  | 
by (simp add:map_upds_def)  | 
| 20800 | 413  | 
|
414  | 
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"  | 
|
| 24331 | 415  | 
by (simp add:map_upds_def)  | 
| 14025 | 416  | 
|
| 20800 | 417  | 
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>  | 
| 24331 | 418  | 
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"  | 
419  | 
apply(induct xs)  | 
|
420  | 
apply (clarsimp simp add: neq_Nil_conv)  | 
|
421  | 
apply (case_tac ys)  | 
|
422  | 
apply simp  | 
|
423  | 
apply simp  | 
|
424  | 
done  | 
|
| 14187 | 425  | 
|
| 20800 | 426  | 
lemma map_upds_list_update2_drop [simp]:  | 
427  | 
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>  | 
|
428  | 
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"  | 
|
| 24331 | 429  | 
apply (induct xs arbitrary: m ys i)  | 
430  | 
apply simp  | 
|
431  | 
apply (case_tac ys)  | 
|
432  | 
apply simp  | 
|
433  | 
apply (simp split: nat.split)  | 
|
434  | 
done  | 
|
| 14025 | 435  | 
|
| 20800 | 436  | 
lemma map_upd_upds_conv_if:  | 
437  | 
"(f(x|->y))(xs [|->] ys) =  | 
|
438  | 
(if x : set(take (length ys) xs) then f(xs [|->] ys)  | 
|
439  | 
else (f(xs [|->] ys))(x|->y))"  | 
|
| 24331 | 440  | 
apply (induct xs arbitrary: x y ys f)  | 
441  | 
apply simp  | 
|
442  | 
apply (case_tac ys)  | 
|
443  | 
apply (auto split: split_if simp: fun_upd_twist)  | 
|
444  | 
done  | 
|
| 14025 | 445  | 
|
446  | 
lemma map_upds_twist [simp]:  | 
|
| 24331 | 447  | 
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"  | 
448  | 
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)  | 
|
| 14025 | 449  | 
|
| 20800 | 450  | 
lemma map_upds_apply_nontin [simp]:  | 
| 24331 | 451  | 
"x ~: set xs ==> (f(xs[|->]ys)) x = f x"  | 
452  | 
apply (induct xs arbitrary: ys)  | 
|
453  | 
apply simp  | 
|
454  | 
apply (case_tac ys)  | 
|
455  | 
apply (auto simp: map_upd_upds_conv_if)  | 
|
456  | 
done  | 
|
| 14025 | 457  | 
|
| 20800 | 458  | 
lemma fun_upds_append_drop [simp]:  | 
| 24331 | 459  | 
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"  | 
460  | 
apply (induct xs arbitrary: m ys)  | 
|
461  | 
apply simp  | 
|
462  | 
apply (case_tac ys)  | 
|
463  | 
apply simp_all  | 
|
464  | 
done  | 
|
| 14300 | 465  | 
|
| 20800 | 466  | 
lemma fun_upds_append2_drop [simp]:  | 
| 24331 | 467  | 
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"  | 
468  | 
apply (induct xs arbitrary: m ys)  | 
|
469  | 
apply simp  | 
|
470  | 
apply (case_tac ys)  | 
|
471  | 
apply simp_all  | 
|
472  | 
done  | 
|
| 14300 | 473  | 
|
474  | 
||
| 20800 | 475  | 
lemma restrict_map_upds[simp]:  | 
476  | 
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>  | 
|
477  | 
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"  | 
|
| 24331 | 478  | 
apply (induct xs arbitrary: m ys)  | 
479  | 
apply simp  | 
|
480  | 
apply (case_tac ys)  | 
|
481  | 
apply simp  | 
|
482  | 
apply (simp add: Diff_insert [symmetric] insert_absorb)  | 
|
483  | 
apply (simp add: map_upd_upds_conv_if)  | 
|
484  | 
done  | 
|
| 14186 | 485  | 
|
486  | 
||
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
487  | 
subsection {* @{term [source] dom} *}
 | 
| 13908 | 488  | 
|
| 31080 | 489  | 
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
 | 
490  | 
by(auto intro!:ext simp: dom_def)  | 
|
491  | 
||
| 13908 | 492  | 
lemma domI: "m a = Some b ==> a : dom m"  | 
| 24331 | 493  | 
by(simp add:dom_def)  | 
| 14100 | 494  | 
(* declare domI [intro]? *)  | 
| 13908 | 495  | 
|
| 15369 | 496  | 
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"  | 
| 24331 | 497  | 
by (cases "m a") (auto simp add: dom_def)  | 
| 13908 | 498  | 
|
| 20800 | 499  | 
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"  | 
| 24331 | 500  | 
by(simp add:dom_def)  | 
| 13908 | 501  | 
|
| 20800 | 502  | 
lemma dom_empty [simp]: "dom empty = {}"
 | 
| 24331 | 503  | 
by(simp add:dom_def)  | 
| 13908 | 504  | 
|
| 20800 | 505  | 
lemma dom_fun_upd [simp]:  | 
| 24331 | 506  | 
  "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | 
507  | 
by(auto simp add:dom_def)  | 
|
| 13908 | 508  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
509  | 
lemma dom_if:  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
510  | 
  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
 | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
511  | 
by (auto split: if_splits)  | 
| 13937 | 512  | 
|
| 15304 | 513  | 
lemma dom_map_of_conv_image_fst:  | 
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
514  | 
"dom (map_of xys) = fst ` set xys"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
515  | 
by (induct xys) (auto simp add: dom_if)  | 
| 15304 | 516  | 
|
| 20800 | 517  | 
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>  | 
| 24331 | 518  | 
dom(map_of(zip xs ys)) = set xs"  | 
519  | 
by (induct rule: list_induct2) simp_all  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
520  | 
|
| 13908 | 521  | 
lemma finite_dom_map_of: "finite (dom (map_of l))"  | 
| 24331 | 522  | 
by (induct l) (auto simp add: dom_def insert_Collect [symmetric])  | 
| 13908 | 523  | 
|
| 20800 | 524  | 
lemma dom_map_upds [simp]:  | 
| 24331 | 525  | 
"dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"  | 
526  | 
apply (induct xs arbitrary: m ys)  | 
|
527  | 
apply simp  | 
|
528  | 
apply (case_tac ys)  | 
|
529  | 
apply auto  | 
|
530  | 
done  | 
|
| 13910 | 531  | 
|
| 20800 | 532  | 
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"  | 
| 24331 | 533  | 
by(auto simp:dom_def)  | 
| 13910 | 534  | 
|
| 20800 | 535  | 
lemma dom_override_on [simp]:  | 
536  | 
"dom(override_on f g A) =  | 
|
537  | 
    (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | 
|
| 24331 | 538  | 
by(auto simp: dom_def override_on_def)  | 
| 13908 | 539  | 
|
| 14027 | 540  | 
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 24331 | 541  | 
by (rule ext) (force simp: map_add_def dom_def split: option.split)  | 
| 20800 | 542  | 
|
| 
32236
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
543  | 
lemma map_add_dom_app_simps:  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
544  | 
"\<lbrakk> m\<in>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
545  | 
"\<lbrakk> m\<notin>dom l1 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
546  | 
"\<lbrakk> m\<notin>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l1 m"  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
547  | 
by (auto simp add: map_add_def split: option.split_asm)  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
548  | 
|
| 29622 | 549  | 
lemma dom_const [simp]:  | 
| 
35159
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
550  | 
"dom (\<lambda>x. Some (f x)) = UNIV"  | 
| 29622 | 551  | 
by auto  | 
552  | 
||
| 22230 | 553  | 
(* Due to John Matthews - could be rephrased with dom *)  | 
554  | 
lemma finite_map_freshness:  | 
|
555  | 
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>  | 
|
556  | 
\<exists>x. f x = None"  | 
|
557  | 
by(bestsimp dest:ex_new_if_finite)  | 
|
| 14027 | 558  | 
|
| 28790 | 559  | 
lemma dom_minus:  | 
560  | 
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A"  | 
|
561  | 
unfolding dom_def by simp  | 
|
562  | 
||
563  | 
lemma insert_dom:  | 
|
564  | 
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f"  | 
|
565  | 
unfolding dom_def by auto  | 
|
566  | 
||
| 35607 | 567  | 
lemma map_of_map_keys:  | 
568  | 
"set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"  | 
|
569  | 
by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)  | 
|
570  | 
||
| 28790 | 571  | 
|
| 
17399
 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 
wenzelm 
parents: 
17391 
diff
changeset
 | 
572  | 
subsection {* @{term [source] ran} *}
 | 
| 14100 | 573  | 
|
| 20800 | 574  | 
lemma ranI: "m a = Some b ==> b : ran m"  | 
| 24331 | 575  | 
by(auto simp: ran_def)  | 
| 14100 | 576  | 
(* declare ranI [intro]? *)  | 
| 13908 | 577  | 
|
| 20800 | 578  | 
lemma ran_empty [simp]: "ran empty = {}"
 | 
| 24331 | 579  | 
by(auto simp: ran_def)  | 
| 13908 | 580  | 
|
| 20800 | 581  | 
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"  | 
| 24331 | 582  | 
unfolding ran_def  | 
583  | 
apply auto  | 
|
584  | 
apply (subgoal_tac "aa ~= a")  | 
|
585  | 
apply auto  | 
|
586  | 
done  | 
|
| 20800 | 587  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
588  | 
lemma ran_distinct:  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
589  | 
assumes dist: "distinct (map fst al)"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
590  | 
shows "ran (map_of al) = snd ` set al"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
591  | 
using assms proof (induct al)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
592  | 
case Nil then show ?case by simp  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
593  | 
next  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
594  | 
case (Cons kv al)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
595  | 
then have "ran (map_of al) = snd ` set al" by simp  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
596  | 
moreover from Cons.prems have "map_of al (fst kv) = None"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
597  | 
by (simp add: map_of_eq_None_iff)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
598  | 
ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
599  | 
qed  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
600  | 
|
| 13910 | 601  | 
|
| 14100 | 602  | 
subsection {* @{text "map_le"} *}
 | 
| 13910 | 603  | 
|
| 13912 | 604  | 
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"  | 
| 24331 | 605  | 
by (simp add: map_le_def)  | 
| 13910 | 606  | 
|
| 17724 | 607  | 
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"  | 
| 24331 | 608  | 
by (force simp add: map_le_def)  | 
| 14187 | 609  | 
|
| 13910 | 610  | 
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"  | 
| 24331 | 611  | 
by (fastsimp simp add: map_le_def)  | 
| 13910 | 612  | 
|
| 17724 | 613  | 
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"  | 
| 24331 | 614  | 
by (force simp add: map_le_def)  | 
| 14187 | 615  | 
|
| 20800 | 616  | 
lemma map_le_upds [simp]:  | 
| 24331 | 617  | 
"f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"  | 
618  | 
apply (induct as arbitrary: f g bs)  | 
|
619  | 
apply simp  | 
|
620  | 
apply (case_tac bs)  | 
|
621  | 
apply auto  | 
|
622  | 
done  | 
|
| 13908 | 623  | 
|
| 14033 | 624  | 
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"  | 
| 24331 | 625  | 
by (fastsimp simp add: map_le_def dom_def)  | 
| 14033 | 626  | 
|
627  | 
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"  | 
|
| 24331 | 628  | 
by (simp add: map_le_def)  | 
| 14033 | 629  | 
|
| 14187 | 630  | 
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"  | 
| 24331 | 631  | 
by (auto simp add: map_le_def dom_def)  | 
| 14033 | 632  | 
|
633  | 
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"  | 
|
| 24331 | 634  | 
unfolding map_le_def  | 
635  | 
apply (rule ext)  | 
|
636  | 
apply (case_tac "x \<in> dom f", simp)  | 
|
637  | 
apply (case_tac "x \<in> dom g", simp, fastsimp)  | 
|
638  | 
done  | 
|
| 14033 | 639  | 
|
640  | 
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"  | 
|
| 24331 | 641  | 
by (fastsimp simp add: map_le_def)  | 
| 14033 | 642  | 
|
| 15304 | 643  | 
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"  | 
| 24331 | 644  | 
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits)  | 
| 15304 | 645  | 
|
| 15303 | 646  | 
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"  | 
| 24331 | 647  | 
by (fastsimp simp add: map_le_def map_add_def dom_def)  | 
| 15303 | 648  | 
|
649  | 
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"  | 
|
| 24331 | 650  | 
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)  | 
| 15303 | 651  | 
|
| 31080 | 652  | 
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
 | 
653  | 
proof(rule iffI)  | 
|
654  | 
assume "\<exists>v. f = [x \<mapsto> v]"  | 
|
655  | 
  thus "dom f = {x}" by(auto split: split_if_asm)
 | 
|
656  | 
next  | 
|
657  | 
  assume "dom f = {x}"
 | 
|
658  | 
then obtain v where "f x = Some v" by auto  | 
|
659  | 
hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)  | 
|
660  | 
  moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v`
 | 
|
661  | 
by(auto simp add: map_le_def)  | 
|
662  | 
ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)  | 
|
663  | 
thus "\<exists>v. f = [x \<mapsto> v]" by blast  | 
|
664  | 
qed  | 
|
665  | 
||
| 35565 | 666  | 
|
667  | 
subsection {* Various *}
 | 
|
668  | 
||
669  | 
lemma set_map_of_compr:  | 
|
670  | 
assumes distinct: "distinct (map fst xs)"  | 
|
671  | 
  shows "set xs = {(k, v). map_of xs k = Some v}"
 | 
|
672  | 
using assms proof (induct xs)  | 
|
673  | 
case Nil then show ?case by simp  | 
|
674  | 
next  | 
|
675  | 
case (Cons x xs)  | 
|
676  | 
obtain k v where "x = (k, v)" by (cases x) blast  | 
|
677  | 
with Cons.prems have "k \<notin> dom (map_of xs)"  | 
|
678  | 
by (simp add: dom_map_of_conv_image_fst)  | 
|
679  | 
  then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
 | 
|
680  | 
    {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
 | 
|
681  | 
by (auto split: if_splits)  | 
|
682  | 
  from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
 | 
|
683  | 
with * `x = (k, v)` show ?case by simp  | 
|
684  | 
qed  | 
|
685  | 
||
686  | 
lemma map_of_inject_set:  | 
|
687  | 
assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"  | 
|
688  | 
shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
689  | 
proof  | 
|
690  | 
assume ?lhs  | 
|
691  | 
  moreover from `distinct (map fst xs)` have "set xs = {(k, v). map_of xs k = Some v}"
 | 
|
692  | 
by (rule set_map_of_compr)  | 
|
693  | 
  moreover from `distinct (map fst ys)` have "set ys = {(k, v). map_of ys k = Some v}"
 | 
|
694  | 
by (rule set_map_of_compr)  | 
|
695  | 
ultimately show ?rhs by simp  | 
|
696  | 
next  | 
|
697  | 
assume ?rhs show ?lhs proof  | 
|
698  | 
fix k  | 
|
699  | 
show "map_of xs k = map_of ys k" proof (cases "map_of xs k")  | 
|
700  | 
case None  | 
|
701  | 
moreover with `?rhs` have "map_of ys k = None"  | 
|
702  | 
by (simp add: map_of_eq_None_iff)  | 
|
703  | 
ultimately show ?thesis by simp  | 
|
704  | 
next  | 
|
705  | 
case (Some v)  | 
|
706  | 
moreover with distinct `?rhs` have "map_of ys k = Some v"  | 
|
707  | 
by simp  | 
|
708  | 
ultimately show ?thesis by simp  | 
|
709  | 
qed  | 
|
710  | 
qed  | 
|
711  | 
qed  | 
|
712  | 
||
| 3981 | 713  | 
end  |