author | wenzelm |
Sun, 30 Nov 2008 16:00:16 +0100 | |
changeset 28919 | 88b8cc1a2983 |
parent 28790 | 2efba7b18c5b |
child 29622 | 2eeb09477ed3 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
25490 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
18 |
syntax (xsymbols) |
25490 | 19 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
20 |
|
19378 | 21 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
22 |
empty :: "'a ~=> 'b" where |
19378 | 23 |
"empty == %x. None" |
24 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
25 |
definition |
25670 | 26 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where |
20800 | 27 |
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
19378 | 28 |
|
21210 | 29 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
30 |
map_comp (infixl "\<circ>\<^sub>m" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
31 |
|
20800 | 32 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where |
20800 | 34 |
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" |
35 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where |
20800 | 38 |
"m|`A = (\<lambda>x. if x : A then m x else None)" |
13910 | 39 |
|
21210 | 40 |
notation (latex output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
41 |
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
42 |
|
20800 | 43 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
dom :: "('a ~=> 'b) => 'a set" where |
20800 | 45 |
"dom m = {a. m a ~= None}" |
46 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
47 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
ran :: "('a ~=> 'b) => 'b set" where |
20800 | 49 |
"ran m = {b. EX a. m a = Some b}" |
50 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
51 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
52 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where |
20800 | 53 |
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" |
54 |
||
55 |
consts |
|
56 |
map_of :: "('a * 'b) list => 'a ~=> 'b" |
|
57 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
|
58 |
||
14180 | 59 |
nonterminals |
60 |
maplets maplet |
|
61 |
||
5300 | 62 |
syntax |
14180 | 63 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
64 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
65 |
"" :: "maplet => maplets" ("_") |
|
66 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
67 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
68 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 69 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
70 |
syntax (xsymbols) |
14180 | 71 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
72 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
73 |
||
5300 | 74 |
translations |
14180 | 75 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
76 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
77 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
19947 | 78 |
"_Map ms" == "_MapUpd (CONST empty) ms" |
14180 | 79 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
80 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
81 |
||
5183 | 82 |
primrec |
83 |
"map_of [] = empty" |
|
5300 | 84 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
85 |
||
25965 | 86 |
declare map_of.simps [code del] |
87 |
||
88 |
lemma map_of_Cons_code [code]: |
|
89 |
"map_of [] k = None" |
|
90 |
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" |
|
91 |
by simp_all |
|
92 |
||
20800 | 93 |
defs |
28562 | 94 |
map_upds_def [code]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
20800 | 95 |
|
96 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
97 |
subsection {* @{term [source] empty} *} |
13908 | 98 |
|
20800 | 99 |
lemma empty_upd_none [simp]: "empty(x := None) = empty" |
24331 | 100 |
by (rule ext) simp |
13908 | 101 |
|
102 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
103 |
subsection {* @{term [source] map_upd} *} |
13908 | 104 |
|
105 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
24331 | 106 |
by (rule ext) simp |
13908 | 107 |
|
20800 | 108 |
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" |
109 |
proof |
|
110 |
assume "t(k \<mapsto> x) = empty" |
|
111 |
then have "(t(k \<mapsto> x)) k = None" by simp |
|
112 |
then show False by simp |
|
113 |
qed |
|
13908 | 114 |
|
20800 | 115 |
lemma map_upd_eqD1: |
116 |
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" |
|
117 |
shows "x = y" |
|
118 |
proof - |
|
119 |
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp |
|
120 |
then show ?thesis by simp |
|
121 |
qed |
|
14100 | 122 |
|
20800 | 123 |
lemma map_upd_Some_unfold: |
24331 | 124 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
125 |
by auto |
|
14100 | 126 |
|
20800 | 127 |
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
24331 | 128 |
by auto |
15303 | 129 |
|
13908 | 130 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
24331 | 131 |
unfolding image_def |
132 |
apply (simp (no_asm_use) add:full_SetCompr_eq) |
|
133 |
apply (rule finite_subset) |
|
134 |
prefer 2 apply assumption |
|
135 |
apply (auto) |
|
136 |
done |
|
13908 | 137 |
|
138 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
139 |
subsection {* @{term [source] map_of} *} |
13908 | 140 |
|
15304 | 141 |
lemma map_of_eq_None_iff: |
24331 | 142 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
143 |
by (induct xys) simp_all |
|
15304 | 144 |
|
24331 | 145 |
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
146 |
apply (induct xys) |
|
147 |
apply simp |
|
148 |
apply (clarsimp split: if_splits) |
|
149 |
done |
|
15304 | 150 |
|
20800 | 151 |
lemma map_of_eq_Some_iff [simp]: |
24331 | 152 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
153 |
apply (induct xys) |
|
154 |
apply simp |
|
155 |
apply (auto simp: map_of_eq_None_iff [symmetric]) |
|
156 |
done |
|
15304 | 157 |
|
20800 | 158 |
lemma Some_eq_map_of_iff [simp]: |
24331 | 159 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
160 |
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) |
|
15304 | 161 |
|
17724 | 162 |
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
20800 | 163 |
\<Longrightarrow> map_of xys x = Some y" |
24331 | 164 |
apply (induct xys) |
165 |
apply simp |
|
166 |
apply force |
|
167 |
done |
|
15304 | 168 |
|
20800 | 169 |
lemma map_of_zip_is_None [simp]: |
24331 | 170 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
171 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
172 |
|
26443 | 173 |
lemma map_of_zip_is_Some: |
174 |
assumes "length xs = length ys" |
|
175 |
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" |
|
176 |
using assms by (induct rule: list_induct2) simp_all |
|
177 |
||
178 |
lemma map_of_zip_upd: |
|
179 |
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" |
|
180 |
assumes "length ys = length xs" |
|
181 |
and "length zs = length xs" |
|
182 |
and "x \<notin> set xs" |
|
183 |
and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" |
|
184 |
shows "map_of (zip xs ys) = map_of (zip xs zs)" |
|
185 |
proof |
|
186 |
fix x' :: 'a |
|
187 |
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" |
|
188 |
proof (cases "x = x'") |
|
189 |
case True |
|
190 |
from assms True map_of_zip_is_None [of xs ys x'] |
|
191 |
have "map_of (zip xs ys) x' = None" by simp |
|
192 |
moreover from assms True map_of_zip_is_None [of xs zs x'] |
|
193 |
have "map_of (zip xs zs) x' = None" by simp |
|
194 |
ultimately show ?thesis by simp |
|
195 |
next |
|
196 |
case False from assms |
|
197 |
have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto |
|
198 |
with False show ?thesis by simp |
|
199 |
qed |
|
200 |
qed |
|
201 |
||
202 |
lemma map_of_zip_inject: |
|
203 |
assumes "length ys = length xs" |
|
204 |
and "length zs = length xs" |
|
205 |
and dist: "distinct xs" |
|
206 |
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" |
|
207 |
shows "ys = zs" |
|
208 |
using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3) |
|
209 |
case Nil show ?case by simp |
|
210 |
next |
|
211 |
case (Cons y ys x xs z zs) |
|
212 |
from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))` |
|
213 |
have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp |
|
214 |
from Cons have "length ys = length xs" and "length zs = length xs" |
|
215 |
and "x \<notin> set xs" by simp_all |
|
216 |
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) |
|
217 |
with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp |
|
218 |
moreover from map_of have "y = z" by (rule map_upd_eqD1) |
|
219 |
ultimately show ?case by simp |
|
220 |
qed |
|
221 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
222 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
24331 | 223 |
apply (induct xys) |
224 |
apply (simp_all add: image_constant) |
|
225 |
apply (rule finite_subset) |
|
226 |
prefer 2 apply assumption |
|
227 |
apply auto |
|
228 |
done |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
229 |
|
20800 | 230 |
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" |
24331 | 231 |
by (induct xs) (simp, atomize (full), auto) |
13908 | 232 |
|
20800 | 233 |
lemma map_of_mapk_SomeI: |
24331 | 234 |
"inj f ==> map_of t k = Some x ==> |
235 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
236 |
by (induct t) (auto simp add: inj_eq) |
|
13908 | 237 |
|
20800 | 238 |
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" |
24331 | 239 |
by (induct l) auto |
13908 | 240 |
|
20800 | 241 |
lemma map_of_filter_in: |
24331 | 242 |
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" |
243 |
by (induct xs) auto |
|
13908 | 244 |
|
245 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
24331 | 246 |
by (induct xs) auto |
13908 | 247 |
|
248 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
249 |
subsection {* @{term [source] option_map} related *} |
13908 | 250 |
|
20800 | 251 |
lemma option_map_o_empty [simp]: "option_map f o empty = empty" |
24331 | 252 |
by (rule ext) simp |
13908 | 253 |
|
20800 | 254 |
lemma option_map_o_map_upd [simp]: |
24331 | 255 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
256 |
by (rule ext) simp |
|
20800 | 257 |
|
13908 | 258 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
259 |
subsection {* @{term [source] map_comp} related *} |
17391 | 260 |
|
20800 | 261 |
lemma map_comp_empty [simp]: |
24331 | 262 |
"m \<circ>\<^sub>m empty = empty" |
263 |
"empty \<circ>\<^sub>m m = empty" |
|
264 |
by (auto simp add: map_comp_def intro: ext split: option.splits) |
|
17391 | 265 |
|
20800 | 266 |
lemma map_comp_simps [simp]: |
24331 | 267 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
268 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
269 |
by (auto simp add: map_comp_def) |
|
17391 | 270 |
|
271 |
lemma map_comp_Some_iff: |
|
24331 | 272 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
273 |
by (auto simp add: map_comp_def split: option.splits) |
|
17391 | 274 |
|
275 |
lemma map_comp_None_iff: |
|
24331 | 276 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
277 |
by (auto simp add: map_comp_def split: option.splits) |
|
13908 | 278 |
|
20800 | 279 |
|
14100 | 280 |
subsection {* @{text "++"} *} |
13908 | 281 |
|
14025 | 282 |
lemma map_add_empty[simp]: "m ++ empty = m" |
24331 | 283 |
by(simp add: map_add_def) |
13908 | 284 |
|
14025 | 285 |
lemma empty_map_add[simp]: "empty ++ m = m" |
24331 | 286 |
by (rule ext) (simp add: map_add_def split: option.split) |
13908 | 287 |
|
14025 | 288 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
24331 | 289 |
by (rule ext) (simp add: map_add_def split: option.split) |
20800 | 290 |
|
291 |
lemma map_add_Some_iff: |
|
24331 | 292 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
293 |
by (simp add: map_add_def split: option.split) |
|
14025 | 294 |
|
20800 | 295 |
lemma map_add_SomeD [dest!]: |
24331 | 296 |
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" |
297 |
by (rule map_add_Some_iff [THEN iffD1]) |
|
13908 | 298 |
|
20800 | 299 |
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
24331 | 300 |
by (subst map_add_Some_iff) fast |
13908 | 301 |
|
14025 | 302 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
24331 | 303 |
by (simp add: map_add_def split: option.split) |
13908 | 304 |
|
14025 | 305 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
24331 | 306 |
by (rule ext) (simp add: map_add_def) |
13908 | 307 |
|
14186 | 308 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
24331 | 309 |
by (simp add: map_upds_def) |
14186 | 310 |
|
20800 | 311 |
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" |
24331 | 312 |
unfolding map_add_def |
313 |
apply (induct xs) |
|
314 |
apply simp |
|
315 |
apply (rule ext) |
|
316 |
apply (simp split add: option.split) |
|
317 |
done |
|
13908 | 318 |
|
14025 | 319 |
lemma finite_range_map_of_map_add: |
20800 | 320 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
24331 | 321 |
apply (induct l) |
322 |
apply (auto simp del: fun_upd_apply) |
|
323 |
apply (erule finite_range_updI) |
|
324 |
done |
|
13908 | 325 |
|
20800 | 326 |
lemma inj_on_map_add_dom [iff]: |
24331 | 327 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
328 |
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) |
|
20800 | 329 |
|
15304 | 330 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
331 |
subsection {* @{term [source] restrict_map} *} |
14100 | 332 |
|
20800 | 333 |
lemma restrict_map_to_empty [simp]: "m|`{} = empty" |
24331 | 334 |
by (simp add: restrict_map_def) |
14186 | 335 |
|
20800 | 336 |
lemma restrict_map_empty [simp]: "empty|`D = empty" |
24331 | 337 |
by (simp add: restrict_map_def) |
14186 | 338 |
|
15693 | 339 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
24331 | 340 |
by (simp add: restrict_map_def) |
14100 | 341 |
|
15693 | 342 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
24331 | 343 |
by (simp add: restrict_map_def) |
14100 | 344 |
|
15693 | 345 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
24331 | 346 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
14100 | 347 |
|
15693 | 348 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
24331 | 349 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
14100 | 350 |
|
15693 | 351 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
24331 | 352 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 353 |
|
15693 | 354 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
24331 | 355 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 356 |
|
20800 | 357 |
lemma restrict_fun_upd [simp]: |
24331 | 358 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
359 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 360 |
|
20800 | 361 |
lemma fun_upd_None_restrict [simp]: |
24331 | 362 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
363 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 364 |
|
20800 | 365 |
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
24331 | 366 |
by (simp add: restrict_map_def expand_fun_eq) |
14186 | 367 |
|
20800 | 368 |
lemma fun_upd_restrict_conv [simp]: |
24331 | 369 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
370 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 371 |
|
14100 | 372 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
373 |
subsection {* @{term [source] map_upds} *} |
14025 | 374 |
|
20800 | 375 |
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" |
24331 | 376 |
by (simp add: map_upds_def) |
14025 | 377 |
|
20800 | 378 |
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" |
24331 | 379 |
by (simp add:map_upds_def) |
20800 | 380 |
|
381 |
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
24331 | 382 |
by (simp add:map_upds_def) |
14025 | 383 |
|
20800 | 384 |
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
24331 | 385 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
386 |
apply(induct xs) |
|
387 |
apply (clarsimp simp add: neq_Nil_conv) |
|
388 |
apply (case_tac ys) |
|
389 |
apply simp |
|
390 |
apply simp |
|
391 |
done |
|
14187 | 392 |
|
20800 | 393 |
lemma map_upds_list_update2_drop [simp]: |
394 |
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
395 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
24331 | 396 |
apply (induct xs arbitrary: m ys i) |
397 |
apply simp |
|
398 |
apply (case_tac ys) |
|
399 |
apply simp |
|
400 |
apply (simp split: nat.split) |
|
401 |
done |
|
14025 | 402 |
|
20800 | 403 |
lemma map_upd_upds_conv_if: |
404 |
"(f(x|->y))(xs [|->] ys) = |
|
405 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
406 |
else (f(xs [|->] ys))(x|->y))" |
|
24331 | 407 |
apply (induct xs arbitrary: x y ys f) |
408 |
apply simp |
|
409 |
apply (case_tac ys) |
|
410 |
apply (auto split: split_if simp: fun_upd_twist) |
|
411 |
done |
|
14025 | 412 |
|
413 |
lemma map_upds_twist [simp]: |
|
24331 | 414 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
415 |
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) |
|
14025 | 416 |
|
20800 | 417 |
lemma map_upds_apply_nontin [simp]: |
24331 | 418 |
"x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
419 |
apply (induct xs arbitrary: ys) |
|
420 |
apply simp |
|
421 |
apply (case_tac ys) |
|
422 |
apply (auto simp: map_upd_upds_conv_if) |
|
423 |
done |
|
14025 | 424 |
|
20800 | 425 |
lemma fun_upds_append_drop [simp]: |
24331 | 426 |
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
427 |
apply (induct xs arbitrary: m ys) |
|
428 |
apply simp |
|
429 |
apply (case_tac ys) |
|
430 |
apply simp_all |
|
431 |
done |
|
14300 | 432 |
|
20800 | 433 |
lemma fun_upds_append2_drop [simp]: |
24331 | 434 |
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
435 |
apply (induct xs arbitrary: m ys) |
|
436 |
apply simp |
|
437 |
apply (case_tac ys) |
|
438 |
apply simp_all |
|
439 |
done |
|
14300 | 440 |
|
441 |
||
20800 | 442 |
lemma restrict_map_upds[simp]: |
443 |
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
444 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
|
24331 | 445 |
apply (induct xs arbitrary: m ys) |
446 |
apply simp |
|
447 |
apply (case_tac ys) |
|
448 |
apply simp |
|
449 |
apply (simp add: Diff_insert [symmetric] insert_absorb) |
|
450 |
apply (simp add: map_upd_upds_conv_if) |
|
451 |
done |
|
14186 | 452 |
|
453 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
454 |
subsection {* @{term [source] dom} *} |
13908 | 455 |
|
456 |
lemma domI: "m a = Some b ==> a : dom m" |
|
24331 | 457 |
by(simp add:dom_def) |
14100 | 458 |
(* declare domI [intro]? *) |
13908 | 459 |
|
15369 | 460 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
24331 | 461 |
by (cases "m a") (auto simp add: dom_def) |
13908 | 462 |
|
20800 | 463 |
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" |
24331 | 464 |
by(simp add:dom_def) |
13908 | 465 |
|
20800 | 466 |
lemma dom_empty [simp]: "dom empty = {}" |
24331 | 467 |
by(simp add:dom_def) |
13908 | 468 |
|
20800 | 469 |
lemma dom_fun_upd [simp]: |
24331 | 470 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
471 |
by(auto simp add:dom_def) |
|
13908 | 472 |
|
13937 | 473 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
24331 | 474 |
by (induct xys) (auto simp del: fun_upd_apply) |
13937 | 475 |
|
15304 | 476 |
lemma dom_map_of_conv_image_fst: |
24331 | 477 |
"dom(map_of xys) = fst ` (set xys)" |
478 |
by(force simp: dom_map_of) |
|
15304 | 479 |
|
20800 | 480 |
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> |
24331 | 481 |
dom(map_of(zip xs ys)) = set xs" |
482 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
483 |
|
13908 | 484 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
24331 | 485 |
by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) |
13908 | 486 |
|
20800 | 487 |
lemma dom_map_upds [simp]: |
24331 | 488 |
"dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
489 |
apply (induct xs arbitrary: m ys) |
|
490 |
apply simp |
|
491 |
apply (case_tac ys) |
|
492 |
apply auto |
|
493 |
done |
|
13910 | 494 |
|
20800 | 495 |
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" |
24331 | 496 |
by(auto simp:dom_def) |
13910 | 497 |
|
20800 | 498 |
lemma dom_override_on [simp]: |
499 |
"dom(override_on f g A) = |
|
500 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
24331 | 501 |
by(auto simp: dom_def override_on_def) |
13908 | 502 |
|
14027 | 503 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
24331 | 504 |
by (rule ext) (force simp: map_add_def dom_def split: option.split) |
20800 | 505 |
|
22230 | 506 |
(* Due to John Matthews - could be rephrased with dom *) |
507 |
lemma finite_map_freshness: |
|
508 |
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> |
|
509 |
\<exists>x. f x = None" |
|
510 |
by(bestsimp dest:ex_new_if_finite) |
|
14027 | 511 |
|
28790 | 512 |
lemma dom_minus: |
513 |
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A" |
|
514 |
unfolding dom_def by simp |
|
515 |
||
516 |
lemma insert_dom: |
|
517 |
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f" |
|
518 |
unfolding dom_def by auto |
|
519 |
||
520 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
521 |
subsection {* @{term [source] ran} *} |
14100 | 522 |
|
20800 | 523 |
lemma ranI: "m a = Some b ==> b : ran m" |
24331 | 524 |
by(auto simp: ran_def) |
14100 | 525 |
(* declare ranI [intro]? *) |
13908 | 526 |
|
20800 | 527 |
lemma ran_empty [simp]: "ran empty = {}" |
24331 | 528 |
by(auto simp: ran_def) |
13908 | 529 |
|
20800 | 530 |
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
24331 | 531 |
unfolding ran_def |
532 |
apply auto |
|
533 |
apply (subgoal_tac "aa ~= a") |
|
534 |
apply auto |
|
535 |
done |
|
20800 | 536 |
|
13910 | 537 |
|
14100 | 538 |
subsection {* @{text "map_le"} *} |
13910 | 539 |
|
13912 | 540 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
24331 | 541 |
by (simp add: map_le_def) |
13910 | 542 |
|
17724 | 543 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
24331 | 544 |
by (force simp add: map_le_def) |
14187 | 545 |
|
13910 | 546 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
24331 | 547 |
by (fastsimp simp add: map_le_def) |
13910 | 548 |
|
17724 | 549 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
24331 | 550 |
by (force simp add: map_le_def) |
14187 | 551 |
|
20800 | 552 |
lemma map_le_upds [simp]: |
24331 | 553 |
"f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
554 |
apply (induct as arbitrary: f g bs) |
|
555 |
apply simp |
|
556 |
apply (case_tac bs) |
|
557 |
apply auto |
|
558 |
done |
|
13908 | 559 |
|
14033 | 560 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
24331 | 561 |
by (fastsimp simp add: map_le_def dom_def) |
14033 | 562 |
|
563 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
24331 | 564 |
by (simp add: map_le_def) |
14033 | 565 |
|
14187 | 566 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
24331 | 567 |
by (auto simp add: map_le_def dom_def) |
14033 | 568 |
|
569 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
24331 | 570 |
unfolding map_le_def |
571 |
apply (rule ext) |
|
572 |
apply (case_tac "x \<in> dom f", simp) |
|
573 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
574 |
done |
|
14033 | 575 |
|
576 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
24331 | 577 |
by (fastsimp simp add: map_le_def) |
14033 | 578 |
|
15304 | 579 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
24331 | 580 |
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits) |
15304 | 581 |
|
15303 | 582 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
24331 | 583 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
15303 | 584 |
|
585 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
24331 | 586 |
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) |
15303 | 587 |
|
3981 | 588 |
end |