src/HOL/Map.thy
author wenzelm
Fri, 05 Jan 2007 14:30:07 +0100
changeset 22013 a3519c0c2d8f
parent 21404 eb85850d3eb7
child 22230 bdec4a82f385
permissions -rw-r--r--
RAW-ProofGeneral: more dependencies;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Map.thy
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     2
    ID:         $Id$
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
     4
    Copyright   1997-2003 TU Muenchen
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     5
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     7
*)
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
     8
13914
nipkow
parents: 13912
diff changeset
     9
header {* Maps *}
nipkow
parents: 13912
diff changeset
    10
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15110
diff changeset
    11
theory Map
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    12
imports List
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15110
diff changeset
    13
begin
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
    14
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    15
types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
    16
translations (type) "a ~=> b " <= (type) "a => b option"
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
    17
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    18
syntax (xsymbols)
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    19
  "~=>" :: "[type, type] => type"  (infixr "\<rightharpoonup>" 0)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    20
19378
6cc9ac729eb5 Made "empty" an abbreviation.
nipkow
parents: 19323
diff changeset
    21
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    22
  empty :: "'a ~=> 'b" where
19378
6cc9ac729eb5 Made "empty" an abbreviation.
nipkow
parents: 19323
diff changeset
    23
  "empty == %x. None"
6cc9ac729eb5 Made "empty" an abbreviation.
nipkow
parents: 19323
diff changeset
    24
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    25
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    26
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    27
  "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
19378
6cc9ac729eb5 Made "empty" an abbreviation.
nipkow
parents: 19323
diff changeset
    28
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20800
diff changeset
    29
notation (xsymbols)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    30
  map_comp  (infixl "\<circ>\<^sub>m" 55)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    31
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    32
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    33
  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    34
  "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    35
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    36
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    37
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    38
  "m|`A = (\<lambda>x. if x : A then m x else None)"
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
    39
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20800
diff changeset
    40
notation (latex output)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    41
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19378
diff changeset
    42
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    43
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    44
  dom :: "('a ~=> 'b) => 'a set" where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    45
  "dom m = {a. m a ~= None}"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    46
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    47
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    48
  ran :: "('a ~=> 'b) => 'b set" where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    49
  "ran m = {b. EX a. m a = Some b}"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    50
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    51
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    52
  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    53
  "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    54
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    55
consts
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    56
  map_of :: "('a * 'b) list => 'a ~=> 'b"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    57
  map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    58
14180
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    59
nonterminals
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    60
  maplets maplet
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    61
5300
2b1ca524ace8 defined map_upd by translation via fun_upd
oheimb
parents: 5195
diff changeset
    62
syntax
14180
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    63
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    64
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    65
  ""         :: "maplet => maplets"             ("_")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    66
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    67
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    68
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
    69
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 10137
diff changeset
    70
syntax (xsymbols)
14180
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    71
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    72
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    73
5300
2b1ca524ace8 defined map_upd by translation via fun_upd
oheimb
parents: 5195
diff changeset
    74
translations
14180
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    75
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    76
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    77
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
19947
29b376397cd5 fixed translations for _MapUpd: CONST;
wenzelm
parents: 19656
diff changeset
    78
  "_Map ms"                     == "_MapUpd (CONST empty) ms"
14180
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    79
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    80
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
d2e550609c40 Introduced new syntax for maplets x |-> y
nipkow
parents: 14134
diff changeset
    81
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 3981
diff changeset
    82
primrec
89f162de39cf Adapted to new datatype package.
berghofe
parents: 3981
diff changeset
    83
  "map_of [] = empty"
5300
2b1ca524ace8 defined map_upd by translation via fun_upd
oheimb
parents: 5195
diff changeset
    84
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
2b1ca524ace8 defined map_upd by translation via fun_upd
oheimb
parents: 5195
diff changeset
    85
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    86
defs
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    87
  map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    88
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    89
(* special purpose constants that should be defined somewhere else and
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    90
whose syntax is a bit odd as well:
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    91
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    92
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    93
                                          ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    94
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
    95
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    96
map_upd_s::"('a ~=> 'b) => 'a set => 'b =>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    97
            ('a ~=> 'b)"                         ("_/'(_{|->}_/')" [900,0,0]900)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    98
map_subst::"('a ~=> 'b) => 'b => 'b =>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
    99
            ('a ~=> 'b)"                         ("_/'(_~>_/')"    [900,0,0]900)
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   100
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   101
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   102
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   103
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   104
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   105
                                                 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   106
  map_subst :: "('a ~=> 'b) => 'b => 'b =>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   107
                ('a ~=> 'b)"                     ("_/'(_\<leadsto>_/')"    [900,0,0]900)
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   108
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   109
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   110
subsection {* @{term [source] map_upd_s} *}
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   111
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   112
lemma map_upd_s_apply [simp]:
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   113
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   114
by (simp add: map_upd_s_def)
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   115
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   116
lemma map_subst_apply [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   117
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)"
19323
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   118
by (simp add: map_subst_def)
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   119
ec5cd5b1804c Converted translations to abbbreviations.
nipkow
parents: 18576
diff changeset
   120
*)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   121
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   122
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   123
subsection {* @{term [source] empty} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   124
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   125
lemma empty_upd_none [simp]: "empty(x := None) = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   126
  by (rule ext) simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   127
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   128
(* FIXME: what is this sum_case nonsense?? *)
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   129
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   130
  by (rule ext) (simp split: sum.split)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   131
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   132
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   133
subsection {* @{term [source] map_upd} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   134
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   135
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   136
  by (rule ext) simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   137
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   138
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   139
proof
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   140
  assume "t(k \<mapsto> x) = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   141
  then have "(t(k \<mapsto> x)) k = None" by simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   142
  then show False by simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   143
qed
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   144
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   145
lemma map_upd_eqD1:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   146
  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   147
  shows "x = y"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   148
proof -
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   149
  from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   150
  then show ?thesis by simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   151
qed
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   152
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   153
lemma map_upd_Some_unfold:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   154
    "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   155
  by auto
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   156
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   157
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   158
  by auto
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15251
diff changeset
   159
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   160
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   161
  unfolding image_def
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   162
  apply (simp (no_asm_use) add: full_SetCompr_eq)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   163
  apply (rule finite_subset)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   164
   prefer 2 apply assumption
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   165
  apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   166
  done
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   167
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   168
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   169
(* FIXME: what is this sum_case nonsense?? *)
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   170
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   171
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   172
lemma sum_case_map_upd_empty [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   173
    "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   174
  by (rule ext) (simp split: sum.split)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   175
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   176
lemma sum_case_empty_map_upd [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   177
    "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   178
  by (rule ext) (simp split: sum.split)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   179
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   180
lemma sum_case_map_upd_map_upd [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   181
    "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   182
  by (rule ext) (simp split: sum.split)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   183
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   184
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   185
subsection {* @{term [source] map_of} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   186
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   187
lemma map_of_eq_None_iff:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   188
    "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   189
  by (induct xys) simp_all
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   190
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   191
lemma map_of_is_SomeD:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   192
    "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   193
  apply (induct xys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   194
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   195
  apply (clarsimp split: if_splits)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   196
  done
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   197
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   198
lemma map_of_eq_Some_iff [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   199
    "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   200
  apply (induct xys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   201
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   202
  apply (auto simp: map_of_eq_None_iff [symmetric])
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   203
  done
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   204
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   205
lemma Some_eq_map_of_iff [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   206
    "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   207
  by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   208
17724
e969fc0a4925 simprules need names
paulson
parents: 17399
diff changeset
   209
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   210
    \<Longrightarrow> map_of xys x = Some y"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   211
  apply (induct xys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   212
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   213
  apply force
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   214
  done
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   215
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   216
lemma map_of_zip_is_None [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   217
    "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   218
  by (induct rule: list_induct2) simp_all
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 14739
diff changeset
   219
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 14739
diff changeset
   220
lemma finite_range_map_of: "finite (range (map_of xys))"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   221
  apply (induct xys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   222
   apply (simp_all add: image_constant)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   223
  apply (rule finite_subset)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   224
   prefer 2 apply assumption
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   225
  apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   226
  done
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 14739
diff changeset
   227
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   228
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   229
  by (induct xs) (simp, atomize (full), auto)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   230
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   231
lemma map_of_mapk_SomeI:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   232
  assumes "inj f"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   233
  shows "map_of t k = Some x ==>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   234
    map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   235
  by (induct t) (auto simp add: `inj f` inj_eq)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   236
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   237
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   238
  by (induct l) auto
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   239
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   240
lemma map_of_filter_in:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   241
  assumes 1: "map_of xs k = Some z"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   242
    and 2: "P k z"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   243
  shows "map_of (filter (split P) xs) k = Some z"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   244
  using 1 by (induct xs) (insert 2, auto)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   245
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   246
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   247
  by (induct xs) auto
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   248
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   249
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   250
subsection {* @{term [source] option_map} related *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   251
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   252
lemma option_map_o_empty [simp]: "option_map f o empty = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   253
  by (rule ext) simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   254
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   255
lemma option_map_o_map_upd [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   256
    "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   257
  by (rule ext) simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   258
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   259
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   260
subsection {* @{term [source] map_comp} related *}
17391
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   261
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   262
lemma map_comp_empty [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   263
    "m \<circ>\<^sub>m empty = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   264
    "empty \<circ>\<^sub>m m = empty"
17391
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   265
  by (auto simp add: map_comp_def intro: ext split: option.splits)
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   266
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   267
lemma map_comp_simps [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   268
    "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   269
    "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
17391
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   270
  by (auto simp add: map_comp_def)
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   271
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   272
lemma map_comp_Some_iff:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   273
    "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
17391
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   274
  by (auto simp add: map_comp_def split: option.splits)
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   275
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   276
lemma map_comp_None_iff:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   277
    "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
17391
c6338ed6caf8 removed syntax fun_map_comp;
schirmer
parents: 15695
diff changeset
   278
  by (auto simp add: map_comp_def split: option.splits)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   279
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   280
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   281
subsection {* @{text "++"} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   282
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   283
lemma map_add_empty[simp]: "m ++ empty = m"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   284
  unfolding map_add_def by simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   285
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   286
lemma empty_map_add[simp]: "empty ++ m = m"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   287
  unfolding map_add_def by (rule ext) (simp split: option.split)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   288
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   289
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   290
  unfolding map_add_def by (rule ext) (simp add: map_add_def split: option.split)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   291
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   292
lemma map_add_Some_iff:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   293
    "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   294
  unfolding map_add_def by (simp split: option.split)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   295
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   296
lemma map_add_SomeD [dest!]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   297
    "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   298
  by (rule map_add_Some_iff [THEN iffD1])
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   299
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   300
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   301
  by (subst map_add_Some_iff) fast
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   302
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   303
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   304
  unfolding map_add_def by (simp split: option.split)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   305
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   306
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   307
  unfolding map_add_def by (rule ext) simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   308
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   309
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   310
  by (simp add: map_upds_def)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   311
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   312
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   313
  unfolding map_add_def
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   314
  apply (induct xs)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   315
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   316
  apply (rule ext)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   317
  apply (simp split add: option.split)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   318
  done
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   319
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   320
lemma finite_range_map_of_map_add:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   321
  "finite (range f) ==> finite (range (f ++ map_of l))"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   322
  apply (induct l)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   323
   apply (auto simp del: fun_upd_apply)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   324
  apply (erule finite_range_updI)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   325
  done
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   326
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   327
lemma inj_on_map_add_dom [iff]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   328
    "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   329
  unfolding map_add_def dom_def inj_on_def
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   330
  by (fastsimp split: option.splits)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   331
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   332
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   333
subsection {* @{term [source] restrict_map} *}
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   334
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   335
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   336
  by (simp add: restrict_map_def)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   337
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   338
lemma restrict_map_empty [simp]: "empty|`D = empty"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   339
  by (simp add: restrict_map_def)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   340
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   341
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   342
  by (simp add: restrict_map_def)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   343
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   344
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   345
  by (simp add: restrict_map_def)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   346
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   347
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   348
  by (auto simp: restrict_map_def ran_def split: split_if_asm)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   349
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   350
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   351
  by (auto simp: restrict_map_def dom_def split: split_if_asm)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   352
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   353
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   354
  by (rule ext) (auto simp: restrict_map_def)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   355
15693
3a67e61c6e96 tuned Map, renamed lex stuff in List.
nipkow
parents: 15691
diff changeset
   356
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   357
  by (rule ext) (auto simp: restrict_map_def)
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   358
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   359
lemma restrict_fun_upd [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   360
    "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   361
  by (simp add: restrict_map_def expand_fun_eq)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   362
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   363
lemma fun_upd_None_restrict [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   364
    "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   365
  by (simp add: restrict_map_def expand_fun_eq)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   366
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   367
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   368
  by (simp add: restrict_map_def expand_fun_eq)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   369
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   370
lemma fun_upd_restrict_conv [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   371
    "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   372
  by (simp add: restrict_map_def expand_fun_eq)
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   373
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   374
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   375
subsection {* @{term [source] map_upds} *}
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   376
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   377
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   378
  by (simp add: map_upds_def)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   379
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   380
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   381
  by (simp add:map_upds_def)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   382
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   383
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   384
  by (simp add:map_upds_def)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   385
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   386
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   387
    m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   388
  apply(induct xs)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   389
   apply (clarsimp simp add: neq_Nil_conv)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   390
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   391
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   392
  apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   393
  done
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14186
diff changeset
   394
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   395
lemma map_upds_list_update2_drop [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   396
  "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   397
    \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   398
  apply (induct xs arbitrary: m ys i)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   399
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   400
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   401
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   402
  apply (simp split: nat.split)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   403
  done
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   404
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   405
lemma map_upd_upds_conv_if:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   406
  "(f(x|->y))(xs [|->] ys) =
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   407
   (if x : set(take (length ys) xs) then f(xs [|->] ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   408
                                    else (f(xs [|->] ys))(x|->y))"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   409
  apply (induct xs arbitrary: x y ys f)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   410
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   411
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   412
   apply (auto split: split_if simp: fun_upd_twist)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   413
  done
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   414
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   415
lemma map_upds_twist [simp]:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   416
    "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   417
  using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   418
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   419
lemma map_upds_apply_nontin [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   420
    "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   421
  apply (induct xs arbitrary: ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   422
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   423
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   424
   apply (auto simp: map_upd_upds_conv_if)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   425
  done
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13937
diff changeset
   426
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   427
lemma fun_upds_append_drop [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   428
    "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   429
  apply (induct xs arbitrary: m ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   430
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   431
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   432
   apply simp_all
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   433
  done
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14208
diff changeset
   434
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   435
lemma fun_upds_append2_drop [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   436
    "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   437
  apply (induct xs arbitrary: m ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   438
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   439
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   440
   apply simp_all
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   441
  done
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14208
diff changeset
   442
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14208
diff changeset
   443
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   444
lemma restrict_map_upds[simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   445
  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   446
    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   447
  apply (induct xs arbitrary: m ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   448
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   449
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   450
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   451
  apply (simp add: Diff_insert [symmetric] insert_absorb)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   452
  apply (simp add: map_upd_upds_conv_if)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   453
  done
14186
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   454
6d2a494e33be Added a number of thms about map restriction.
nipkow
parents: 14180
diff changeset
   455
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   456
subsection {* @{term [source] dom} *}
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   457
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   458
lemma domI: "m a = Some b ==> a : dom m"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   459
  unfolding dom_def by simp
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   460
(* declare domI [intro]? *)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   461
15369
paulson
parents: 15304
diff changeset
   462
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   463
  by (cases "m a") (auto simp add: dom_def)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   464
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   465
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   466
  unfolding dom_def by simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   467
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   468
lemma dom_empty [simp]: "dom empty = {}"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   469
  unfolding dom_def by simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   470
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   471
lemma dom_fun_upd [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   472
    "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   473
  unfolding dom_def by auto
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   474
13937
e9d57517c9b1 added a thm
nipkow
parents: 13914
diff changeset
   475
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   476
  by (induct xys) (auto simp del: fun_upd_apply)
13937
e9d57517c9b1 added a thm
nipkow
parents: 13914
diff changeset
   477
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   478
lemma dom_map_of_conv_image_fst:
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   479
    "dom(map_of xys) = fst ` (set xys)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   480
  unfolding dom_map_of by force
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   481
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   482
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   483
    dom(map_of(zip xs ys)) = set xs"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   484
  by (induct rule: list_induct2) simp_all
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 14739
diff changeset
   485
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   486
lemma finite_dom_map_of: "finite (dom (map_of l))"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   487
  unfolding dom_def
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   488
  by (induct l) (auto simp add: insert_Collect [symmetric])
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   489
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   490
lemma dom_map_upds [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   491
    "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   492
  apply (induct xs arbitrary: m ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   493
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   494
  apply (case_tac ys)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   495
   apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   496
  done
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   497
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   498
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   499
  unfolding dom_def by auto
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   500
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   501
lemma dom_override_on [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   502
  "dom(override_on f g A) =
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   503
    (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   504
  unfolding dom_def override_on_def by auto
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   505
14027
68d247b7b14b *** empty log message ***
nipkow
parents: 14026
diff changeset
   506
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   507
  by (rule ext) (force simp: map_add_def dom_def split: option.split)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   508
14027
68d247b7b14b *** empty log message ***
nipkow
parents: 14026
diff changeset
   509
17399
56a3a4affedc @{term [source] ...} in subsections probably more robust;
wenzelm
parents: 17391
diff changeset
   510
subsection {* @{term [source] ran} *}
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   511
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   512
lemma ranI: "m a = Some b ==> b : ran m"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   513
  unfolding ran_def by auto
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   514
(* declare ranI [intro]? *)
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   515
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   516
lemma ran_empty [simp]: "ran empty = {}"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   517
  unfolding ran_def by simp
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   518
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   519
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   520
  unfolding ran_def
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   521
  apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   522
  apply (subgoal_tac "aa ~= a")
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   523
   apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   524
  done
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   525
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   526
14100
804be4c4b642 added map_image, restrict_map, some thms
oheimb
parents: 14033
diff changeset
   527
subsection {* @{text "map_le"} *}
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   528
13912
3c0a340be514 fixed document
kleing
parents: 13910
diff changeset
   529
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   530
  by (simp add: map_le_def)
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   531
17724
e969fc0a4925 simprules need names
paulson
parents: 17399
diff changeset
   532
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   533
  by (force simp add: map_le_def)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14186
diff changeset
   534
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   535
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   536
  by (fastsimp simp add: map_le_def)
13910
f9a9ef16466f Added thms
nipkow
parents: 13909
diff changeset
   537
17724
e969fc0a4925 simprules need names
paulson
parents: 17399
diff changeset
   538
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   539
  by (force simp add: map_le_def)
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14186
diff changeset
   540
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   541
lemma map_le_upds [simp]:
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   542
    "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   543
  apply (induct as arbitrary: f g bs)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   544
   apply simp
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   545
  apply (case_tac bs)
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   546
   apply auto
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   547
  done
13908
4bdfa9f77254 Map.ML integrated into Map.thy
webertj
parents: 13890
diff changeset
   548
14033
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   549
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   550
  by (fastsimp simp add: map_le_def dom_def)
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   551
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   552
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   553
  by (simp add: map_le_def)
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   554
14187
26dfcd0ac436 Added new theorems
nipkow
parents: 14186
diff changeset
   555
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 17782
diff changeset
   556
  by (auto simp add: map_le_def dom_def)
14033
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   557
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   558
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   559
  unfolding map_le_def
14033
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   560
  apply (rule ext)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   561
  apply (case_tac "x \<in> dom f", simp)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   562
  apply (case_tac "x \<in> dom g", simp, fastsimp)
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   563
  done
14033
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   564
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   565
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
18576
8d98b7711e47 Reversed Larry's option/iff change.
nipkow
parents: 18447
diff changeset
   566
  by (fastsimp simp add: map_le_def)
14033
bc723de8ec95 Added a few lemmas about map_le
webertj
parents: 14027
diff changeset
   567
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   568
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   569
  by (fastsimp simp add: map_add_def map_le_def expand_fun_eq split: option.splits)
15304
3514ca74ac54 Added more lemmas
nipkow
parents: 15303
diff changeset
   570
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15251
diff changeset
   571
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   572
  by (fastsimp simp add: map_le_def map_add_def dom_def)
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15251
diff changeset
   573
eedbb8d22ca2 added lemmas
nipkow
parents: 15251
diff changeset
   574
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
20800
69c82605efcf tuned specifications and proofs;
wenzelm
parents: 19947
diff changeset
   575
  by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15251
diff changeset
   576
3981
b4f93a8da835 Added the new theory Map.
nipkow
parents:
diff changeset
   577
end