author | haftmann |
Fri, 26 Oct 2007 21:22:20 +0200 | |
changeset 25209 | bc21d8de18a9 |
parent 24331 | 76f7a8c6e842 |
child 25483 | 65de74f62874 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
20800 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
18 |
syntax (xsymbols) |
20800 | 19 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
20 |
|
19378 | 21 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
22 |
empty :: "'a ~=> 'b" where |
19378 | 23 |
"empty == %x. None" |
24 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
25 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
26 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where |
20800 | 27 |
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
19378 | 28 |
|
21210 | 29 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
30 |
map_comp (infixl "\<circ>\<^sub>m" 55) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
31 |
|
20800 | 32 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
33 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where |
20800 | 34 |
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" |
35 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
36 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
37 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where |
20800 | 38 |
"m|`A = (\<lambda>x. if x : A then m x else None)" |
13910 | 39 |
|
21210 | 40 |
notation (latex output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
41 |
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
42 |
|
20800 | 43 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
dom :: "('a ~=> 'b) => 'a set" where |
20800 | 45 |
"dom m = {a. m a ~= None}" |
46 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
47 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
ran :: "('a ~=> 'b) => 'b set" where |
20800 | 49 |
"ran m = {b. EX a. m a = Some b}" |
50 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
51 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
52 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where |
20800 | 53 |
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" |
54 |
||
55 |
consts |
|
56 |
map_of :: "('a * 'b) list => 'a ~=> 'b" |
|
57 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
|
58 |
||
14180 | 59 |
nonterminals |
60 |
maplets maplet |
|
61 |
||
5300 | 62 |
syntax |
14180 | 63 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
64 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
65 |
"" :: "maplet => maplets" ("_") |
|
66 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
67 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
68 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 69 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
70 |
syntax (xsymbols) |
14180 | 71 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
72 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
73 |
||
5300 | 74 |
translations |
14180 | 75 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
76 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
77 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
19947 | 78 |
"_Map ms" == "_MapUpd (CONST empty) ms" |
14180 | 79 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
80 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
81 |
||
5183 | 82 |
primrec |
83 |
"map_of [] = empty" |
|
5300 | 84 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
85 |
||
20800 | 86 |
defs |
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22230
diff
changeset
|
87 |
map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
20800 | 88 |
|
89 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
90 |
subsection {* @{term [source] empty} *} |
13908 | 91 |
|
20800 | 92 |
lemma empty_upd_none [simp]: "empty(x := None) = empty" |
24331 | 93 |
by (rule ext) simp |
13908 | 94 |
|
95 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
96 |
subsection {* @{term [source] map_upd} *} |
13908 | 97 |
|
98 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
24331 | 99 |
by (rule ext) simp |
13908 | 100 |
|
20800 | 101 |
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" |
102 |
proof |
|
103 |
assume "t(k \<mapsto> x) = empty" |
|
104 |
then have "(t(k \<mapsto> x)) k = None" by simp |
|
105 |
then show False by simp |
|
106 |
qed |
|
13908 | 107 |
|
20800 | 108 |
lemma map_upd_eqD1: |
109 |
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" |
|
110 |
shows "x = y" |
|
111 |
proof - |
|
112 |
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp |
|
113 |
then show ?thesis by simp |
|
114 |
qed |
|
14100 | 115 |
|
20800 | 116 |
lemma map_upd_Some_unfold: |
24331 | 117 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
118 |
by auto |
|
14100 | 119 |
|
20800 | 120 |
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
24331 | 121 |
by auto |
15303 | 122 |
|
13908 | 123 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
24331 | 124 |
unfolding image_def |
125 |
apply (simp (no_asm_use) add:full_SetCompr_eq) |
|
126 |
apply (rule finite_subset) |
|
127 |
prefer 2 apply assumption |
|
128 |
apply (auto) |
|
129 |
done |
|
13908 | 130 |
|
131 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
132 |
subsection {* @{term [source] map_of} *} |
13908 | 133 |
|
15304 | 134 |
lemma map_of_eq_None_iff: |
24331 | 135 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
136 |
by (induct xys) simp_all |
|
15304 | 137 |
|
24331 | 138 |
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
139 |
apply (induct xys) |
|
140 |
apply simp |
|
141 |
apply (clarsimp split: if_splits) |
|
142 |
done |
|
15304 | 143 |
|
20800 | 144 |
lemma map_of_eq_Some_iff [simp]: |
24331 | 145 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
146 |
apply (induct xys) |
|
147 |
apply simp |
|
148 |
apply (auto simp: map_of_eq_None_iff [symmetric]) |
|
149 |
done |
|
15304 | 150 |
|
20800 | 151 |
lemma Some_eq_map_of_iff [simp]: |
24331 | 152 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
153 |
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) |
|
15304 | 154 |
|
17724 | 155 |
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
20800 | 156 |
\<Longrightarrow> map_of xys x = Some y" |
24331 | 157 |
apply (induct xys) |
158 |
apply simp |
|
159 |
apply force |
|
160 |
done |
|
15304 | 161 |
|
20800 | 162 |
lemma map_of_zip_is_None [simp]: |
24331 | 163 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
164 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
165 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
166 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
24331 | 167 |
apply (induct xys) |
168 |
apply (simp_all add: image_constant) |
|
169 |
apply (rule finite_subset) |
|
170 |
prefer 2 apply assumption |
|
171 |
apply auto |
|
172 |
done |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
173 |
|
20800 | 174 |
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" |
24331 | 175 |
by (induct xs) (simp, atomize (full), auto) |
13908 | 176 |
|
20800 | 177 |
lemma map_of_mapk_SomeI: |
24331 | 178 |
"inj f ==> map_of t k = Some x ==> |
179 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
180 |
by (induct t) (auto simp add: inj_eq) |
|
13908 | 181 |
|
20800 | 182 |
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" |
24331 | 183 |
by (induct l) auto |
13908 | 184 |
|
20800 | 185 |
lemma map_of_filter_in: |
24331 | 186 |
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" |
187 |
by (induct xs) auto |
|
13908 | 188 |
|
189 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
24331 | 190 |
by (induct xs) auto |
13908 | 191 |
|
192 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
193 |
subsection {* @{term [source] option_map} related *} |
13908 | 194 |
|
20800 | 195 |
lemma option_map_o_empty [simp]: "option_map f o empty = empty" |
24331 | 196 |
by (rule ext) simp |
13908 | 197 |
|
20800 | 198 |
lemma option_map_o_map_upd [simp]: |
24331 | 199 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
200 |
by (rule ext) simp |
|
20800 | 201 |
|
13908 | 202 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
203 |
subsection {* @{term [source] map_comp} related *} |
17391 | 204 |
|
20800 | 205 |
lemma map_comp_empty [simp]: |
24331 | 206 |
"m \<circ>\<^sub>m empty = empty" |
207 |
"empty \<circ>\<^sub>m m = empty" |
|
208 |
by (auto simp add: map_comp_def intro: ext split: option.splits) |
|
17391 | 209 |
|
20800 | 210 |
lemma map_comp_simps [simp]: |
24331 | 211 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
212 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
213 |
by (auto simp add: map_comp_def) |
|
17391 | 214 |
|
215 |
lemma map_comp_Some_iff: |
|
24331 | 216 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
217 |
by (auto simp add: map_comp_def split: option.splits) |
|
17391 | 218 |
|
219 |
lemma map_comp_None_iff: |
|
24331 | 220 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
221 |
by (auto simp add: map_comp_def split: option.splits) |
|
13908 | 222 |
|
20800 | 223 |
|
14100 | 224 |
subsection {* @{text "++"} *} |
13908 | 225 |
|
14025 | 226 |
lemma map_add_empty[simp]: "m ++ empty = m" |
24331 | 227 |
by(simp add: map_add_def) |
13908 | 228 |
|
14025 | 229 |
lemma empty_map_add[simp]: "empty ++ m = m" |
24331 | 230 |
by (rule ext) (simp add: map_add_def split: option.split) |
13908 | 231 |
|
14025 | 232 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
24331 | 233 |
by (rule ext) (simp add: map_add_def split: option.split) |
20800 | 234 |
|
235 |
lemma map_add_Some_iff: |
|
24331 | 236 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
237 |
by (simp add: map_add_def split: option.split) |
|
14025 | 238 |
|
20800 | 239 |
lemma map_add_SomeD [dest!]: |
24331 | 240 |
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" |
241 |
by (rule map_add_Some_iff [THEN iffD1]) |
|
13908 | 242 |
|
20800 | 243 |
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
24331 | 244 |
by (subst map_add_Some_iff) fast |
13908 | 245 |
|
14025 | 246 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
24331 | 247 |
by (simp add: map_add_def split: option.split) |
13908 | 248 |
|
14025 | 249 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
24331 | 250 |
by (rule ext) (simp add: map_add_def) |
13908 | 251 |
|
14186 | 252 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
24331 | 253 |
by (simp add: map_upds_def) |
14186 | 254 |
|
20800 | 255 |
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" |
24331 | 256 |
unfolding map_add_def |
257 |
apply (induct xs) |
|
258 |
apply simp |
|
259 |
apply (rule ext) |
|
260 |
apply (simp split add: option.split) |
|
261 |
done |
|
13908 | 262 |
|
14025 | 263 |
lemma finite_range_map_of_map_add: |
20800 | 264 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
24331 | 265 |
apply (induct l) |
266 |
apply (auto simp del: fun_upd_apply) |
|
267 |
apply (erule finite_range_updI) |
|
268 |
done |
|
13908 | 269 |
|
20800 | 270 |
lemma inj_on_map_add_dom [iff]: |
24331 | 271 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
272 |
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) |
|
20800 | 273 |
|
15304 | 274 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
275 |
subsection {* @{term [source] restrict_map} *} |
14100 | 276 |
|
20800 | 277 |
lemma restrict_map_to_empty [simp]: "m|`{} = empty" |
24331 | 278 |
by (simp add: restrict_map_def) |
14186 | 279 |
|
20800 | 280 |
lemma restrict_map_empty [simp]: "empty|`D = empty" |
24331 | 281 |
by (simp add: restrict_map_def) |
14186 | 282 |
|
15693 | 283 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
24331 | 284 |
by (simp add: restrict_map_def) |
14100 | 285 |
|
15693 | 286 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
24331 | 287 |
by (simp add: restrict_map_def) |
14100 | 288 |
|
15693 | 289 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
24331 | 290 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
14100 | 291 |
|
15693 | 292 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
24331 | 293 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
14100 | 294 |
|
15693 | 295 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
24331 | 296 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 297 |
|
15693 | 298 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
24331 | 299 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 300 |
|
20800 | 301 |
lemma restrict_fun_upd [simp]: |
24331 | 302 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
303 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 304 |
|
20800 | 305 |
lemma fun_upd_None_restrict [simp]: |
24331 | 306 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
307 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 308 |
|
20800 | 309 |
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
24331 | 310 |
by (simp add: restrict_map_def expand_fun_eq) |
14186 | 311 |
|
20800 | 312 |
lemma fun_upd_restrict_conv [simp]: |
24331 | 313 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
314 |
by (simp add: restrict_map_def expand_fun_eq) |
|
14186 | 315 |
|
14100 | 316 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
317 |
subsection {* @{term [source] map_upds} *} |
14025 | 318 |
|
20800 | 319 |
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" |
24331 | 320 |
by (simp add: map_upds_def) |
14025 | 321 |
|
20800 | 322 |
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" |
24331 | 323 |
by (simp add:map_upds_def) |
20800 | 324 |
|
325 |
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
24331 | 326 |
by (simp add:map_upds_def) |
14025 | 327 |
|
20800 | 328 |
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
24331 | 329 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
330 |
apply(induct xs) |
|
331 |
apply (clarsimp simp add: neq_Nil_conv) |
|
332 |
apply (case_tac ys) |
|
333 |
apply simp |
|
334 |
apply simp |
|
335 |
done |
|
14187 | 336 |
|
20800 | 337 |
lemma map_upds_list_update2_drop [simp]: |
338 |
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
339 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
24331 | 340 |
apply (induct xs arbitrary: m ys i) |
341 |
apply simp |
|
342 |
apply (case_tac ys) |
|
343 |
apply simp |
|
344 |
apply (simp split: nat.split) |
|
345 |
done |
|
14025 | 346 |
|
20800 | 347 |
lemma map_upd_upds_conv_if: |
348 |
"(f(x|->y))(xs [|->] ys) = |
|
349 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
350 |
else (f(xs [|->] ys))(x|->y))" |
|
24331 | 351 |
apply (induct xs arbitrary: x y ys f) |
352 |
apply simp |
|
353 |
apply (case_tac ys) |
|
354 |
apply (auto split: split_if simp: fun_upd_twist) |
|
355 |
done |
|
14025 | 356 |
|
357 |
lemma map_upds_twist [simp]: |
|
24331 | 358 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
359 |
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) |
|
14025 | 360 |
|
20800 | 361 |
lemma map_upds_apply_nontin [simp]: |
24331 | 362 |
"x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
363 |
apply (induct xs arbitrary: ys) |
|
364 |
apply simp |
|
365 |
apply (case_tac ys) |
|
366 |
apply (auto simp: map_upd_upds_conv_if) |
|
367 |
done |
|
14025 | 368 |
|
20800 | 369 |
lemma fun_upds_append_drop [simp]: |
24331 | 370 |
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
371 |
apply (induct xs arbitrary: m ys) |
|
372 |
apply simp |
|
373 |
apply (case_tac ys) |
|
374 |
apply simp_all |
|
375 |
done |
|
14300 | 376 |
|
20800 | 377 |
lemma fun_upds_append2_drop [simp]: |
24331 | 378 |
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
379 |
apply (induct xs arbitrary: m ys) |
|
380 |
apply simp |
|
381 |
apply (case_tac ys) |
|
382 |
apply simp_all |
|
383 |
done |
|
14300 | 384 |
|
385 |
||
20800 | 386 |
lemma restrict_map_upds[simp]: |
387 |
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
388 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
|
24331 | 389 |
apply (induct xs arbitrary: m ys) |
390 |
apply simp |
|
391 |
apply (case_tac ys) |
|
392 |
apply simp |
|
393 |
apply (simp add: Diff_insert [symmetric] insert_absorb) |
|
394 |
apply (simp add: map_upd_upds_conv_if) |
|
395 |
done |
|
14186 | 396 |
|
397 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
398 |
subsection {* @{term [source] dom} *} |
13908 | 399 |
|
400 |
lemma domI: "m a = Some b ==> a : dom m" |
|
24331 | 401 |
by(simp add:dom_def) |
14100 | 402 |
(* declare domI [intro]? *) |
13908 | 403 |
|
15369 | 404 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
24331 | 405 |
by (cases "m a") (auto simp add: dom_def) |
13908 | 406 |
|
20800 | 407 |
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" |
24331 | 408 |
by(simp add:dom_def) |
13908 | 409 |
|
20800 | 410 |
lemma dom_empty [simp]: "dom empty = {}" |
24331 | 411 |
by(simp add:dom_def) |
13908 | 412 |
|
20800 | 413 |
lemma dom_fun_upd [simp]: |
24331 | 414 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
415 |
by(auto simp add:dom_def) |
|
13908 | 416 |
|
13937 | 417 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
24331 | 418 |
by (induct xys) (auto simp del: fun_upd_apply) |
13937 | 419 |
|
15304 | 420 |
lemma dom_map_of_conv_image_fst: |
24331 | 421 |
"dom(map_of xys) = fst ` (set xys)" |
422 |
by(force simp: dom_map_of) |
|
15304 | 423 |
|
20800 | 424 |
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> |
24331 | 425 |
dom(map_of(zip xs ys)) = set xs" |
426 |
by (induct rule: list_induct2) simp_all |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
427 |
|
13908 | 428 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
24331 | 429 |
by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) |
13908 | 430 |
|
20800 | 431 |
lemma dom_map_upds [simp]: |
24331 | 432 |
"dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
433 |
apply (induct xs arbitrary: m ys) |
|
434 |
apply simp |
|
435 |
apply (case_tac ys) |
|
436 |
apply auto |
|
437 |
done |
|
13910 | 438 |
|
20800 | 439 |
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" |
24331 | 440 |
by(auto simp:dom_def) |
13910 | 441 |
|
20800 | 442 |
lemma dom_override_on [simp]: |
443 |
"dom(override_on f g A) = |
|
444 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
24331 | 445 |
by(auto simp: dom_def override_on_def) |
13908 | 446 |
|
14027 | 447 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
24331 | 448 |
by (rule ext) (force simp: map_add_def dom_def split: option.split) |
20800 | 449 |
|
22230 | 450 |
(* Due to John Matthews - could be rephrased with dom *) |
451 |
lemma finite_map_freshness: |
|
452 |
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> |
|
453 |
\<exists>x. f x = None" |
|
454 |
by(bestsimp dest:ex_new_if_finite) |
|
14027 | 455 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
456 |
subsection {* @{term [source] ran} *} |
14100 | 457 |
|
20800 | 458 |
lemma ranI: "m a = Some b ==> b : ran m" |
24331 | 459 |
by(auto simp: ran_def) |
14100 | 460 |
(* declare ranI [intro]? *) |
13908 | 461 |
|
20800 | 462 |
lemma ran_empty [simp]: "ran empty = {}" |
24331 | 463 |
by(auto simp: ran_def) |
13908 | 464 |
|
20800 | 465 |
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
24331 | 466 |
unfolding ran_def |
467 |
apply auto |
|
468 |
apply (subgoal_tac "aa ~= a") |
|
469 |
apply auto |
|
470 |
done |
|
20800 | 471 |
|
13910 | 472 |
|
14100 | 473 |
subsection {* @{text "map_le"} *} |
13910 | 474 |
|
13912 | 475 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
24331 | 476 |
by (simp add: map_le_def) |
13910 | 477 |
|
17724 | 478 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
24331 | 479 |
by (force simp add: map_le_def) |
14187 | 480 |
|
13910 | 481 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
24331 | 482 |
by (fastsimp simp add: map_le_def) |
13910 | 483 |
|
17724 | 484 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
24331 | 485 |
by (force simp add: map_le_def) |
14187 | 486 |
|
20800 | 487 |
lemma map_le_upds [simp]: |
24331 | 488 |
"f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
489 |
apply (induct as arbitrary: f g bs) |
|
490 |
apply simp |
|
491 |
apply (case_tac bs) |
|
492 |
apply auto |
|
493 |
done |
|
13908 | 494 |
|
14033 | 495 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
24331 | 496 |
by (fastsimp simp add: map_le_def dom_def) |
14033 | 497 |
|
498 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
24331 | 499 |
by (simp add: map_le_def) |
14033 | 500 |
|
14187 | 501 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
24331 | 502 |
by (auto simp add: map_le_def dom_def) |
14033 | 503 |
|
504 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
24331 | 505 |
unfolding map_le_def |
506 |
apply (rule ext) |
|
507 |
apply (case_tac "x \<in> dom f", simp) |
|
508 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
509 |
done |
|
14033 | 510 |
|
511 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
24331 | 512 |
by (fastsimp simp add: map_le_def) |
14033 | 513 |
|
15304 | 514 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
24331 | 515 |
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits) |
15304 | 516 |
|
15303 | 517 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
24331 | 518 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
15303 | 519 |
|
520 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
24331 | 521 |
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) |
15303 | 522 |
|
3981 | 523 |
end |