| author | wenzelm | 
| Fri, 15 Dec 2006 00:08:16 +0100 | |
| changeset 21861 | a972053ed147 | 
| parent 21404 | eb85850d3eb7 | 
| child 22230 | bdec4a82f385 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 4 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 5 | |
| 6 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 7 | *) | |
| 8 | ||
| 13914 | 9 | header {* Maps *}
 | 
| 10 | ||
| 15131 | 11 | theory Map | 
| 15140 | 12 | imports List | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 20800 | 15 | types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
 | 
| 14100 | 16 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 17 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 18 | syntax (xsymbols) | 
| 20800 | 19 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 20 | |
| 19378 | 21 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 22 | empty :: "'a ~=> 'b" where | 
| 19378 | 23 | "empty == %x. None" | 
| 24 | ||
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 25 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 26 |   map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 27 | "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | 
| 19378 | 28 | |
| 21210 | 29 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 30 | map_comp (infixl "\<circ>\<^sub>m" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 31 | |
| 20800 | 32 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 33 |   map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 34 | "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" | 
| 35 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 36 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 37 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 38 | "m|`A = (\<lambda>x. if x : A then m x else None)" | 
| 13910 | 39 | |
| 21210 | 40 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 41 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 42 | |
| 20800 | 43 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 44 |   dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 45 |   "dom m = {a. m a ~= None}"
 | 
| 46 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 49 |   "ran m = {b. EX a. m a = Some b}"
 | 
| 50 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 51 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 52 |   map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 53 | "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" | 
| 54 | ||
| 55 | consts | |
| 56 |   map_of :: "('a * 'b) list => 'a ~=> 'b"
 | |
| 57 |   map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
 | |
| 58 | ||
| 14180 | 59 | nonterminals | 
| 60 | maplets maplet | |
| 61 | ||
| 5300 | 62 | syntax | 
| 14180 | 63 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
| 64 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 65 |   ""         :: "maplet => maplets"             ("_")
 | |
| 66 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 67 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 68 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 69 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 70 | syntax (xsymbols) | 
| 14180 | 71 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 72 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 73 | ||
| 5300 | 74 | translations | 
| 14180 | 75 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 76 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 77 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 19947 | 78 | "_Map ms" == "_MapUpd (CONST empty) ms" | 
| 14180 | 79 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | 
| 80 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 81 | ||
| 5183 | 82 | primrec | 
| 83 | "map_of [] = empty" | |
| 5300 | 84 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 85 | ||
| 20800 | 86 | defs | 
| 87 | map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | |
| 88 | ||
| 19323 | 89 | (* special purpose constants that should be defined somewhere else and | 
| 90 | whose syntax is a bit odd as well: | |
| 91 | ||
| 92 |  "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
 | |
| 20800 | 93 |                                           ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
 | 
| 19323 | 94 | "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" | 
| 95 | ||
| 20800 | 96 | map_upd_s::"('a ~=> 'b) => 'a set => 'b =>
 | 
| 97 |             ('a ~=> 'b)"                         ("_/'(_{|->}_/')" [900,0,0]900)
 | |
| 98 | map_subst::"('a ~=> 'b) => 'b => 'b =>
 | |
| 99 |             ('a ~=> 'b)"                         ("_/'(_~>_/')"    [900,0,0]900)
 | |
| 19323 | 100 | |
| 101 | map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
 | |
| 102 | map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" | |
| 103 | ||
| 104 |   map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
 | |
| 20800 | 105 |                                                  ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
 | 
| 106 |   map_subst :: "('a ~=> 'b) => 'b => 'b =>
 | |
| 107 |                 ('a ~=> 'b)"                     ("_/'(_\<leadsto>_/')"    [900,0,0]900)
 | |
| 19323 | 108 | |
| 109 | ||
| 110 | subsection {* @{term [source] map_upd_s} *}
 | |
| 111 | ||
| 20800 | 112 | lemma map_upd_s_apply [simp]: | 
| 19323 | 113 |   "(m(as{|->}b)) x = (if x : as then Some b else m x)"
 | 
| 114 | by (simp add: map_upd_s_def) | |
| 115 | ||
| 20800 | 116 | lemma map_subst_apply [simp]: | 
| 117 | "(m(a~>b)) x = (if m x = Some a then Some b else m x)" | |
| 19323 | 118 | by (simp add: map_subst_def) | 
| 119 | ||
| 120 | *) | |
| 13908 | 121 | |
| 20800 | 122 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 123 | subsection {* @{term [source] empty} *}
 | 
| 13908 | 124 | |
| 20800 | 125 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 126 | by (rule ext) simp | |
| 13908 | 127 | |
| 128 | (* FIXME: what is this sum_case nonsense?? *) | |
| 13910 | 129 | lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" | 
| 20800 | 130 | by (rule ext) (simp split: sum.split) | 
| 131 | ||
| 13908 | 132 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 133 | subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 134 | |
| 135 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 20800 | 136 | by (rule ext) simp | 
| 13908 | 137 | |
| 20800 | 138 | lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" | 
| 139 | proof | |
| 140 | assume "t(k \<mapsto> x) = empty" | |
| 141 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 142 | then show False by simp | |
| 143 | qed | |
| 13908 | 144 | |
| 20800 | 145 | lemma map_upd_eqD1: | 
| 146 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 147 | shows "x = y" | |
| 148 | proof - | |
| 149 | from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | |
| 150 | then show ?thesis by simp | |
| 151 | qed | |
| 14100 | 152 | |
| 20800 | 153 | lemma map_upd_Some_unfold: | 
| 154 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | |
| 155 | by auto | |
| 14100 | 156 | |
| 20800 | 157 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 158 | by auto | |
| 15303 | 159 | |
| 13908 | 160 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 20800 | 161 | unfolding image_def | 
| 162 | apply (simp (no_asm_use) add: full_SetCompr_eq) | |
| 163 | apply (rule finite_subset) | |
| 164 | prefer 2 apply assumption | |
| 165 | apply auto | |
| 166 | done | |
| 13908 | 167 | |
| 168 | ||
| 169 | (* FIXME: what is this sum_case nonsense?? *) | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 170 | subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *}
 | 
| 13908 | 171 | |
| 20800 | 172 | lemma sum_case_map_upd_empty [simp]: | 
| 173 | "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" | |
| 174 | by (rule ext) (simp split: sum.split) | |
| 13908 | 175 | |
| 20800 | 176 | lemma sum_case_empty_map_upd [simp]: | 
| 177 | "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" | |
| 178 | by (rule ext) (simp split: sum.split) | |
| 13908 | 179 | |
| 20800 | 180 | lemma sum_case_map_upd_map_upd [simp]: | 
| 181 | "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" | |
| 182 | by (rule ext) (simp split: sum.split) | |
| 13908 | 183 | |
| 184 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 185 | subsection {* @{term [source] map_of} *}
 | 
| 13908 | 186 | |
| 15304 | 187 | lemma map_of_eq_None_iff: | 
| 20800 | 188 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 189 | by (induct xys) simp_all | |
| 15304 | 190 | |
| 191 | lemma map_of_is_SomeD: | |
| 20800 | 192 | "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | 
| 193 | apply (induct xys) | |
| 194 | apply simp | |
| 195 | apply (clarsimp split: if_splits) | |
| 196 | done | |
| 15304 | 197 | |
| 20800 | 198 | lemma map_of_eq_Some_iff [simp]: | 
| 199 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | |
| 200 | apply (induct xys) | |
| 201 | apply simp | |
| 202 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 203 | done | |
| 15304 | 204 | |
| 20800 | 205 | lemma Some_eq_map_of_iff [simp]: | 
| 206 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | |
| 207 | by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) | |
| 15304 | 208 | |
| 17724 | 209 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 210 | \<Longrightarrow> map_of xys x = Some y" | 
| 211 | apply (induct xys) | |
| 212 | apply simp | |
| 213 | apply force | |
| 214 | done | |
| 15304 | 215 | |
| 20800 | 216 | lemma map_of_zip_is_None [simp]: | 
| 217 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | |
| 218 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 219 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 220 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 20800 | 221 | apply (induct xys) | 
| 222 | apply (simp_all add: image_constant) | |
| 223 | apply (rule finite_subset) | |
| 224 | prefer 2 apply assumption | |
| 225 | apply auto | |
| 226 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 227 | |
| 20800 | 228 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 229 | by (induct xs) (simp, atomize (full), auto) | |
| 13908 | 230 | |
| 20800 | 231 | lemma map_of_mapk_SomeI: | 
| 232 | assumes "inj f" | |
| 233 | shows "map_of t k = Some x ==> | |
| 234 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 235 | by (induct t) (auto simp add: `inj f` inj_eq) | |
| 13908 | 236 | |
| 20800 | 237 | lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" | 
| 238 | by (induct l) auto | |
| 13908 | 239 | |
| 20800 | 240 | lemma map_of_filter_in: | 
| 241 | assumes 1: "map_of xs k = Some z" | |
| 242 | and 2: "P k z" | |
| 243 | shows "map_of (filter (split P) xs) k = Some z" | |
| 244 | using 1 by (induct xs) (insert 2, auto) | |
| 13908 | 245 | |
| 246 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" | |
| 20800 | 247 | by (induct xs) auto | 
| 13908 | 248 | |
| 249 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 250 | subsection {* @{term [source] option_map} related *}
 | 
| 13908 | 251 | |
| 20800 | 252 | lemma option_map_o_empty [simp]: "option_map f o empty = empty" | 
| 253 | by (rule ext) simp | |
| 13908 | 254 | |
| 20800 | 255 | lemma option_map_o_map_upd [simp]: | 
| 256 | "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" | |
| 257 | by (rule ext) simp | |
| 258 | ||
| 13908 | 259 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 260 | subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 261 | |
| 20800 | 262 | lemma map_comp_empty [simp]: | 
| 263 | "m \<circ>\<^sub>m empty = empty" | |
| 264 | "empty \<circ>\<^sub>m m = empty" | |
| 17391 | 265 | by (auto simp add: map_comp_def intro: ext split: option.splits) | 
| 266 | ||
| 20800 | 267 | lemma map_comp_simps [simp]: | 
| 268 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | |
| 269 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 17391 | 270 | by (auto simp add: map_comp_def) | 
| 271 | ||
| 272 | lemma map_comp_Some_iff: | |
| 20800 | 273 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 17391 | 274 | by (auto simp add: map_comp_def split: option.splits) | 
| 275 | ||
| 276 | lemma map_comp_None_iff: | |
| 20800 | 277 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 17391 | 278 | by (auto simp add: map_comp_def split: option.splits) | 
| 13908 | 279 | |
| 20800 | 280 | |
| 14100 | 281 | subsection {* @{text "++"} *}
 | 
| 13908 | 282 | |
| 14025 | 283 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 20800 | 284 | unfolding map_add_def by simp | 
| 13908 | 285 | |
| 14025 | 286 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 20800 | 287 | unfolding map_add_def by (rule ext) (simp split: option.split) | 
| 13908 | 288 | |
| 14025 | 289 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 20800 | 290 | unfolding map_add_def by (rule ext) (simp add: map_add_def split: option.split) | 
| 291 | ||
| 292 | lemma map_add_Some_iff: | |
| 293 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | |
| 294 | unfolding map_add_def by (simp split: option.split) | |
| 14025 | 295 | |
| 20800 | 296 | lemma map_add_SomeD [dest!]: | 
| 297 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | |
| 298 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 299 | |
| 20800 | 300 | lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 301 | by (subst map_add_Some_iff) fast | |
| 13908 | 302 | |
| 14025 | 303 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 20800 | 304 | unfolding map_add_def by (simp split: option.split) | 
| 13908 | 305 | |
| 14025 | 306 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 20800 | 307 | unfolding map_add_def by (rule ext) simp | 
| 13908 | 308 | |
| 14186 | 309 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 20800 | 310 | by (simp add: map_upds_def) | 
| 14186 | 311 | |
| 20800 | 312 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 313 | unfolding map_add_def | |
| 314 | apply (induct xs) | |
| 315 | apply simp | |
| 316 | apply (rule ext) | |
| 317 | apply (simp split add: option.split) | |
| 318 | done | |
| 13908 | 319 | |
| 14025 | 320 | lemma finite_range_map_of_map_add: | 
| 20800 | 321 | "finite (range f) ==> finite (range (f ++ map_of l))" | 
| 322 | apply (induct l) | |
| 323 | apply (auto simp del: fun_upd_apply) | |
| 324 | apply (erule finite_range_updI) | |
| 325 | done | |
| 13908 | 326 | |
| 20800 | 327 | lemma inj_on_map_add_dom [iff]: | 
| 328 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | |
| 329 | unfolding map_add_def dom_def inj_on_def | |
| 330 | by (fastsimp split: option.splits) | |
| 331 | ||
| 15304 | 332 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 333 | subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 334 | |
| 20800 | 335 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 336 | by (simp add: restrict_map_def) | |
| 14186 | 337 | |
| 20800 | 338 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 339 | by (simp add: restrict_map_def) | |
| 14186 | 340 | |
| 15693 | 341 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 20800 | 342 | by (simp add: restrict_map_def) | 
| 14100 | 343 | |
| 15693 | 344 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 20800 | 345 | by (simp add: restrict_map_def) | 
| 14100 | 346 | |
| 15693 | 347 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 20800 | 348 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 14100 | 349 | |
| 15693 | 350 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 20800 | 351 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 14100 | 352 | |
| 15693 | 353 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 20800 | 354 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 355 | |
| 15693 | 356 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 20800 | 357 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 358 | |
| 20800 | 359 | lemma restrict_fun_upd [simp]: | 
| 360 |     "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | |
| 361 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 362 | |
| 20800 | 363 | lemma fun_upd_None_restrict [simp]: | 
| 364 |     "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | |
| 365 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 366 | |
| 20800 | 367 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 368 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 369 | |
| 20800 | 370 | lemma fun_upd_restrict_conv [simp]: | 
| 371 |     "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | |
| 372 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 373 | |
| 14100 | 374 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 375 | subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 376 | |
| 20800 | 377 | lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" | 
| 378 | by (simp add: map_upds_def) | |
| 14025 | 379 | |
| 20800 | 380 | lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" | 
| 381 | by (simp add:map_upds_def) | |
| 382 | ||
| 383 | lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 384 | by (simp add:map_upds_def) | |
| 14025 | 385 | |
| 20800 | 386 | lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 387 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | |
| 388 | apply(induct xs) | |
| 389 | apply (clarsimp simp add: neq_Nil_conv) | |
| 390 | apply (case_tac ys) | |
| 391 | apply simp | |
| 392 | apply simp | |
| 393 | done | |
| 14187 | 394 | |
| 20800 | 395 | lemma map_upds_list_update2_drop [simp]: | 
| 396 | "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 397 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 398 | apply (induct xs arbitrary: m ys i) | |
| 399 | apply simp | |
| 400 | apply (case_tac ys) | |
| 401 | apply simp | |
| 402 | apply (simp split: nat.split) | |
| 403 | done | |
| 14025 | 404 | |
| 20800 | 405 | lemma map_upd_upds_conv_if: | 
| 406 | "(f(x|->y))(xs [|->] ys) = | |
| 407 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 408 | else (f(xs [|->] ys))(x|->y))" | |
| 409 | apply (induct xs arbitrary: x y ys f) | |
| 410 | apply simp | |
| 411 | apply (case_tac ys) | |
| 412 | apply (auto split: split_if simp: fun_upd_twist) | |
| 413 | done | |
| 14025 | 414 | |
| 415 | lemma map_upds_twist [simp]: | |
| 20800 | 416 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | 
| 417 | using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) | |
| 14025 | 418 | |
| 20800 | 419 | lemma map_upds_apply_nontin [simp]: | 
| 420 | "x ~: set xs ==> (f(xs[|->]ys)) x = f x" | |
| 421 | apply (induct xs arbitrary: ys) | |
| 422 | apply simp | |
| 423 | apply (case_tac ys) | |
| 424 | apply (auto simp: map_upd_upds_conv_if) | |
| 425 | done | |
| 14025 | 426 | |
| 20800 | 427 | lemma fun_upds_append_drop [simp]: | 
| 428 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | |
| 429 | apply (induct xs arbitrary: m ys) | |
| 430 | apply simp | |
| 431 | apply (case_tac ys) | |
| 432 | apply simp_all | |
| 433 | done | |
| 14300 | 434 | |
| 20800 | 435 | lemma fun_upds_append2_drop [simp]: | 
| 436 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | |
| 437 | apply (induct xs arbitrary: m ys) | |
| 438 | apply simp | |
| 439 | apply (case_tac ys) | |
| 440 | apply simp_all | |
| 441 | done | |
| 14300 | 442 | |
| 443 | ||
| 20800 | 444 | lemma restrict_map_upds[simp]: | 
| 445 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 446 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 447 | apply (induct xs arbitrary: m ys) | |
| 448 | apply simp | |
| 449 | apply (case_tac ys) | |
| 450 | apply simp | |
| 451 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 452 | apply (simp add: map_upd_upds_conv_if) | |
| 453 | done | |
| 14186 | 454 | |
| 455 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 456 | subsection {* @{term [source] dom} *}
 | 
| 13908 | 457 | |
| 458 | lemma domI: "m a = Some b ==> a : dom m" | |
| 20800 | 459 | unfolding dom_def by simp | 
| 14100 | 460 | (* declare domI [intro]? *) | 
| 13908 | 461 | |
| 15369 | 462 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 20800 | 463 | by (cases "m a") (auto simp add: dom_def) | 
| 13908 | 464 | |
| 20800 | 465 | lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" | 
| 466 | unfolding dom_def by simp | |
| 13908 | 467 | |
| 20800 | 468 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 469 | unfolding dom_def by simp | |
| 13908 | 470 | |
| 20800 | 471 | lemma dom_fun_upd [simp]: | 
| 472 |     "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | |
| 473 | unfolding dom_def by auto | |
| 13908 | 474 | |
| 13937 | 475 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 20800 | 476 | by (induct xys) (auto simp del: fun_upd_apply) | 
| 13937 | 477 | |
| 15304 | 478 | lemma dom_map_of_conv_image_fst: | 
| 20800 | 479 | "dom(map_of xys) = fst ` (set xys)" | 
| 480 | unfolding dom_map_of by force | |
| 15304 | 481 | |
| 20800 | 482 | lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 483 | dom(map_of(zip xs ys)) = set xs" | |
| 484 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 485 | |
| 13908 | 486 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 20800 | 487 | unfolding dom_def | 
| 488 | by (induct l) (auto simp add: insert_Collect [symmetric]) | |
| 13908 | 489 | |
| 20800 | 490 | lemma dom_map_upds [simp]: | 
| 491 | "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | |
| 492 | apply (induct xs arbitrary: m ys) | |
| 493 | apply simp | |
| 494 | apply (case_tac ys) | |
| 495 | apply auto | |
| 496 | done | |
| 13910 | 497 | |
| 20800 | 498 | lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" | 
| 499 | unfolding dom_def by auto | |
| 13910 | 500 | |
| 20800 | 501 | lemma dom_override_on [simp]: | 
| 502 | "dom(override_on f g A) = | |
| 503 |     (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 504 | unfolding dom_def override_on_def by auto | |
| 13908 | 505 | |
| 14027 | 506 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 20800 | 507 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | 
| 508 | ||
| 14027 | 509 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 510 | subsection {* @{term [source] ran} *}
 | 
| 14100 | 511 | |
| 20800 | 512 | lemma ranI: "m a = Some b ==> b : ran m" | 
| 513 | unfolding ran_def by auto | |
| 14100 | 514 | (* declare ranI [intro]? *) | 
| 13908 | 515 | |
| 20800 | 516 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 517 | unfolding ran_def by simp | |
| 13908 | 518 | |
| 20800 | 519 | lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 520 | unfolding ran_def | |
| 521 | apply auto | |
| 522 | apply (subgoal_tac "aa ~= a") | |
| 523 | apply auto | |
| 524 | done | |
| 525 | ||
| 13910 | 526 | |
| 14100 | 527 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 528 | |
| 13912 | 529 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 20800 | 530 | by (simp add: map_le_def) | 
| 13910 | 531 | |
| 17724 | 532 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 20800 | 533 | by (force simp add: map_le_def) | 
| 14187 | 534 | |
| 13910 | 535 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 20800 | 536 | by (fastsimp simp add: map_le_def) | 
| 13910 | 537 | |
| 17724 | 538 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 20800 | 539 | by (force simp add: map_le_def) | 
| 14187 | 540 | |
| 20800 | 541 | lemma map_le_upds [simp]: | 
| 542 | "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | |
| 543 | apply (induct as arbitrary: f g bs) | |
| 544 | apply simp | |
| 545 | apply (case_tac bs) | |
| 546 | apply auto | |
| 547 | done | |
| 13908 | 548 | |
| 14033 | 549 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 550 | by (fastsimp simp add: map_le_def dom_def) | |
| 551 | ||
| 552 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 553 | by (simp add: map_le_def) | |
| 554 | ||
| 14187 | 555 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 18447 | 556 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 557 | |
| 558 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 20800 | 559 | unfolding map_le_def | 
| 14033 | 560 | apply (rule ext) | 
| 14208 | 561 | apply (case_tac "x \<in> dom f", simp) | 
| 562 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 20800 | 563 | done | 
| 14033 | 564 | |
| 565 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 18576 | 566 | by (fastsimp simp add: map_le_def) | 
| 14033 | 567 | |
| 15304 | 568 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 20800 | 569 | by (fastsimp simp add: map_add_def map_le_def expand_fun_eq split: option.splits) | 
| 15304 | 570 | |
| 15303 | 571 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 20800 | 572 | by (fastsimp simp add: map_le_def map_add_def dom_def) | 
| 15303 | 573 | |
| 574 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 20800 | 575 | by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) | 
| 15303 | 576 | |
| 3981 | 577 | end |