| author | wenzelm | 
| Tue, 02 May 2017 10:25:27 +0200 | |
| changeset 65677 | 7d25b8dbdbfa | 
| parent 63834 | 6a757f36997e | 
| child 66010 | 2f7d39285a1a | 
| permissions | -rw-r--r-- | 
| 3981 | 1  | 
(* Title: HOL/Map.thy  | 
2  | 
Author: Tobias Nipkow, based on a theory by David von Oheimb  | 
|
| 13908 | 3  | 
Copyright 1997-2003 TU Muenchen  | 
| 3981 | 4  | 
|
| 60838 | 5  | 
The datatype of "maps"; strongly resembles maps in VDM.  | 
| 3981 | 6  | 
*)  | 
7  | 
||
| 60758 | 8  | 
section \<open>Maps\<close>  | 
| 13914 | 9  | 
|
| 15131 | 10  | 
theory Map  | 
| 15140 | 11  | 
imports List  | 
| 15131 | 12  | 
begin  | 
| 3981 | 13  | 
|
| 61069 | 14  | 
type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
 | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
15  | 
|
| 19378 | 16  | 
abbreviation  | 
| 60838 | 17  | 
empty :: "'a \<rightharpoonup> 'b" where  | 
| 60839 | 18  | 
"empty \<equiv> \<lambda>x. None"  | 
| 19378 | 19  | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
20  | 
definition  | 
| 61069 | 21  | 
  map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)"  (infixl "\<circ>\<^sub>m" 55) where
 | 
22  | 
"f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"  | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
23  | 
|
| 20800 | 24  | 
definition  | 
| 60839 | 25  | 
  map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "++" 100) where
 | 
26  | 
"m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)"  | 
|
| 20800 | 27  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
28  | 
definition  | 
| 60839 | 29  | 
  restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "|`"  110) where
 | 
30  | 
"m|`A = (\<lambda>x. if x \<in> A then m x else None)"  | 
|
| 13910 | 31  | 
|
| 21210 | 32  | 
notation (latex output)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
33  | 
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19378 
diff
changeset
 | 
34  | 
|
| 20800 | 35  | 
definition  | 
| 60839 | 36  | 
  dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
 | 
37  | 
  "dom m = {a. m a \<noteq> None}"
 | 
|
| 20800 | 38  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
39  | 
definition  | 
| 60839 | 40  | 
  ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
 | 
41  | 
  "ran m = {b. \<exists>a. m a = Some b}"
 | 
|
| 20800 | 42  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
43  | 
definition  | 
| 60839 | 44  | 
  map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
45  | 
"(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"  | 
|
| 20800 | 46  | 
|
| 
41229
 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 
wenzelm 
parents: 
39992 
diff
changeset
 | 
47  | 
nonterminal maplets and maplet  | 
| 14180 | 48  | 
|
| 5300 | 49  | 
syntax  | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
50  | 
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /\<mapsto>/ _")
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
51  | 
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[\<mapsto>]/ _")
 | 
| 60839 | 52  | 
  ""         :: "maplet \<Rightarrow> maplets"             ("_")
 | 
53  | 
  "_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
 | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
54  | 
  "_MapUpd"  :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900, 0] 900)
 | 
| 60839 | 55  | 
  "_Map"     :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b"            ("(1[_])")
 | 
| 3981 | 56  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
57  | 
syntax (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
58  | 
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /|->/ _")
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
59  | 
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[|->]/ _")
 | 
| 14180 | 60  | 
|
| 5300 | 61  | 
translations  | 
| 60839 | 62  | 
"_MapUpd m (_Maplets xy ms)" \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms"  | 
63  | 
"_MapUpd m (_maplet x y)" \<rightleftharpoons> "m(x := CONST Some y)"  | 
|
64  | 
"_Map ms" \<rightleftharpoons> "_MapUpd (CONST empty) ms"  | 
|
65  | 
"_Map (_Maplets ms1 ms2)" \<leftharpoondown> "_MapUpd (_Map ms1) ms2"  | 
|
66  | 
"_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3"  | 
|
| 14180 | 67  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
68  | 
primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
69  | 
where  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
70  | 
"map_of [] = empty"  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
71  | 
| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"  | 
| 5300 | 72  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
73  | 
definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
74  | 
where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))"  | 
| 34941 | 75  | 
translations  | 
| 60839 | 76  | 
"_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y"  | 
| 25965 | 77  | 
|
| 60839 | 78  | 
lemma map_of_Cons_code [code]:  | 
| 25965 | 79  | 
"map_of [] k = None"  | 
80  | 
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"  | 
|
81  | 
by simp_all  | 
|
82  | 
||
| 20800 | 83  | 
|
| 60758 | 84  | 
subsection \<open>@{term [source] empty}\<close>
 | 
| 13908 | 85  | 
|
| 20800 | 86  | 
lemma empty_upd_none [simp]: "empty(x := None) = empty"  | 
| 60839 | 87  | 
by (rule ext) simp  | 
| 13908 | 88  | 
|
89  | 
||
| 60758 | 90  | 
subsection \<open>@{term [source] map_upd}\<close>
 | 
| 13908 | 91  | 
|
| 60839 | 92  | 
lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t"  | 
93  | 
by (rule ext) simp  | 
|
| 13908 | 94  | 
|
| 60839 | 95  | 
lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty"  | 
| 20800 | 96  | 
proof  | 
97  | 
assume "t(k \<mapsto> x) = empty"  | 
|
98  | 
then have "(t(k \<mapsto> x)) k = None" by simp  | 
|
99  | 
then show False by simp  | 
|
100  | 
qed  | 
|
| 13908 | 101  | 
|
| 20800 | 102  | 
lemma map_upd_eqD1:  | 
103  | 
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"  | 
|
104  | 
shows "x = y"  | 
|
105  | 
proof -  | 
|
| 41550 | 106  | 
from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp  | 
| 20800 | 107  | 
then show ?thesis by simp  | 
108  | 
qed  | 
|
| 14100 | 109  | 
|
| 20800 | 110  | 
lemma map_upd_Some_unfold:  | 
| 60838 | 111  | 
"((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"  | 
| 24331 | 112  | 
by auto  | 
| 14100 | 113  | 
|
| 20800 | 114  | 
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"  | 
| 24331 | 115  | 
by auto  | 
| 15303 | 116  | 
|
| 60839 | 117  | 
lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))"  | 
| 24331 | 118  | 
unfolding image_def  | 
119  | 
apply (simp (no_asm_use) add:full_SetCompr_eq)  | 
|
120  | 
apply (rule finite_subset)  | 
|
121  | 
prefer 2 apply assumption  | 
|
122  | 
apply (auto)  | 
|
123  | 
done  | 
|
| 13908 | 124  | 
|
125  | 
||
| 60758 | 126  | 
subsection \<open>@{term [source] map_of}\<close>
 | 
| 13908 | 127  | 
|
| 15304 | 128  | 
lemma map_of_eq_None_iff:  | 
| 24331 | 129  | 
"(map_of xys x = None) = (x \<notin> fst ` (set xys))"  | 
130  | 
by (induct xys) simp_all  | 
|
| 15304 | 131  | 
|
| 20800 | 132  | 
lemma map_of_eq_Some_iff [simp]:  | 
| 24331 | 133  | 
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"  | 
134  | 
apply (induct xys)  | 
|
135  | 
apply simp  | 
|
136  | 
apply (auto simp: map_of_eq_None_iff [symmetric])  | 
|
137  | 
done  | 
|
| 15304 | 138  | 
|
| 20800 | 139  | 
lemma Some_eq_map_of_iff [simp]:  | 
| 24331 | 140  | 
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"  | 
| 60839 | 141  | 
by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric])  | 
| 15304 | 142  | 
|
| 17724 | 143  | 
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>  | 
| 20800 | 144  | 
\<Longrightarrow> map_of xys x = Some y"  | 
| 24331 | 145  | 
apply (induct xys)  | 
146  | 
apply simp  | 
|
147  | 
apply force  | 
|
148  | 
done  | 
|
| 15304 | 149  | 
|
| 20800 | 150  | 
lemma map_of_zip_is_None [simp]:  | 
| 24331 | 151  | 
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"  | 
152  | 
by (induct rule: list_induct2) simp_all  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
153  | 
|
| 26443 | 154  | 
lemma map_of_zip_is_Some:  | 
155  | 
assumes "length xs = length ys"  | 
|
156  | 
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"  | 
|
157  | 
using assms by (induct rule: list_induct2) simp_all  | 
|
158  | 
||
159  | 
lemma map_of_zip_upd:  | 
|
160  | 
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"  | 
|
161  | 
assumes "length ys = length xs"  | 
|
162  | 
and "length zs = length xs"  | 
|
163  | 
and "x \<notin> set xs"  | 
|
164  | 
and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"  | 
|
165  | 
shows "map_of (zip xs ys) = map_of (zip xs zs)"  | 
|
166  | 
proof  | 
|
167  | 
fix x' :: 'a  | 
|
168  | 
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"  | 
|
169  | 
proof (cases "x = x'")  | 
|
170  | 
case True  | 
|
171  | 
from assms True map_of_zip_is_None [of xs ys x']  | 
|
172  | 
have "map_of (zip xs ys) x' = None" by simp  | 
|
173  | 
moreover from assms True map_of_zip_is_None [of xs zs x']  | 
|
174  | 
have "map_of (zip xs zs) x' = None" by simp  | 
|
175  | 
ultimately show ?thesis by simp  | 
|
176  | 
next  | 
|
177  | 
case False from assms  | 
|
178  | 
have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto  | 
|
179  | 
with False show ?thesis by simp  | 
|
180  | 
qed  | 
|
181  | 
qed  | 
|
182  | 
||
183  | 
lemma map_of_zip_inject:  | 
|
184  | 
assumes "length ys = length xs"  | 
|
185  | 
and "length zs = length xs"  | 
|
186  | 
and dist: "distinct xs"  | 
|
187  | 
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"  | 
|
188  | 
shows "ys = zs"  | 
|
| 60839 | 189  | 
using assms(1) assms(2)[symmetric]  | 
190  | 
using dist map_of  | 
|
191  | 
proof (induct ys xs zs rule: list_induct3)  | 
|
| 26443 | 192  | 
case Nil show ?case by simp  | 
193  | 
next  | 
|
194  | 
case (Cons y ys x xs z zs)  | 
|
| 60758 | 195  | 
from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close>  | 
| 26443 | 196  | 
have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp  | 
197  | 
from Cons have "length ys = length xs" and "length zs = length xs"  | 
|
198  | 
and "x \<notin> set xs" by simp_all  | 
|
199  | 
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)  | 
|
| 60758 | 200  | 
with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp  | 
| 26443 | 201  | 
moreover from map_of have "y = z" by (rule map_upd_eqD1)  | 
202  | 
ultimately show ?case by simp  | 
|
203  | 
qed  | 
|
204  | 
||
| 33635 | 205  | 
lemma map_of_zip_map:  | 
206  | 
"map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
207  | 
by (induct xs) (simp_all add: fun_eq_iff)  | 
| 33635 | 208  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
209  | 
lemma finite_range_map_of: "finite (range (map_of xys))"  | 
| 24331 | 210  | 
apply (induct xys)  | 
211  | 
apply (simp_all add: image_constant)  | 
|
212  | 
apply (rule finite_subset)  | 
|
213  | 
prefer 2 apply assumption  | 
|
214  | 
apply auto  | 
|
215  | 
done  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
216  | 
|
| 20800 | 217  | 
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"  | 
| 60841 | 218  | 
by (induct xs) (auto split: if_splits)  | 
| 13908 | 219  | 
|
| 20800 | 220  | 
lemma map_of_mapk_SomeI:  | 
| 60839 | 221  | 
"inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow>  | 
| 
61032
 
b57df8eecad6
standardized some occurences of ancient "split" alias
 
haftmann 
parents: 
60841 
diff
changeset
 | 
222  | 
map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"  | 
| 60839 | 223  | 
by (induct t) (auto simp: inj_eq)  | 
| 13908 | 224  | 
|
| 60839 | 225  | 
lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x"  | 
| 24331 | 226  | 
by (induct l) auto  | 
| 13908 | 227  | 
|
| 20800 | 228  | 
lemma map_of_filter_in:  | 
| 
61032
 
b57df8eecad6
standardized some occurences of ancient "split" alias
 
haftmann 
parents: 
60841 
diff
changeset
 | 
229  | 
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z"  | 
| 24331 | 230  | 
by (induct xs) auto  | 
| 13908 | 231  | 
|
| 35607 | 232  | 
lemma map_of_map:  | 
| 55466 | 233  | 
"map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"  | 
| 60839 | 234  | 
by (induct xs) (auto simp: fun_eq_iff)  | 
| 35607 | 235  | 
|
| 55466 | 236  | 
lemma dom_map_option:  | 
237  | 
"dom (\<lambda>k. map_option (f k) (m k)) = dom m"  | 
|
| 35607 | 238  | 
by (simp add: dom_def)  | 
| 13908 | 239  | 
|
| 56545 | 240  | 
lemma dom_map_option_comp [simp]:  | 
241  | 
"dom (map_option g \<circ> m) = dom m"  | 
|
242  | 
using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def)  | 
|
243  | 
||
| 13908 | 244  | 
|
| 60758 | 245  | 
subsection \<open>@{const map_option} related\<close>
 | 
| 13908 | 246  | 
|
| 55466 | 247  | 
lemma map_option_o_empty [simp]: "map_option f o empty = empty"  | 
| 24331 | 248  | 
by (rule ext) simp  | 
| 13908 | 249  | 
|
| 55466 | 250  | 
lemma map_option_o_map_upd [simp]:  | 
| 60838 | 251  | 
"map_option f o m(a\<mapsto>b) = (map_option f o m)(a\<mapsto>f b)"  | 
| 24331 | 252  | 
by (rule ext) simp  | 
| 20800 | 253  | 
|
| 13908 | 254  | 
|
| 60758 | 255  | 
subsection \<open>@{term [source] map_comp} related\<close>
 | 
| 17391 | 256  | 
|
| 20800 | 257  | 
lemma map_comp_empty [simp]:  | 
| 24331 | 258  | 
"m \<circ>\<^sub>m empty = empty"  | 
259  | 
"empty \<circ>\<^sub>m m = empty"  | 
|
| 60839 | 260  | 
by (auto simp: map_comp_def split: option.splits)  | 
| 17391 | 261  | 
|
| 20800 | 262  | 
lemma map_comp_simps [simp]:  | 
| 24331 | 263  | 
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"  | 
264  | 
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"  | 
|
| 60839 | 265  | 
by (auto simp: map_comp_def)  | 
| 17391 | 266  | 
|
267  | 
lemma map_comp_Some_iff:  | 
|
| 24331 | 268  | 
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"  | 
| 60839 | 269  | 
by (auto simp: map_comp_def split: option.splits)  | 
| 17391 | 270  | 
|
271  | 
lemma map_comp_None_iff:  | 
|
| 24331 | 272  | 
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "  | 
| 60839 | 273  | 
by (auto simp: map_comp_def split: option.splits)  | 
| 13908 | 274  | 
|
| 20800 | 275  | 
|
| 61799 | 276  | 
subsection \<open>\<open>++\<close>\<close>  | 
| 13908 | 277  | 
|
| 14025 | 278  | 
lemma map_add_empty[simp]: "m ++ empty = m"  | 
| 24331 | 279  | 
by(simp add: map_add_def)  | 
| 13908 | 280  | 
|
| 14025 | 281  | 
lemma empty_map_add[simp]: "empty ++ m = m"  | 
| 24331 | 282  | 
by (rule ext) (simp add: map_add_def split: option.split)  | 
| 13908 | 283  | 
|
| 14025 | 284  | 
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"  | 
| 24331 | 285  | 
by (rule ext) (simp add: map_add_def split: option.split)  | 
| 20800 | 286  | 
|
287  | 
lemma map_add_Some_iff:  | 
|
| 24331 | 288  | 
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"  | 
289  | 
by (simp add: map_add_def split: option.split)  | 
|
| 14025 | 290  | 
|
| 20800 | 291  | 
lemma map_add_SomeD [dest!]:  | 
| 24331 | 292  | 
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"  | 
293  | 
by (rule map_add_Some_iff [THEN iffD1])  | 
|
| 13908 | 294  | 
|
| 60839 | 295  | 
lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx"  | 
| 24331 | 296  | 
by (subst map_add_Some_iff) fast  | 
| 13908 | 297  | 
|
| 14025 | 298  | 
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"  | 
| 24331 | 299  | 
by (simp add: map_add_def split: option.split)  | 
| 13908 | 300  | 
|
| 60838 | 301  | 
lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)"  | 
| 24331 | 302  | 
by (rule ext) (simp add: map_add_def)  | 
| 13908 | 303  | 
|
| 14186 | 304  | 
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"  | 
| 24331 | 305  | 
by (simp add: map_upds_def)  | 
| 14186 | 306  | 
|
| 
32236
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
307  | 
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
308  | 
by (rule ext) (auto simp: map_add_def dom_def split: option.split)  | 
| 
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
309  | 
|
| 20800 | 310  | 
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"  | 
| 24331 | 311  | 
unfolding map_add_def  | 
312  | 
apply (induct xs)  | 
|
313  | 
apply simp  | 
|
314  | 
apply (rule ext)  | 
|
| 63648 | 315  | 
apply (simp split: option.split)  | 
| 24331 | 316  | 
done  | 
| 13908 | 317  | 
|
| 14025 | 318  | 
lemma finite_range_map_of_map_add:  | 
| 60839 | 319  | 
"finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))"  | 
| 24331 | 320  | 
apply (induct l)  | 
321  | 
apply (auto simp del: fun_upd_apply)  | 
|
322  | 
apply (erule finite_range_updI)  | 
|
323  | 
done  | 
|
| 13908 | 324  | 
|
| 20800 | 325  | 
lemma inj_on_map_add_dom [iff]:  | 
| 24331 | 326  | 
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')"  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
42163 
diff
changeset
 | 
327  | 
by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)  | 
| 20800 | 328  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
329  | 
lemma map_upds_fold_map_upd:  | 
| 35552 | 330  | 
"m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"  | 
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
331  | 
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
332  | 
fix ks :: "'a list" and vs :: "'b list"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
333  | 
assume "length ks = length vs"  | 
| 35552 | 334  | 
then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"  | 
335  | 
by(induct arbitrary: m rule: list_induct2) simp_all  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
336  | 
qed  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
337  | 
|
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
338  | 
lemma map_add_map_of_foldr:  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
339  | 
"m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"  | 
| 60839 | 340  | 
by (induct ps) (auto simp: fun_eq_iff map_add_def)  | 
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
341  | 
|
| 15304 | 342  | 
|
| 60758 | 343  | 
subsection \<open>@{term [source] restrict_map}\<close>
 | 
| 14100 | 344  | 
|
| 20800 | 345  | 
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 346  | 
by (simp add: restrict_map_def)  | 
| 14186 | 347  | 
|
| 31380 | 348  | 
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"  | 
| 60839 | 349  | 
by (auto simp: restrict_map_def)  | 
| 31380 | 350  | 
|
| 20800 | 351  | 
lemma restrict_map_empty [simp]: "empty|`D = empty"  | 
| 24331 | 352  | 
by (simp add: restrict_map_def)  | 
| 14186 | 353  | 
|
| 15693 | 354  | 
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"  | 
| 24331 | 355  | 
by (simp add: restrict_map_def)  | 
| 14100 | 356  | 
|
| 15693 | 357  | 
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"  | 
| 24331 | 358  | 
by (simp add: restrict_map_def)  | 
| 14100 | 359  | 
|
| 15693 | 360  | 
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"  | 
| 62390 | 361  | 
by (auto simp: restrict_map_def ran_def split: if_split_asm)  | 
| 14100 | 362  | 
|
| 15693 | 363  | 
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"  | 
| 62390 | 364  | 
by (auto simp: restrict_map_def dom_def split: if_split_asm)  | 
| 14100 | 365  | 
|
| 15693 | 366  | 
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 367  | 
by (rule ext) (auto simp: restrict_map_def)  | 
| 14100 | 368  | 
|
| 15693 | 369  | 
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"  | 
| 24331 | 370  | 
by (rule ext) (auto simp: restrict_map_def)  | 
| 14100 | 371  | 
|
| 20800 | 372  | 
lemma restrict_fun_upd [simp]:  | 
| 24331 | 373  | 
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
374  | 
by (simp add: restrict_map_def fun_eq_iff)  | 
| 14186 | 375  | 
|
| 20800 | 376  | 
lemma fun_upd_None_restrict [simp]:  | 
| 60839 | 377  | 
  "(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
378  | 
by (simp add: restrict_map_def fun_eq_iff)  | 
| 14186 | 379  | 
|
| 20800 | 380  | 
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
381  | 
by (simp add: restrict_map_def fun_eq_iff)  | 
| 14186 | 382  | 
|
| 20800 | 383  | 
lemma fun_upd_restrict_conv [simp]:  | 
| 24331 | 384  | 
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
385  | 
by (simp add: restrict_map_def fun_eq_iff)  | 
| 14186 | 386  | 
|
| 
35159
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
387  | 
lemma map_of_map_restrict:  | 
| 
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
388  | 
"map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
389  | 
by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)  | 
| 
35159
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
390  | 
|
| 35619 | 391  | 
lemma restrict_complement_singleton_eq:  | 
392  | 
  "f |` (- {x}) = f(x := None)"
 | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
393  | 
by (simp add: restrict_map_def fun_eq_iff)  | 
| 35619 | 394  | 
|
| 14100 | 395  | 
|
| 60758 | 396  | 
subsection \<open>@{term [source] map_upds}\<close>
 | 
| 14025 | 397  | 
|
| 60838 | 398  | 
lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m"  | 
| 24331 | 399  | 
by (simp add: map_upds_def)  | 
| 14025 | 400  | 
|
| 60838 | 401  | 
lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m"  | 
| 24331 | 402  | 
by (simp add:map_upds_def)  | 
| 20800 | 403  | 
|
| 60838 | 404  | 
lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)"  | 
| 24331 | 405  | 
by (simp add:map_upds_def)  | 
| 14025 | 406  | 
|
| 60839 | 407  | 
lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow>  | 
| 24331 | 408  | 
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"  | 
| 60839 | 409  | 
apply(induct xs arbitrary: ys m)  | 
| 24331 | 410  | 
apply (clarsimp simp add: neq_Nil_conv)  | 
411  | 
apply (case_tac ys)  | 
|
412  | 
apply simp  | 
|
413  | 
apply simp  | 
|
414  | 
done  | 
|
| 14187 | 415  | 
|
| 20800 | 416  | 
lemma map_upds_list_update2_drop [simp]:  | 
| 
46588
 
4895d7f1be42
removing some unnecessary premises from Map theory
 
bulwahn 
parents: 
44921 
diff
changeset
 | 
417  | 
"size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"  | 
| 24331 | 418  | 
apply (induct xs arbitrary: m ys i)  | 
419  | 
apply simp  | 
|
420  | 
apply (case_tac ys)  | 
|
421  | 
apply simp  | 
|
422  | 
apply (simp split: nat.split)  | 
|
423  | 
done  | 
|
| 14025 | 424  | 
|
| 20800 | 425  | 
lemma map_upd_upds_conv_if:  | 
| 60838 | 426  | 
"(f(x\<mapsto>y))(xs [\<mapsto>] ys) =  | 
| 60839 | 427  | 
(if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys)  | 
| 60838 | 428  | 
else (f(xs [\<mapsto>] ys))(x\<mapsto>y))"  | 
| 24331 | 429  | 
apply (induct xs arbitrary: x y ys f)  | 
430  | 
apply simp  | 
|
431  | 
apply (case_tac ys)  | 
|
| 62390 | 432  | 
apply (auto split: if_split simp: fun_upd_twist)  | 
| 24331 | 433  | 
done  | 
| 14025 | 434  | 
|
435  | 
lemma map_upds_twist [simp]:  | 
|
| 60839 | 436  | 
"a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)"  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
42163 
diff
changeset
 | 
437  | 
using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)  | 
| 14025 | 438  | 
|
| 20800 | 439  | 
lemma map_upds_apply_nontin [simp]:  | 
| 60839 | 440  | 
"x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x"  | 
| 24331 | 441  | 
apply (induct xs arbitrary: ys)  | 
442  | 
apply simp  | 
|
443  | 
apply (case_tac ys)  | 
|
444  | 
apply (auto simp: map_upd_upds_conv_if)  | 
|
445  | 
done  | 
|
| 14025 | 446  | 
|
| 20800 | 447  | 
lemma fun_upds_append_drop [simp]:  | 
| 24331 | 448  | 
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"  | 
449  | 
apply (induct xs arbitrary: m ys)  | 
|
450  | 
apply simp  | 
|
451  | 
apply (case_tac ys)  | 
|
452  | 
apply simp_all  | 
|
453  | 
done  | 
|
| 14300 | 454  | 
|
| 20800 | 455  | 
lemma fun_upds_append2_drop [simp]:  | 
| 24331 | 456  | 
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"  | 
457  | 
apply (induct xs arbitrary: m ys)  | 
|
458  | 
apply simp  | 
|
459  | 
apply (case_tac ys)  | 
|
460  | 
apply simp_all  | 
|
461  | 
done  | 
|
| 14300 | 462  | 
|
463  | 
||
| 20800 | 464  | 
lemma restrict_map_upds[simp]:  | 
465  | 
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>  | 
|
466  | 
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"  | 
|
| 24331 | 467  | 
apply (induct xs arbitrary: m ys)  | 
468  | 
apply simp  | 
|
469  | 
apply (case_tac ys)  | 
|
470  | 
apply simp  | 
|
471  | 
apply (simp add: Diff_insert [symmetric] insert_absorb)  | 
|
472  | 
apply (simp add: map_upd_upds_conv_if)  | 
|
473  | 
done  | 
|
| 14186 | 474  | 
|
475  | 
||
| 60758 | 476  | 
subsection \<open>@{term [source] dom}\<close>
 | 
| 13908 | 477  | 
|
| 31080 | 478  | 
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
 | 
| 44921 | 479  | 
by (auto simp: dom_def)  | 
| 31080 | 480  | 
|
| 60839 | 481  | 
lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m"  | 
482  | 
by (simp add: dom_def)  | 
|
| 14100 | 483  | 
(* declare domI [intro]? *)  | 
| 13908 | 484  | 
|
| 60839 | 485  | 
lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b"  | 
486  | 
by (cases "m a") (auto simp add: dom_def)  | 
|
| 13908 | 487  | 
|
| 60839 | 488  | 
lemma domIff [iff, simp del]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None"  | 
489  | 
by (simp add: dom_def)  | 
|
| 13908 | 490  | 
|
| 20800 | 491  | 
lemma dom_empty [simp]: "dom empty = {}"
 | 
| 60839 | 492  | 
by (simp add: dom_def)  | 
| 13908 | 493  | 
|
| 20800 | 494  | 
lemma dom_fun_upd [simp]:  | 
| 60839 | 495  | 
  "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
 | 
496  | 
by (auto simp: dom_def)  | 
|
| 13908 | 497  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
498  | 
lemma dom_if:  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
499  | 
  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
 | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
500  | 
by (auto split: if_splits)  | 
| 13937 | 501  | 
|
| 15304 | 502  | 
lemma dom_map_of_conv_image_fst:  | 
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
503  | 
"dom (map_of xys) = fst ` set xys"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
504  | 
by (induct xys) (auto simp add: dom_if)  | 
| 15304 | 505  | 
|
| 60839 | 506  | 
lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs"  | 
507  | 
by (induct rule: list_induct2) (auto simp: dom_if)  | 
|
| 
15110
 
78b5636eabc7
Added a number of new thms and the new function remove1
 
nipkow 
parents: 
14739 
diff
changeset
 | 
508  | 
|
| 13908 | 509  | 
lemma finite_dom_map_of: "finite (dom (map_of l))"  | 
| 60839 | 510  | 
by (induct l) (auto simp: dom_def insert_Collect [symmetric])  | 
| 13908 | 511  | 
|
| 20800 | 512  | 
lemma dom_map_upds [simp]:  | 
| 60839 | 513  | 
"dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m"  | 
| 24331 | 514  | 
apply (induct xs arbitrary: m ys)  | 
515  | 
apply simp  | 
|
516  | 
apply (case_tac ys)  | 
|
517  | 
apply auto  | 
|
518  | 
done  | 
|
| 13910 | 519  | 
|
| 60839 | 520  | 
lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m"  | 
521  | 
by (auto simp: dom_def)  | 
|
| 13910 | 522  | 
|
| 20800 | 523  | 
lemma dom_override_on [simp]:  | 
| 60839 | 524  | 
"dom (override_on f g A) =  | 
525  | 
    (dom f  - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
 | 
|
526  | 
by (auto simp: dom_def override_on_def)  | 
|
| 13908 | 527  | 
|
| 60839 | 528  | 
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
 | 
529  | 
by (rule ext) (force simp: map_add_def dom_def split: option.split)  | 
|
| 20800 | 530  | 
|
| 
32236
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
531  | 
lemma map_add_dom_app_simps:  | 
| 60839 | 532  | 
"m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m"  | 
533  | 
"m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m"  | 
|
534  | 
"m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m"  | 
|
535  | 
by (auto simp add: map_add_def split: option.split_asm)  | 
|
| 
32236
 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 
krauss 
parents: 
31380 
diff
changeset
 | 
536  | 
|
| 29622 | 537  | 
lemma dom_const [simp]:  | 
| 
35159
 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 
haftmann 
parents: 
35115 
diff
changeset
 | 
538  | 
"dom (\<lambda>x. Some (f x)) = UNIV"  | 
| 29622 | 539  | 
by auto  | 
540  | 
||
| 22230 | 541  | 
(* Due to John Matthews - could be rephrased with dom *)  | 
542  | 
lemma finite_map_freshness:  | 
|
543  | 
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>  | 
|
544  | 
\<exists>x. f x = None"  | 
|
| 60839 | 545  | 
by (bestsimp dest: ex_new_if_finite)  | 
| 14027 | 546  | 
|
| 28790 | 547  | 
lemma dom_minus:  | 
548  | 
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A"  | 
|
549  | 
unfolding dom_def by simp  | 
|
550  | 
||
551  | 
lemma insert_dom:  | 
|
552  | 
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f"  | 
|
553  | 
unfolding dom_def by auto  | 
|
554  | 
||
| 35607 | 555  | 
lemma map_of_map_keys:  | 
556  | 
"set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"  | 
|
557  | 
by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)  | 
|
558  | 
||
| 
39379
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
559  | 
lemma map_of_eqI:  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
560  | 
assumes set_eq: "set (map fst xs) = set (map fst ys)"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
561  | 
assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
562  | 
shows "map_of xs = map_of ys"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
563  | 
proof (rule ext)  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
564  | 
fix k show "map_of xs k = map_of ys k"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
565  | 
proof (cases "map_of xs k")  | 
| 60839 | 566  | 
case None  | 
567  | 
then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)  | 
|
| 
39379
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
568  | 
with set_eq have "k \<notin> set (map fst ys)" by simp  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
569  | 
then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
570  | 
with None show ?thesis by simp  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
571  | 
next  | 
| 60839 | 572  | 
case (Some v)  | 
573  | 
then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])  | 
|
| 
39379
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
574  | 
with map_eq show ?thesis by auto  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
575  | 
qed  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
576  | 
qed  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
577  | 
|
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
578  | 
lemma map_of_eq_dom:  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
579  | 
assumes "map_of xs = map_of ys"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
580  | 
shows "fst ` set xs = fst ` set ys"  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
581  | 
proof -  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
582  | 
from assms have "dom (map_of xs) = dom (map_of ys)" by simp  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
583  | 
then show ?thesis by (simp add: dom_map_of_conv_image_fst)  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
584  | 
qed  | 
| 
 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 
haftmann 
parents: 
39302 
diff
changeset
 | 
585  | 
|
| 53820 | 586  | 
lemma finite_set_of_finite_maps:  | 
| 60839 | 587  | 
assumes "finite A" "finite B"  | 
588  | 
  shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
 | 
|
| 53820 | 589  | 
proof -  | 
590  | 
  let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
 | 
|
591  | 
have "?S = ?S'"  | 
|
592  | 
proof  | 
|
| 60839 | 593  | 
show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def)  | 
| 53820 | 594  | 
show "?S' \<subseteq> ?S"  | 
595  | 
proof  | 
|
596  | 
fix m assume "m \<in> ?S'"  | 
|
597  | 
hence 1: "dom m = A" by force  | 
|
| 60839 | 598  | 
hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def)  | 
| 53820 | 599  | 
from 1 2 show "m \<in> ?S" by blast  | 
600  | 
qed  | 
|
601  | 
qed  | 
|
602  | 
with assms show ?thesis by(simp add: finite_set_of_finite_funs)  | 
|
603  | 
qed  | 
|
| 28790 | 604  | 
|
| 60839 | 605  | 
|
| 60758 | 606  | 
subsection \<open>@{term [source] ran}\<close>
 | 
| 14100 | 607  | 
|
| 60839 | 608  | 
lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m"  | 
609  | 
by (auto simp: ran_def)  | 
|
| 14100 | 610  | 
(* declare ranI [intro]? *)  | 
| 13908 | 611  | 
|
| 20800 | 612  | 
lemma ran_empty [simp]: "ran empty = {}"
 | 
| 60839 | 613  | 
by (auto simp: ran_def)  | 
| 13908 | 614  | 
|
| 60839 | 615  | 
lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)"  | 
616  | 
unfolding ran_def  | 
|
| 24331 | 617  | 
apply auto  | 
| 60839 | 618  | 
apply (subgoal_tac "aa \<noteq> a")  | 
| 24331 | 619  | 
apply auto  | 
620  | 
done  | 
|
| 20800 | 621  | 
|
| 60839 | 622  | 
lemma ran_distinct:  | 
623  | 
assumes dist: "distinct (map fst al)"  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
624  | 
shows "ran (map_of al) = snd ` set al"  | 
| 60839 | 625  | 
using assms  | 
626  | 
proof (induct al)  | 
|
627  | 
case Nil  | 
|
628  | 
then show ?case by simp  | 
|
| 
34979
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
629  | 
next  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
630  | 
case (Cons kv al)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
631  | 
then have "ran (map_of al) = snd ` set al" by simp  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
632  | 
moreover from Cons.prems have "map_of al (fst kv) = None"  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
633  | 
by (simp add: map_of_eq_None_iff)  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
634  | 
ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
635  | 
qed  | 
| 
 
8cb6e7a42e9c
more correspondence lemmas between related operations
 
haftmann 
parents: 
34941 
diff
changeset
 | 
636  | 
|
| 60057 | 637  | 
lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m"  | 
| 60839 | 638  | 
by (auto simp add: ran_def)  | 
639  | 
||
| 13910 | 640  | 
|
| 61799 | 641  | 
subsection \<open>\<open>map_le\<close>\<close>  | 
| 13910 | 642  | 
|
| 13912 | 643  | 
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"  | 
| 60839 | 644  | 
by (simp add: map_le_def)  | 
| 13910 | 645  | 
|
| 17724 | 646  | 
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"  | 
| 60839 | 647  | 
by (force simp add: map_le_def)  | 
| 14187 | 648  | 
|
| 13910 | 649  | 
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"  | 
| 60839 | 650  | 
by (fastforce simp add: map_le_def)  | 
| 13910 | 651  | 
|
| 17724 | 652  | 
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"  | 
| 60839 | 653  | 
by (force simp add: map_le_def)  | 
| 14187 | 654  | 
|
| 20800 | 655  | 
lemma map_le_upds [simp]:  | 
| 60839 | 656  | 
"f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)"  | 
| 24331 | 657  | 
apply (induct as arbitrary: f g bs)  | 
658  | 
apply simp  | 
|
659  | 
apply (case_tac bs)  | 
|
660  | 
apply auto  | 
|
661  | 
done  | 
|
| 13908 | 662  | 
|
| 14033 | 663  | 
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"  | 
| 60839 | 664  | 
by (fastforce simp add: map_le_def dom_def)  | 
| 14033 | 665  | 
|
666  | 
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"  | 
|
| 60839 | 667  | 
by (simp add: map_le_def)  | 
| 14033 | 668  | 
|
| 14187 | 669  | 
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"  | 
| 60839 | 670  | 
by (auto simp add: map_le_def dom_def)  | 
| 14033 | 671  | 
|
672  | 
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"  | 
|
| 24331 | 673  | 
unfolding map_le_def  | 
674  | 
apply (rule ext)  | 
|
675  | 
apply (case_tac "x \<in> dom f", simp)  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
42163 
diff
changeset
 | 
676  | 
apply (case_tac "x \<in> dom g", simp, fastforce)  | 
| 24331 | 677  | 
done  | 
| 14033 | 678  | 
|
| 60839 | 679  | 
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f"  | 
680  | 
by (fastforce simp: map_le_def)  | 
|
| 14033 | 681  | 
|
| 60839 | 682  | 
lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f"  | 
683  | 
by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)  | 
|
| 15304 | 684  | 
|
| 60839 | 685  | 
lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"  | 
686  | 
by (fastforce simp: map_le_def map_add_def dom_def)  | 
|
| 15303 | 687  | 
|
| 60839 | 688  | 
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h"  | 
689  | 
by (auto simp: map_le_def map_add_def dom_def split: option.splits)  | 
|
| 15303 | 690  | 
|
| 63828 | 691  | 
lemma map_add_subsumed1: "f \<subseteq>\<^sub>m g \<Longrightarrow> f++g = g"  | 
692  | 
by (simp add: map_add_le_mapI map_le_antisym)  | 
|
693  | 
||
694  | 
lemma map_add_subsumed2: "f \<subseteq>\<^sub>m g \<Longrightarrow> g++f = g"  | 
|
695  | 
by (metis map_add_subsumed1 map_le_iff_map_add_commute)  | 
|
696  | 
||
| 31080 | 697  | 
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
 | 
| 63834 | 698  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
699  | 
proof  | 
|
700  | 
assume ?rhs  | 
|
701  | 
then show ?lhs by (auto split: if_split_asm)  | 
|
| 31080 | 702  | 
next  | 
| 63834 | 703  | 
assume ?lhs  | 
704  | 
then obtain v where v: "f x = Some v" by auto  | 
|
705  | 
show ?rhs  | 
|
706  | 
proof  | 
|
707  | 
show "f = [x \<mapsto> v]"  | 
|
708  | 
proof (rule map_le_antisym)  | 
|
709  | 
show "[x \<mapsto> v] \<subseteq>\<^sub>m f"  | 
|
710  | 
using v by (auto simp add: map_le_def)  | 
|
711  | 
show "f \<subseteq>\<^sub>m [x \<mapsto> v]"  | 
|
712  | 
        using \<open>dom f = {x}\<close> \<open>f x = Some v\<close> by (auto simp add: map_le_def)
 | 
|
713  | 
qed  | 
|
714  | 
qed  | 
|
| 31080 | 715  | 
qed  | 
716  | 
||
| 35565 | 717  | 
|
| 60758 | 718  | 
subsection \<open>Various\<close>  | 
| 35565 | 719  | 
|
720  | 
lemma set_map_of_compr:  | 
|
721  | 
assumes distinct: "distinct (map fst xs)"  | 
|
722  | 
  shows "set xs = {(k, v). map_of xs k = Some v}"
 | 
|
| 60839 | 723  | 
using assms  | 
724  | 
proof (induct xs)  | 
|
725  | 
case Nil  | 
|
726  | 
then show ?case by simp  | 
|
| 35565 | 727  | 
next  | 
728  | 
case (Cons x xs)  | 
|
729  | 
obtain k v where "x = (k, v)" by (cases x) blast  | 
|
730  | 
with Cons.prems have "k \<notin> dom (map_of xs)"  | 
|
731  | 
by (simp add: dom_map_of_conv_image_fst)  | 
|
732  | 
  then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
 | 
|
733  | 
    {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
 | 
|
734  | 
by (auto split: if_splits)  | 
|
735  | 
  from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
 | 
|
| 60758 | 736  | 
with * \<open>x = (k, v)\<close> show ?case by simp  | 
| 35565 | 737  | 
qed  | 
738  | 
||
739  | 
lemma map_of_inject_set:  | 
|
740  | 
assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"  | 
|
741  | 
shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
742  | 
proof  | 
|
743  | 
assume ?lhs  | 
|
| 60758 | 744  | 
  moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
 | 
| 35565 | 745  | 
by (rule set_map_of_compr)  | 
| 60758 | 746  | 
  moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
 | 
| 35565 | 747  | 
by (rule set_map_of_compr)  | 
748  | 
ultimately show ?rhs by simp  | 
|
749  | 
next  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
750  | 
assume ?rhs show ?lhs  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
751  | 
proof  | 
| 35565 | 752  | 
fix k  | 
| 60839 | 753  | 
show "map_of xs k = map_of ys k"  | 
754  | 
proof (cases "map_of xs k")  | 
|
| 35565 | 755  | 
case None  | 
| 60758 | 756  | 
with \<open>?rhs\<close> have "map_of ys k = None"  | 
| 35565 | 757  | 
by (simp add: map_of_eq_None_iff)  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
758  | 
with None show ?thesis by simp  | 
| 35565 | 759  | 
next  | 
760  | 
case (Some v)  | 
|
| 60758 | 761  | 
with distinct \<open>?rhs\<close> have "map_of ys k = Some v"  | 
| 35565 | 762  | 
by simp  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53015 
diff
changeset
 | 
763  | 
with Some show ?thesis by simp  | 
| 35565 | 764  | 
qed  | 
765  | 
qed  | 
|
766  | 
qed  | 
|
767  | 
||
| 3981 | 768  | 
end  |