author | haftmann |
Fri, 20 Jul 2007 14:28:25 +0200 | |
changeset 23881 | 851c74f1bb69 |
parent 22744 | 5cbe966d67a2 |
child 24331 | 76f7a8c6e842 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
20800 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
18 |
syntax (xsymbols) |
20800 | 19 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
20 |
|
19378 | 21 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
22 |
empty :: "'a ~=> 'b" where |
19378 | 23 |
"empty == %x. None" |
24 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
25 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
26 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where |
20800 | 27 |
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
19378 | 28 |
|
21210 | 29 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
30 |
map_comp (infixl "\<circ>\<^sub>m" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
31 |
|
20800 | 32 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where |
20800 | 34 |
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" |
35 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where |
20800 | 38 |
"m|`A = (\<lambda>x. if x : A then m x else None)" |
13910 | 39 |
|
21210 | 40 |
notation (latex output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
41 |
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
42 |
|
20800 | 43 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
dom :: "('a ~=> 'b) => 'a set" where |
20800 | 45 |
"dom m = {a. m a ~= None}" |
46 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
47 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
ran :: "('a ~=> 'b) => 'b set" where |
20800 | 49 |
"ran m = {b. EX a. m a = Some b}" |
50 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
51 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
52 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where |
20800 | 53 |
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" |
54 |
||
55 |
consts |
|
56 |
map_of :: "('a * 'b) list => 'a ~=> 'b" |
|
57 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
|
58 |
||
14180 | 59 |
nonterminals |
60 |
maplets maplet |
|
61 |
||
5300 | 62 |
syntax |
14180 | 63 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
64 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
65 |
"" :: "maplet => maplets" ("_") |
|
66 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
67 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
68 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 69 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
70 |
syntax (xsymbols) |
14180 | 71 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
72 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
73 |
||
5300 | 74 |
translations |
14180 | 75 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
76 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
77 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
19947 | 78 |
"_Map ms" == "_MapUpd (CONST empty) ms" |
14180 | 79 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
80 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
81 |
||
5183 | 82 |
primrec |
83 |
"map_of [] = empty" |
|
5300 | 84 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
85 |
||
20800 | 86 |
defs |
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22230
diff
changeset
|
87 |
map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
20800 | 88 |
|
89 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
90 |
subsection {* @{term [source] empty} *} |
13908 | 91 |
|
20800 | 92 |
lemma empty_upd_none [simp]: "empty(x := None) = empty" |
93 |
by (rule ext) simp |
|
13908 | 94 |
|
95 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
96 |
subsection {* @{term [source] map_upd} *} |
13908 | 97 |
|
98 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
20800 | 99 |
by (rule ext) simp |
13908 | 100 |
|
20800 | 101 |
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" |
102 |
proof |
|
103 |
assume "t(k \<mapsto> x) = empty" |
|
104 |
then have "(t(k \<mapsto> x)) k = None" by simp |
|
105 |
then show False by simp |
|
106 |
qed |
|
13908 | 107 |
|
20800 | 108 |
lemma map_upd_eqD1: |
109 |
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" |
|
110 |
shows "x = y" |
|
111 |
proof - |
|
112 |
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp |
|
113 |
then show ?thesis by simp |
|
114 |
qed |
|
14100 | 115 |
|
20800 | 116 |
lemma map_upd_Some_unfold: |
117 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
118 |
by auto |
|
14100 | 119 |
|
20800 | 120 |
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
121 |
by auto |
|
15303 | 122 |
|
13908 | 123 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
20800 | 124 |
unfolding image_def |
125 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
126 |
apply (rule finite_subset) |
|
127 |
prefer 2 apply assumption |
|
128 |
apply auto |
|
129 |
done |
|
13908 | 130 |
|
131 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
132 |
subsection {* @{term [source] map_of} *} |
13908 | 133 |
|
15304 | 134 |
lemma map_of_eq_None_iff: |
20800 | 135 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
136 |
by (induct xys) simp_all |
|
15304 | 137 |
|
138 |
lemma map_of_is_SomeD: |
|
20800 | 139 |
"map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
140 |
apply (induct xys) |
|
141 |
apply simp |
|
142 |
apply (clarsimp split: if_splits) |
|
143 |
done |
|
15304 | 144 |
|
20800 | 145 |
lemma map_of_eq_Some_iff [simp]: |
146 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
|
147 |
apply (induct xys) |
|
148 |
apply simp |
|
149 |
apply (auto simp: map_of_eq_None_iff [symmetric]) |
|
150 |
done |
|
15304 | 151 |
|
20800 | 152 |
lemma Some_eq_map_of_iff [simp]: |
153 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
|
154 |
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) |
|
15304 | 155 |
|
17724 | 156 |
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
20800 | 157 |
\<Longrightarrow> map_of xys x = Some y" |
158 |
apply (induct xys) |
|
159 |
apply simp |
|
160 |
apply force |
|
161 |
done |
|
15304 | 162 |
|
20800 | 163 |
lemma map_of_zip_is_None [simp]: |
164 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
|
165 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
166 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
167 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
20800 | 168 |
apply (induct xys) |
169 |
apply (simp_all add: image_constant) |
|
170 |
apply (rule finite_subset) |
|
171 |
prefer 2 apply assumption |
|
172 |
apply auto |
|
173 |
done |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
174 |
|
20800 | 175 |
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" |
176 |
by (induct xs) (simp, atomize (full), auto) |
|
13908 | 177 |
|
20800 | 178 |
lemma map_of_mapk_SomeI: |
179 |
assumes "inj f" |
|
180 |
shows "map_of t k = Some x ==> |
|
181 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
182 |
by (induct t) (auto simp add: `inj f` inj_eq) |
|
13908 | 183 |
|
20800 | 184 |
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" |
185 |
by (induct l) auto |
|
13908 | 186 |
|
20800 | 187 |
lemma map_of_filter_in: |
188 |
assumes 1: "map_of xs k = Some z" |
|
189 |
and 2: "P k z" |
|
190 |
shows "map_of (filter (split P) xs) k = Some z" |
|
191 |
using 1 by (induct xs) (insert 2, auto) |
|
13908 | 192 |
|
193 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
20800 | 194 |
by (induct xs) auto |
13908 | 195 |
|
196 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
197 |
subsection {* @{term [source] option_map} related *} |
13908 | 198 |
|
20800 | 199 |
lemma option_map_o_empty [simp]: "option_map f o empty = empty" |
200 |
by (rule ext) simp |
|
13908 | 201 |
|
20800 | 202 |
lemma option_map_o_map_upd [simp]: |
203 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
204 |
by (rule ext) simp |
|
205 |
||
13908 | 206 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
207 |
subsection {* @{term [source] map_comp} related *} |
17391 | 208 |
|
20800 | 209 |
lemma map_comp_empty [simp]: |
210 |
"m \<circ>\<^sub>m empty = empty" |
|
211 |
"empty \<circ>\<^sub>m m = empty" |
|
17391 | 212 |
by (auto simp add: map_comp_def intro: ext split: option.splits) |
213 |
||
20800 | 214 |
lemma map_comp_simps [simp]: |
215 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
|
216 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
17391 | 217 |
by (auto simp add: map_comp_def) |
218 |
||
219 |
lemma map_comp_Some_iff: |
|
20800 | 220 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
17391 | 221 |
by (auto simp add: map_comp_def split: option.splits) |
222 |
||
223 |
lemma map_comp_None_iff: |
|
20800 | 224 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
17391 | 225 |
by (auto simp add: map_comp_def split: option.splits) |
13908 | 226 |
|
20800 | 227 |
|
14100 | 228 |
subsection {* @{text "++"} *} |
13908 | 229 |
|
14025 | 230 |
lemma map_add_empty[simp]: "m ++ empty = m" |
20800 | 231 |
unfolding map_add_def by simp |
13908 | 232 |
|
14025 | 233 |
lemma empty_map_add[simp]: "empty ++ m = m" |
20800 | 234 |
unfolding map_add_def by (rule ext) (simp split: option.split) |
13908 | 235 |
|
14025 | 236 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
20800 | 237 |
unfolding map_add_def by (rule ext) (simp add: map_add_def split: option.split) |
238 |
||
239 |
lemma map_add_Some_iff: |
|
240 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
|
241 |
unfolding map_add_def by (simp split: option.split) |
|
14025 | 242 |
|
20800 | 243 |
lemma map_add_SomeD [dest!]: |
244 |
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" |
|
245 |
by (rule map_add_Some_iff [THEN iffD1]) |
|
13908 | 246 |
|
20800 | 247 |
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
248 |
by (subst map_add_Some_iff) fast |
|
13908 | 249 |
|
14025 | 250 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
20800 | 251 |
unfolding map_add_def by (simp split: option.split) |
13908 | 252 |
|
14025 | 253 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
20800 | 254 |
unfolding map_add_def by (rule ext) simp |
13908 | 255 |
|
14186 | 256 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
20800 | 257 |
by (simp add: map_upds_def) |
14186 | 258 |
|
20800 | 259 |
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" |
260 |
unfolding map_add_def |
|
261 |
apply (induct xs) |
|
262 |
apply simp |
|
263 |
apply (rule ext) |
|
264 |
apply (simp split add: option.split) |
|
265 |
done |
|
13908 | 266 |
|
14025 | 267 |
lemma finite_range_map_of_map_add: |
20800 | 268 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
269 |
apply (induct l) |
|
270 |
apply (auto simp del: fun_upd_apply) |
|
271 |
apply (erule finite_range_updI) |
|
272 |
done |
|
13908 | 273 |
|
20800 | 274 |
lemma inj_on_map_add_dom [iff]: |
275 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
|
276 |
unfolding map_add_def dom_def inj_on_def |
|
277 |
by (fastsimp split: option.splits) |
|
278 |
||
15304 | 279 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
280 |
subsection {* @{term [source] restrict_map} *} |
14100 | 281 |
|
20800 | 282 |
lemma restrict_map_to_empty [simp]: "m|`{} = empty" |
283 |
by (simp add: restrict_map_def) |
|
14186 | 284 |
|
20800 | 285 |
lemma restrict_map_empty [simp]: "empty|`D = empty" |
286 |
by (simp add: restrict_map_def) |
|
14186 | 287 |
|
15693 | 288 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
20800 | 289 |
by (simp add: restrict_map_def) |
14100 | 290 |
|
15693 | 291 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
20800 | 292 |
by (simp add: restrict_map_def) |
14100 | 293 |
|
15693 | 294 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
20800 | 295 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
14100 | 296 |
|
15693 | 297 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
20800 | 298 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
14100 | 299 |
|
15693 | 300 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
20800 | 301 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 302 |
|
15693 | 303 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
20800 | 304 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 305 |
|
20800 | 306 |
lemma restrict_fun_upd [simp]: |
307 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
|
308 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 309 |
|
20800 | 310 |
lemma fun_upd_None_restrict [simp]: |
311 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
|
312 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 313 |
|
20800 | 314 |
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
315 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 316 |
|
20800 | 317 |
lemma fun_upd_restrict_conv [simp]: |
318 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
|
319 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 320 |
|
14100 | 321 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
322 |
subsection {* @{term [source] map_upds} *} |
14025 | 323 |
|
20800 | 324 |
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" |
325 |
by (simp add: map_upds_def) |
|
14025 | 326 |
|
20800 | 327 |
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" |
328 |
by (simp add:map_upds_def) |
|
329 |
||
330 |
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
331 |
by (simp add:map_upds_def) |
|
14025 | 332 |
|
20800 | 333 |
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
334 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
335 |
apply(induct xs) |
|
336 |
apply (clarsimp simp add: neq_Nil_conv) |
|
337 |
apply (case_tac ys) |
|
338 |
apply simp |
|
339 |
apply simp |
|
340 |
done |
|
14187 | 341 |
|
20800 | 342 |
lemma map_upds_list_update2_drop [simp]: |
343 |
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
344 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
345 |
apply (induct xs arbitrary: m ys i) |
|
346 |
apply simp |
|
347 |
apply (case_tac ys) |
|
348 |
apply simp |
|
349 |
apply (simp split: nat.split) |
|
350 |
done |
|
14025 | 351 |
|
20800 | 352 |
lemma map_upd_upds_conv_if: |
353 |
"(f(x|->y))(xs [|->] ys) = |
|
354 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
355 |
else (f(xs [|->] ys))(x|->y))" |
|
356 |
apply (induct xs arbitrary: x y ys f) |
|
357 |
apply simp |
|
358 |
apply (case_tac ys) |
|
359 |
apply (auto split: split_if simp: fun_upd_twist) |
|
360 |
done |
|
14025 | 361 |
|
362 |
lemma map_upds_twist [simp]: |
|
20800 | 363 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
364 |
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) |
|
14025 | 365 |
|
20800 | 366 |
lemma map_upds_apply_nontin [simp]: |
367 |
"x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
368 |
apply (induct xs arbitrary: ys) |
|
369 |
apply simp |
|
370 |
apply (case_tac ys) |
|
371 |
apply (auto simp: map_upd_upds_conv_if) |
|
372 |
done |
|
14025 | 373 |
|
20800 | 374 |
lemma fun_upds_append_drop [simp]: |
375 |
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
|
376 |
apply (induct xs arbitrary: m ys) |
|
377 |
apply simp |
|
378 |
apply (case_tac ys) |
|
379 |
apply simp_all |
|
380 |
done |
|
14300 | 381 |
|
20800 | 382 |
lemma fun_upds_append2_drop [simp]: |
383 |
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
|
384 |
apply (induct xs arbitrary: m ys) |
|
385 |
apply simp |
|
386 |
apply (case_tac ys) |
|
387 |
apply simp_all |
|
388 |
done |
|
14300 | 389 |
|
390 |
||
20800 | 391 |
lemma restrict_map_upds[simp]: |
392 |
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
393 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
|
394 |
apply (induct xs arbitrary: m ys) |
|
395 |
apply simp |
|
396 |
apply (case_tac ys) |
|
397 |
apply simp |
|
398 |
apply (simp add: Diff_insert [symmetric] insert_absorb) |
|
399 |
apply (simp add: map_upd_upds_conv_if) |
|
400 |
done |
|
14186 | 401 |
|
402 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
403 |
subsection {* @{term [source] dom} *} |
13908 | 404 |
|
405 |
lemma domI: "m a = Some b ==> a : dom m" |
|
20800 | 406 |
unfolding dom_def by simp |
14100 | 407 |
(* declare domI [intro]? *) |
13908 | 408 |
|
15369 | 409 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
20800 | 410 |
by (cases "m a") (auto simp add: dom_def) |
13908 | 411 |
|
20800 | 412 |
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" |
413 |
unfolding dom_def by simp |
|
13908 | 414 |
|
20800 | 415 |
lemma dom_empty [simp]: "dom empty = {}" |
416 |
unfolding dom_def by simp |
|
13908 | 417 |
|
20800 | 418 |
lemma dom_fun_upd [simp]: |
419 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
420 |
unfolding dom_def by auto |
|
13908 | 421 |
|
13937 | 422 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
20800 | 423 |
by (induct xys) (auto simp del: fun_upd_apply) |
13937 | 424 |
|
15304 | 425 |
lemma dom_map_of_conv_image_fst: |
20800 | 426 |
"dom(map_of xys) = fst ` (set xys)" |
427 |
unfolding dom_map_of by force |
|
15304 | 428 |
|
20800 | 429 |
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> |
430 |
dom(map_of(zip xs ys)) = set xs" |
|
431 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
432 |
|
13908 | 433 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
20800 | 434 |
unfolding dom_def |
435 |
by (induct l) (auto simp add: insert_Collect [symmetric]) |
|
13908 | 436 |
|
20800 | 437 |
lemma dom_map_upds [simp]: |
438 |
"dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
439 |
apply (induct xs arbitrary: m ys) |
|
440 |
apply simp |
|
441 |
apply (case_tac ys) |
|
442 |
apply auto |
|
443 |
done |
|
13910 | 444 |
|
20800 | 445 |
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" |
446 |
unfolding dom_def by auto |
|
13910 | 447 |
|
20800 | 448 |
lemma dom_override_on [simp]: |
449 |
"dom(override_on f g A) = |
|
450 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
451 |
unfolding dom_def override_on_def by auto |
|
13908 | 452 |
|
14027 | 453 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
20800 | 454 |
by (rule ext) (force simp: map_add_def dom_def split: option.split) |
455 |
||
22230 | 456 |
(* Due to John Matthews - could be rephrased with dom *) |
457 |
lemma finite_map_freshness: |
|
458 |
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> |
|
459 |
\<exists>x. f x = None" |
|
460 |
by(bestsimp dest:ex_new_if_finite) |
|
14027 | 461 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
462 |
subsection {* @{term [source] ran} *} |
14100 | 463 |
|
20800 | 464 |
lemma ranI: "m a = Some b ==> b : ran m" |
465 |
unfolding ran_def by auto |
|
14100 | 466 |
(* declare ranI [intro]? *) |
13908 | 467 |
|
20800 | 468 |
lemma ran_empty [simp]: "ran empty = {}" |
469 |
unfolding ran_def by simp |
|
13908 | 470 |
|
20800 | 471 |
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
472 |
unfolding ran_def |
|
473 |
apply auto |
|
474 |
apply (subgoal_tac "aa ~= a") |
|
475 |
apply auto |
|
476 |
done |
|
477 |
||
13910 | 478 |
|
14100 | 479 |
subsection {* @{text "map_le"} *} |
13910 | 480 |
|
13912 | 481 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
20800 | 482 |
by (simp add: map_le_def) |
13910 | 483 |
|
17724 | 484 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
20800 | 485 |
by (force simp add: map_le_def) |
14187 | 486 |
|
13910 | 487 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
20800 | 488 |
by (fastsimp simp add: map_le_def) |
13910 | 489 |
|
17724 | 490 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
20800 | 491 |
by (force simp add: map_le_def) |
14187 | 492 |
|
20800 | 493 |
lemma map_le_upds [simp]: |
494 |
"f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
495 |
apply (induct as arbitrary: f g bs) |
|
496 |
apply simp |
|
497 |
apply (case_tac bs) |
|
498 |
apply auto |
|
499 |
done |
|
13908 | 500 |
|
14033 | 501 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
502 |
by (fastsimp simp add: map_le_def dom_def) |
|
503 |
||
504 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
505 |
by (simp add: map_le_def) |
|
506 |
||
14187 | 507 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
18447 | 508 |
by (auto simp add: map_le_def dom_def) |
14033 | 509 |
|
510 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
20800 | 511 |
unfolding map_le_def |
14033 | 512 |
apply (rule ext) |
14208 | 513 |
apply (case_tac "x \<in> dom f", simp) |
514 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
20800 | 515 |
done |
14033 | 516 |
|
517 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
18576 | 518 |
by (fastsimp simp add: map_le_def) |
14033 | 519 |
|
15304 | 520 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
20800 | 521 |
by (fastsimp simp add: map_add_def map_le_def expand_fun_eq split: option.splits) |
15304 | 522 |
|
15303 | 523 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
20800 | 524 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
15303 | 525 |
|
526 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
20800 | 527 |
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) |
15303 | 528 |
|
3981 | 529 |
end |