author | wenzelm |
Sun, 25 Aug 2024 15:02:19 +0200 | |
changeset 80760 | be8c0e039a5e |
parent 77671 | 8a6a79ed5a83 |
child 80932 | 261cd8722677 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 3 |
Copyright 1997-2003 TU Muenchen |
3981 | 4 |
|
60838 | 5 |
The datatype of "maps"; strongly resembles maps in VDM. |
3981 | 6 |
*) |
7 |
||
60758 | 8 |
section \<open>Maps\<close> |
13914 | 9 |
|
15131 | 10 |
theory Map |
67780
7655e6369c9f
more abbrevs -- this makes "(=" ambiguous and thus simplifies input of "(=)" (within the context of Main HOL);
wenzelm
parents:
67091
diff
changeset
|
11 |
imports List |
7655e6369c9f
more abbrevs -- this makes "(=" ambiguous and thus simplifies input of "(=)" (within the context of Main HOL);
wenzelm
parents:
67091
diff
changeset
|
12 |
abbrevs "(=" = "\<subseteq>\<^sub>m" |
15131 | 13 |
begin |
3981 | 14 |
|
61069 | 15 |
type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
16 |
|
77356
1f5428d66591
Map.empty no longer output abbreviation; %_. None is shorter and requires no explanation
nipkow
parents:
77307
diff
changeset
|
17 |
abbreviation (input) |
60838 | 18 |
empty :: "'a \<rightharpoonup> 'b" where |
60839 | 19 |
"empty \<equiv> \<lambda>x. None" |
19378 | 20 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
21 |
definition |
61069 | 22 |
map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)" (infixl "\<circ>\<^sub>m" 55) where |
23 |
"f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
24 |
|
20800 | 25 |
definition |
60839 | 26 |
map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)" (infixl "++" 100) where |
27 |
"m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)" |
|
20800 | 28 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
29 |
definition |
60839 | 30 |
restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)" (infixl "|`" 110) where |
31 |
"m|`A = (\<lambda>x. if x \<in> A then m x else None)" |
|
13910 | 32 |
|
21210 | 33 |
notation (latex output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
34 |
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset
|
35 |
|
20800 | 36 |
definition |
60839 | 37 |
dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where |
38 |
"dom m = {a. m a \<noteq> None}" |
|
20800 | 39 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
40 |
definition |
60839 | 41 |
ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where |
42 |
"ran m = {b. \<exists>a. m a = Some b}" |
|
20800 | 43 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
44 |
definition |
73832 | 45 |
graph :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<times> 'b) set" where |
46 |
"graph m = {(a, b) | a b. m a = Some b}" |
|
47 |
||
48 |
definition |
|
60839 | 49 |
map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool" (infix "\<subseteq>\<^sub>m" 50) where |
50 |
"(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)" |
|
20800 | 51 |
|
77671 | 52 |
text \<open>Function update syntax \<open>f(x := y, \<dots>)\<close> is extended with \<open>x \<mapsto> y\<close>, which is short for |
53 |
\<open>x := Some y\<close>. \<open>:=\<close> and \<open>\<mapsto>\<close> can be mixed freely. |
|
54 |
The syntax \<open>[x \<mapsto> y, \<dots>]\<close> is short for \<open>Map.empty(x \<mapsto> y, \<dots>)\<close> |
|
55 |
but must only contain \<open>\<mapsto>\<close>, not \<open>:=\<close>, because \<open>[x:=y]\<close> clashes with the list update syntax \<open>xs[i:=x]\<close>.\<close> |
|
56 |
||
57 |
nonterminal maplet and maplets |
|
14180 | 58 |
|
5300 | 59 |
syntax |
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
60 |
"_maplet" :: "['a, 'a] \<Rightarrow> maplet" ("_ /\<mapsto>/ _") |
77671 | 61 |
"" :: "maplet \<Rightarrow> updbind" ("_") |
60839 | 62 |
"" :: "maplet \<Rightarrow> maplets" ("_") |
63 |
"_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _") |
|
77671 | 64 |
"_Map" :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b" ("(1[_])") |
65 |
(* Syntax forbids \<open>[\<dots>, x := y, \<dots>]\<close> by introducing \<open>maplets\<close> in addition to \<open>updbinds\<close> *) |
|
3981 | 66 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
67 |
syntax (ASCII) |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
68 |
"_maplet" :: "['a, 'a] \<Rightarrow> maplet" ("_ /|->/ _") |
14180 | 69 |
|
80760 | 70 |
syntax_consts |
71 |
"_maplet" "_Maplets" "_Map" \<rightleftharpoons> fun_upd |
|
72 |
||
5300 | 73 |
translations |
77671 | 74 |
"_Update f (_maplet x y)" \<rightleftharpoons> "f(x := CONST Some y)" |
75 |
"_Maplets m ms" \<rightharpoonup> "_updbinds m ms" |
|
76 |
"_Map ms" \<rightharpoonup> "_Update (CONST empty) ms" |
|
14180 | 77 |
|
77671 | 78 |
(* Printing must create \<open>_Map\<close> only for \<open>_maplet\<close> *) |
79 |
"_Map (_maplet x y)" \<leftharpoondown> "_Update (\<lambda>u. CONST None) (_maplet x y)" |
|
80 |
"_Map (_updbinds m (_maplet x y))" \<leftharpoondown> "_Update (_Map m) (_maplet x y)" |
|
81 |
||
80760 | 82 |
|
77671 | 83 |
text \<open>Updating with lists:\<close> |
84 |
||
85 |
primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where |
|
77307 | 86 |
"map_of [] = empty" |
87 |
| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)" |
|
88 |
||
89 |
lemma map_of_Cons_code [code]: |
|
90 |
"map_of [] k = None" |
|
91 |
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" |
|
92 |
by simp_all |
|
93 |
||
77671 | 94 |
definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where |
95 |
"map_upds m xs ys = m ++ map_of (rev (zip xs ys))" |
|
96 |
||
97 |
text \<open>There is also the more specialized update syntax \<open>xs [\<mapsto>] ys\<close> for lists \<open>xs\<close> and \<open>ys\<close>.\<close> |
|
98 |
||
99 |
syntax |
|
100 |
"_maplets" :: "['a, 'a] \<Rightarrow> maplet" ("_ /[\<mapsto>]/ _") |
|
101 |
||
102 |
syntax (ASCII) |
|
103 |
"_maplets" :: "['a, 'a] \<Rightarrow> maplet" ("_ /[|->]/ _") |
|
104 |
||
80760 | 105 |
syntax_consts |
106 |
"_maplets" \<rightleftharpoons> map_upds |
|
107 |
||
77671 | 108 |
translations |
109 |
"_Update m (_maplets xs ys)" \<rightleftharpoons> "CONST map_upds m xs ys" |
|
110 |
||
111 |
"_Map (_maplets xs ys)" \<leftharpoondown> "_Update (\<lambda>u. CONST None) (_maplets xs ys)" |
|
112 |
"_Map (_updbinds m (_maplets xs ys))" \<leftharpoondown> "_Update (_Map m) (_maplets xs ys)" |
|
113 |
||
20800 | 114 |
|
60758 | 115 |
subsection \<open>@{term [source] empty}\<close> |
13908 | 116 |
|
20800 | 117 |
lemma empty_upd_none [simp]: "empty(x := None) = empty" |
60839 | 118 |
by (rule ext) simp |
13908 | 119 |
|
120 |
||
60758 | 121 |
subsection \<open>@{term [source] map_upd}\<close> |
13908 | 122 |
|
60839 | 123 |
lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t" |
124 |
by (rule ext) simp |
|
13908 | 125 |
|
60839 | 126 |
lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty" |
20800 | 127 |
proof |
128 |
assume "t(k \<mapsto> x) = empty" |
|
129 |
then have "(t(k \<mapsto> x)) k = None" by simp |
|
130 |
then show False by simp |
|
131 |
qed |
|
13908 | 132 |
|
20800 | 133 |
lemma map_upd_eqD1: |
134 |
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" |
|
135 |
shows "x = y" |
|
136 |
proof - |
|
41550 | 137 |
from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp |
20800 | 138 |
then show ?thesis by simp |
139 |
qed |
|
14100 | 140 |
|
20800 | 141 |
lemma map_upd_Some_unfold: |
60838 | 142 |
"((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
143 |
by auto |
14100 | 144 |
|
20800 | 145 |
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
146 |
by auto |
15303 | 147 |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
148 |
lemma finite_range_updI: |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
149 |
assumes "finite (range f)" shows "finite (range (f(a\<mapsto>b)))" |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
150 |
proof - |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
151 |
have "range (f(a\<mapsto>b)) \<subseteq> insert (Some b) (range f)" |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
152 |
by auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
153 |
then show ?thesis |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
154 |
by (rule finite_subset) (use assms in auto) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
155 |
qed |
13908 | 156 |
|
157 |
||
60758 | 158 |
subsection \<open>@{term [source] map_of}\<close> |
13908 | 159 |
|
68454 | 160 |
lemma map_of_eq_empty_iff [simp]: |
161 |
"map_of xys = empty \<longleftrightarrow> xys = []" |
|
162 |
proof |
|
163 |
show "map_of xys = empty \<Longrightarrow> xys = []" |
|
164 |
by (induction xys) simp_all |
|
165 |
qed simp |
|
166 |
||
68460 | 167 |
lemma empty_eq_map_of_iff [simp]: |
168 |
"empty = map_of xys \<longleftrightarrow> xys = []" |
|
169 |
by(subst eq_commute) simp |
|
170 |
||
77307 | 171 |
lemma map_of_eq_None_iff: |
172 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
|
173 |
by (induct xys) simp_all |
|
174 |
||
175 |
lemma map_of_eq_Some_iff [simp]: |
|
176 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
|
177 |
proof (induct xys) |
|
178 |
case (Cons xy xys) |
|
179 |
then show ?case |
|
180 |
by (cases xy) (auto simp flip: map_of_eq_None_iff) |
|
181 |
qed auto |
|
182 |
||
183 |
lemma Some_eq_map_of_iff [simp]: |
|
184 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
|
185 |
by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric]) |
|
186 |
||
187 |
lemma map_of_is_SomeI [simp]: |
|
188 |
"\<lbrakk>distinct(map fst xys); (x,y) \<in> set xys\<rbrakk> \<Longrightarrow> map_of xys x = Some y" |
|
189 |
by simp |
|
190 |
||
191 |
lemma map_of_zip_is_None [simp]: |
|
192 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
|
193 |
by (induct rule: list_induct2) simp_all |
|
194 |
||
195 |
lemma map_of_zip_is_Some: |
|
196 |
assumes "length xs = length ys" |
|
197 |
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" |
|
198 |
using assms by (induct rule: list_induct2) simp_all |
|
199 |
||
200 |
lemma map_of_zip_upd: |
|
201 |
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" |
|
202 |
assumes "length ys = length xs" |
|
203 |
and "length zs = length xs" |
|
204 |
and "x \<notin> set xs" |
|
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
205 |
and "(map_of (zip xs ys))(x \<mapsto> y) = (map_of (zip xs zs))(x \<mapsto> z)" |
77307 | 206 |
shows "map_of (zip xs ys) = map_of (zip xs zs)" |
207 |
proof |
|
208 |
fix x' :: 'a |
|
209 |
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" |
|
210 |
proof (cases "x = x'") |
|
211 |
case True |
|
212 |
from assms True map_of_zip_is_None [of xs ys x'] |
|
213 |
have "map_of (zip xs ys) x' = None" by simp |
|
214 |
moreover from assms True map_of_zip_is_None [of xs zs x'] |
|
215 |
have "map_of (zip xs zs) x' = None" by simp |
|
216 |
ultimately show ?thesis by simp |
|
217 |
next |
|
218 |
case False from assms |
|
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
219 |
have "((map_of (zip xs ys))(x \<mapsto> y)) x' = ((map_of (zip xs zs))(x \<mapsto> z)) x'" by auto |
77307 | 220 |
with False show ?thesis by simp |
221 |
qed |
|
222 |
qed |
|
223 |
||
224 |
lemma map_of_zip_inject: |
|
225 |
assumes "length ys = length xs" |
|
226 |
and "length zs = length xs" |
|
227 |
and dist: "distinct xs" |
|
228 |
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" |
|
229 |
shows "ys = zs" |
|
230 |
using assms(1) assms(2)[symmetric] |
|
231 |
using dist map_of |
|
232 |
proof (induct ys xs zs rule: list_induct3) |
|
233 |
case Nil show ?case by simp |
|
234 |
next |
|
235 |
case (Cons y ys x xs z zs) |
|
236 |
from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close> |
|
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
237 |
have map_of: "(map_of (zip xs ys))(x \<mapsto> y) = (map_of (zip xs zs))(x \<mapsto> z)" by simp |
77307 | 238 |
from Cons have "length ys = length xs" and "length zs = length xs" |
239 |
and "x \<notin> set xs" by simp_all |
|
240 |
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) |
|
241 |
with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp |
|
242 |
moreover from map_of have "y = z" by (rule map_upd_eqD1) |
|
243 |
ultimately show ?case by simp |
|
244 |
qed |
|
245 |
||
246 |
lemma map_of_zip_nth: |
|
247 |
assumes "length xs = length ys" |
|
248 |
assumes "distinct xs" |
|
249 |
assumes "i < length ys" |
|
250 |
shows "map_of (zip xs ys) (xs ! i) = Some (ys ! i)" |
|
251 |
using assms proof (induct arbitrary: i rule: list_induct2) |
|
252 |
case Nil |
|
253 |
then show ?case by simp |
|
254 |
next |
|
255 |
case (Cons x xs y ys) |
|
256 |
then show ?case |
|
257 |
using less_Suc_eq_0_disj by auto |
|
258 |
qed |
|
259 |
||
260 |
lemma map_of_zip_map: |
|
261 |
"map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)" |
|
262 |
by (induct xs) (simp_all add: fun_eq_iff) |
|
263 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
264 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
265 |
proof (induct xys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
266 |
case (Cons a xys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
267 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
268 |
using finite_range_updI by fastforce |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
269 |
qed auto |
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
270 |
|
77307 | 271 |
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" |
272 |
by (induct xs) (auto split: if_splits) |
|
273 |
||
274 |
lemma map_of_mapk_SomeI: |
|
275 |
"inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow> |
|
276 |
map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x" |
|
277 |
by (induct t) (auto simp: inj_eq) |
|
278 |
||
279 |
lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x" |
|
280 |
by (induct l) auto |
|
281 |
||
282 |
lemma map_of_filter_in: |
|
283 |
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z" |
|
284 |
by (induct xs) auto |
|
285 |
||
286 |
lemma map_of_map: |
|
287 |
"map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs" |
|
288 |
by (induct xs) (auto simp: fun_eq_iff) |
|
289 |
||
55466 | 290 |
lemma dom_map_option: |
291 |
"dom (\<lambda>k. map_option (f k) (m k)) = dom m" |
|
35607 | 292 |
by (simp add: dom_def) |
13908 | 293 |
|
56545 | 294 |
lemma dom_map_option_comp [simp]: |
295 |
"dom (map_option g \<circ> m) = dom m" |
|
296 |
using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def) |
|
297 |
||
13908 | 298 |
|
69593 | 299 |
subsection \<open>\<^const>\<open>map_option\<close> related\<close> |
13908 | 300 |
|
67091 | 301 |
lemma map_option_o_empty [simp]: "map_option f \<circ> empty = empty" |
24331 | 302 |
by (rule ext) simp |
13908 | 303 |
|
55466 | 304 |
lemma map_option_o_map_upd [simp]: |
67091 | 305 |
"map_option f \<circ> m(a\<mapsto>b) = (map_option f \<circ> m)(a\<mapsto>f b)" |
24331 | 306 |
by (rule ext) simp |
20800 | 307 |
|
13908 | 308 |
|
60758 | 309 |
subsection \<open>@{term [source] map_comp} related\<close> |
17391 | 310 |
|
20800 | 311 |
lemma map_comp_empty [simp]: |
24331 | 312 |
"m \<circ>\<^sub>m empty = empty" |
313 |
"empty \<circ>\<^sub>m m = empty" |
|
60839 | 314 |
by (auto simp: map_comp_def split: option.splits) |
17391 | 315 |
|
20800 | 316 |
lemma map_comp_simps [simp]: |
24331 | 317 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
318 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
60839 | 319 |
by (auto simp: map_comp_def) |
17391 | 320 |
|
321 |
lemma map_comp_Some_iff: |
|
24331 | 322 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
60839 | 323 |
by (auto simp: map_comp_def split: option.splits) |
17391 | 324 |
|
325 |
lemma map_comp_None_iff: |
|
24331 | 326 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
60839 | 327 |
by (auto simp: map_comp_def split: option.splits) |
13908 | 328 |
|
20800 | 329 |
|
61799 | 330 |
subsection \<open>\<open>++\<close>\<close> |
13908 | 331 |
|
14025 | 332 |
lemma map_add_empty[simp]: "m ++ empty = m" |
24331 | 333 |
by(simp add: map_add_def) |
13908 | 334 |
|
14025 | 335 |
lemma empty_map_add[simp]: "empty ++ m = m" |
24331 | 336 |
by (rule ext) (simp add: map_add_def split: option.split) |
13908 | 337 |
|
14025 | 338 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
24331 | 339 |
by (rule ext) (simp add: map_add_def split: option.split) |
20800 | 340 |
|
341 |
lemma map_add_Some_iff: |
|
67091 | 342 |
"((m ++ n) k = Some x) = (n k = Some x \<or> n k = None \<and> m k = Some x)" |
24331 | 343 |
by (simp add: map_add_def split: option.split) |
14025 | 344 |
|
20800 | 345 |
lemma map_add_SomeD [dest!]: |
24331 | 346 |
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" |
347 |
by (rule map_add_Some_iff [THEN iffD1]) |
|
13908 | 348 |
|
60839 | 349 |
lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx" |
24331 | 350 |
by (subst map_add_Some_iff) fast |
13908 | 351 |
|
67091 | 352 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None \<and> m k = None)" |
24331 | 353 |
by (simp add: map_add_def split: option.split) |
13908 | 354 |
|
60838 | 355 |
lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)" |
24331 | 356 |
by (rule ext) (simp add: map_add_def) |
13908 | 357 |
|
14186 | 358 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
24331 | 359 |
by (simp add: map_upds_def) |
14186 | 360 |
|
32236
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
krauss
parents:
31380
diff
changeset
|
361 |
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)" |
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
krauss
parents:
31380
diff
changeset
|
362 |
by (rule ext) (auto simp: map_add_def dom_def split: option.split) |
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
krauss
parents:
31380
diff
changeset
|
363 |
|
20800 | 364 |
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
365 |
unfolding map_add_def |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
366 |
proof (induct xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
367 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
368 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
369 |
by (force split: option.split) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
370 |
qed auto |
13908 | 371 |
|
14025 | 372 |
lemma finite_range_map_of_map_add: |
60839 | 373 |
"finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
374 |
proof (induct l) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
375 |
case (Cons a l) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
376 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
377 |
by (metis finite_range_updI map_add_upd map_of.simps(2)) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
378 |
qed auto |
13908 | 379 |
|
20800 | 380 |
lemma inj_on_map_add_dom [iff]: |
24331 | 381 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
382 |
by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits) |
20800 | 383 |
|
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
384 |
lemma map_upds_fold_map_upd: |
35552 | 385 |
"m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)" |
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
386 |
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length) |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
387 |
fix ks :: "'a list" and vs :: "'b list" |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
388 |
assume "length ks = length vs" |
35552 | 389 |
then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))" |
390 |
by(induct arbitrary: m rule: list_induct2) simp_all |
|
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
391 |
qed |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
392 |
|
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
393 |
lemma map_add_map_of_foldr: |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
394 |
"m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m" |
60839 | 395 |
by (induct ps) (auto simp: fun_eq_iff map_add_def) |
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
396 |
|
15304 | 397 |
|
60758 | 398 |
subsection \<open>@{term [source] restrict_map}\<close> |
14100 | 399 |
|
20800 | 400 |
lemma restrict_map_to_empty [simp]: "m|`{} = empty" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
401 |
by (simp add: restrict_map_def) |
14186 | 402 |
|
31380 | 403 |
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
404 |
by (auto simp: restrict_map_def) |
31380 | 405 |
|
20800 | 406 |
lemma restrict_map_empty [simp]: "empty|`D = empty" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
407 |
by (simp add: restrict_map_def) |
14186 | 408 |
|
15693 | 409 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
410 |
by (simp add: restrict_map_def) |
14100 | 411 |
|
15693 | 412 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
413 |
by (simp add: restrict_map_def) |
14100 | 414 |
|
15693 | 415 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
416 |
by (auto simp: restrict_map_def ran_def split: if_split_asm) |
14100 | 417 |
|
15693 | 418 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
419 |
by (auto simp: restrict_map_def dom_def split: if_split_asm) |
14100 | 420 |
|
15693 | 421 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
422 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 423 |
|
15693 | 424 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
425 |
by (rule ext) (auto simp: restrict_map_def) |
14100 | 426 |
|
20800 | 427 |
lemma restrict_fun_upd [simp]: |
24331 | 428 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
429 |
by (simp add: restrict_map_def fun_eq_iff) |
14186 | 430 |
|
20800 | 431 |
lemma fun_upd_None_restrict [simp]: |
60839 | 432 |
"(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
433 |
by (simp add: restrict_map_def fun_eq_iff) |
14186 | 434 |
|
20800 | 435 |
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
436 |
by (simp add: restrict_map_def fun_eq_iff) |
14186 | 437 |
|
20800 | 438 |
lemma fun_upd_restrict_conv [simp]: |
24331 | 439 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
440 |
by (rule fun_upd_restrict) |
14186 | 441 |
|
35159
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
haftmann
parents:
35115
diff
changeset
|
442 |
lemma map_of_map_restrict: |
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
haftmann
parents:
35115
diff
changeset
|
443 |
"map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
444 |
by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert) |
35159
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
haftmann
parents:
35115
diff
changeset
|
445 |
|
35619 | 446 |
lemma restrict_complement_singleton_eq: |
447 |
"f |` (- {x}) = f(x := None)" |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
448 |
by auto |
35619 | 449 |
|
14100 | 450 |
|
60758 | 451 |
subsection \<open>@{term [source] map_upds}\<close> |
14025 | 452 |
|
60838 | 453 |
lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
454 |
by (simp add: map_upds_def) |
14025 | 455 |
|
60838 | 456 |
lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
457 |
by (simp add:map_upds_def) |
20800 | 458 |
|
60838 | 459 |
lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
460 |
by (simp add:map_upds_def) |
14025 | 461 |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
462 |
lemma map_upds_append1 [simp]: |
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
463 |
"size xs < size ys \<Longrightarrow> m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys, x \<mapsto> ys!size xs)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
464 |
proof (induct xs arbitrary: ys m) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
465 |
case Nil |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
466 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
467 |
by (auto simp: neq_Nil_conv) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
468 |
next |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
469 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
470 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
471 |
by (cases ys) auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
472 |
qed |
14187 | 473 |
|
20800 | 474 |
lemma map_upds_list_update2_drop [simp]: |
46588
4895d7f1be42
removing some unnecessary premises from Map theory
bulwahn
parents:
44921
diff
changeset
|
475 |
"size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
476 |
proof (induct xs arbitrary: m ys i) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
477 |
case Nil |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
478 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
479 |
by auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
480 |
next |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
481 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
482 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
483 |
by (cases ys) (use Cons in \<open>auto split: nat.split\<close>) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
484 |
qed |
14025 | 485 |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
486 |
text \<open>Something weirdly sensitive about this proof, which needs only four lines in apply style\<close> |
20800 | 487 |
lemma map_upd_upds_conv_if: |
60838 | 488 |
"(f(x\<mapsto>y))(xs [\<mapsto>] ys) = |
60839 | 489 |
(if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys) |
60838 | 490 |
else (f(xs [\<mapsto>] ys))(x\<mapsto>y))" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
491 |
proof (induct xs arbitrary: x y ys f) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
492 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
493 |
show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
494 |
proof (cases ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
495 |
case (Cons z zs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
496 |
then show ?thesis |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
497 |
using Cons.hyps |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
498 |
apply (auto split: if_split simp: fun_upd_twist) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
499 |
using Cons.hyps apply fastforce+ |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
500 |
done |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
501 |
qed auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
502 |
qed auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
503 |
|
14025 | 504 |
|
505 |
lemma map_upds_twist [simp]: |
|
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
506 |
"a \<notin> set as \<Longrightarrow> m(a\<mapsto>b, as[\<mapsto>]bs) = m(as[\<mapsto>]bs, a\<mapsto>b)" |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
42163
diff
changeset
|
507 |
using set_take_subset by (fastforce simp add: map_upd_upds_conv_if) |
14025 | 508 |
|
20800 | 509 |
lemma map_upds_apply_nontin [simp]: |
60839 | 510 |
"x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
511 |
proof (induct xs arbitrary: ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
512 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
513 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
514 |
by (cases ys) (auto simp: map_upd_upds_conv_if) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
515 |
qed auto |
14025 | 516 |
|
20800 | 517 |
lemma fun_upds_append_drop [simp]: |
24331 | 518 |
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
519 |
proof (induct xs arbitrary: ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
520 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
521 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
522 |
by (cases ys) (auto simp: map_upd_upds_conv_if) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
523 |
qed auto |
14300 | 524 |
|
20800 | 525 |
lemma fun_upds_append2_drop [simp]: |
24331 | 526 |
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
527 |
proof (induct xs arbitrary: ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
528 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
529 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
530 |
by (cases ys) (auto simp: map_upd_upds_conv_if) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
531 |
qed auto |
14300 | 532 |
|
20800 | 533 |
lemma restrict_map_upds[simp]: |
534 |
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
535 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
536 |
proof (induct xs arbitrary: m ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
537 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
538 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
539 |
proof (cases ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
540 |
case (Cons z zs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
541 |
with Cons.hyps Cons.prems show ?thesis |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
542 |
apply (simp add: insert_absorb flip: Diff_insert) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
543 |
apply (auto simp add: map_upd_upds_conv_if) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
544 |
done |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
545 |
qed auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
546 |
qed auto |
14186 | 547 |
|
548 |
||
60758 | 549 |
subsection \<open>@{term [source] dom}\<close> |
13908 | 550 |
|
31080 | 551 |
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty" |
44921 | 552 |
by (auto simp: dom_def) |
31080 | 553 |
|
60839 | 554 |
lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m" |
555 |
by (simp add: dom_def) |
|
14100 | 556 |
(* declare domI [intro]? *) |
13908 | 557 |
|
60839 | 558 |
lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b" |
559 |
by (cases "m a") (auto simp add: dom_def) |
|
13908 | 560 |
|
66010 | 561 |
lemma domIff [iff, simp del, code_unfold]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None" |
60839 | 562 |
by (simp add: dom_def) |
13908 | 563 |
|
20800 | 564 |
lemma dom_empty [simp]: "dom empty = {}" |
60839 | 565 |
by (simp add: dom_def) |
13908 | 566 |
|
20800 | 567 |
lemma dom_fun_upd [simp]: |
60839 | 568 |
"dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))" |
569 |
by (auto simp: dom_def) |
|
13908 | 570 |
|
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
571 |
lemma dom_if: |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
572 |
"dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}" |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
573 |
by (auto split: if_splits) |
13937 | 574 |
|
15304 | 575 |
lemma dom_map_of_conv_image_fst: |
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
576 |
"dom (map_of xys) = fst ` set xys" |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
577 |
by (induct xys) (auto simp add: dom_if) |
15304 | 578 |
|
60839 | 579 |
lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs" |
580 |
by (induct rule: list_induct2) (auto simp: dom_if) |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
581 |
|
13908 | 582 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
60839 | 583 |
by (induct l) (auto simp: dom_def insert_Collect [symmetric]) |
13908 | 584 |
|
20800 | 585 |
lemma dom_map_upds [simp]: |
60839 | 586 |
"dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
587 |
proof (induct xs arbitrary: ys) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
588 |
case (Cons a xs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
589 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
590 |
by (cases ys) (auto simp: map_upd_upds_conv_if) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
591 |
qed auto |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
592 |
|
13910 | 593 |
|
60839 | 594 |
lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m" |
595 |
by (auto simp: dom_def) |
|
13910 | 596 |
|
20800 | 597 |
lemma dom_override_on [simp]: |
60839 | 598 |
"dom (override_on f g A) = |
599 |
(dom f - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}" |
|
600 |
by (auto simp: dom_def override_on_def) |
|
13908 | 601 |
|
60839 | 602 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1" |
603 |
by (rule ext) (force simp: map_add_def dom_def split: option.split) |
|
20800 | 604 |
|
32236
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
krauss
parents:
31380
diff
changeset
|
605 |
lemma map_add_dom_app_simps: |
60839 | 606 |
"m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m" |
607 |
"m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m" |
|
608 |
"m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m" |
|
609 |
by (auto simp add: map_add_def split: option.split_asm) |
|
32236
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
krauss
parents:
31380
diff
changeset
|
610 |
|
29622 | 611 |
lemma dom_const [simp]: |
35159
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
haftmann
parents:
35115
diff
changeset
|
612 |
"dom (\<lambda>x. Some (f x)) = UNIV" |
29622 | 613 |
by auto |
614 |
||
22230 | 615 |
(* Due to John Matthews - could be rephrased with dom *) |
616 |
lemma finite_map_freshness: |
|
617 |
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> |
|
618 |
\<exists>x. f x = None" |
|
60839 | 619 |
by (bestsimp dest: ex_new_if_finite) |
14027 | 620 |
|
28790 | 621 |
lemma dom_minus: |
622 |
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A" |
|
623 |
unfolding dom_def by simp |
|
624 |
||
625 |
lemma insert_dom: |
|
626 |
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f" |
|
627 |
unfolding dom_def by auto |
|
628 |
||
35607 | 629 |
lemma map_of_map_keys: |
630 |
"set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m" |
|
631 |
by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def) |
|
632 |
||
39379
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
633 |
lemma map_of_eqI: |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
634 |
assumes set_eq: "set (map fst xs) = set (map fst ys)" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
635 |
assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
636 |
shows "map_of xs = map_of ys" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
637 |
proof (rule ext) |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
638 |
fix k show "map_of xs k = map_of ys k" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
639 |
proof (cases "map_of xs k") |
60839 | 640 |
case None |
641 |
then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff) |
|
39379
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
642 |
with set_eq have "k \<notin> set (map fst ys)" by simp |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
643 |
then have "map_of ys k = None" by (simp add: map_of_eq_None_iff) |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
644 |
with None show ?thesis by simp |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
645 |
next |
60839 | 646 |
case (Some v) |
647 |
then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric]) |
|
39379
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
648 |
with map_eq show ?thesis by auto |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
649 |
qed |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
650 |
qed |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
651 |
|
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
652 |
lemma map_of_eq_dom: |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
653 |
assumes "map_of xs = map_of ys" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
654 |
shows "fst ` set xs = fst ` set ys" |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
655 |
proof - |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
656 |
from assms have "dom (map_of xs) = dom (map_of ys)" by simp |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
657 |
then show ?thesis by (simp add: dom_map_of_conv_image_fst) |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
658 |
qed |
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
haftmann
parents:
39302
diff
changeset
|
659 |
|
53820 | 660 |
lemma finite_set_of_finite_maps: |
60839 | 661 |
assumes "finite A" "finite B" |
662 |
shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S") |
|
53820 | 663 |
proof - |
664 |
let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}" |
|
665 |
have "?S = ?S'" |
|
666 |
proof |
|
60839 | 667 |
show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def) |
53820 | 668 |
show "?S' \<subseteq> ?S" |
669 |
proof |
|
670 |
fix m assume "m \<in> ?S'" |
|
671 |
hence 1: "dom m = A" by force |
|
60839 | 672 |
hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def) |
53820 | 673 |
from 1 2 show "m \<in> ?S" by blast |
674 |
qed |
|
675 |
qed |
|
676 |
with assms show ?thesis by(simp add: finite_set_of_finite_funs) |
|
677 |
qed |
|
28790 | 678 |
|
60839 | 679 |
|
60758 | 680 |
subsection \<open>@{term [source] ran}\<close> |
14100 | 681 |
|
60839 | 682 |
lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m" |
683 |
by (auto simp: ran_def) |
|
14100 | 684 |
(* declare ranI [intro]? *) |
13908 | 685 |
|
20800 | 686 |
lemma ran_empty [simp]: "ran empty = {}" |
60839 | 687 |
by (auto simp: ran_def) |
13908 | 688 |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
689 |
lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)" |
60839 | 690 |
unfolding ran_def |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
691 |
by force |
20800 | 692 |
|
73832 | 693 |
lemma fun_upd_None_if_notin_dom[simp]: "k \<notin> dom m \<Longrightarrow> m(k := None) = m" |
694 |
by auto |
|
695 |
||
74802 | 696 |
lemma ran_map_upd_Some: |
697 |
"\<lbrakk> m x = Some y; inj_on m (dom m); z \<notin> ran m \<rbrakk> \<Longrightarrow> ran(m(x := Some z)) = ran m - {y} \<union> {z}" |
|
698 |
by(force simp add: ran_def domI inj_onD) |
|
699 |
||
66583 | 700 |
lemma ran_map_add: |
701 |
assumes "dom m1 \<inter> dom m2 = {}" |
|
702 |
shows "ran (m1 ++ m2) = ran m1 \<union> ran m2" |
|
703 |
proof |
|
704 |
show "ran (m1 ++ m2) \<subseteq> ran m1 \<union> ran m2" |
|
705 |
unfolding ran_def by auto |
|
706 |
next |
|
707 |
show "ran m1 \<union> ran m2 \<subseteq> ran (m1 ++ m2)" |
|
708 |
proof - |
|
709 |
have "(m1 ++ m2) x = Some y" if "m1 x = Some y" for x y |
|
710 |
using assms map_add_comm that by fastforce |
|
711 |
moreover have "(m1 ++ m2) x = Some y" if "m2 x = Some y" for x y |
|
712 |
using assms that by auto |
|
713 |
ultimately show ?thesis |
|
714 |
unfolding ran_def by blast |
|
715 |
qed |
|
716 |
qed |
|
717 |
||
718 |
lemma finite_ran: |
|
719 |
assumes "finite (dom p)" |
|
720 |
shows "finite (ran p)" |
|
721 |
proof - |
|
722 |
have "ran p = (\<lambda>x. the (p x)) ` dom p" |
|
723 |
unfolding ran_def by force |
|
724 |
from this \<open>finite (dom p)\<close> show ?thesis by auto |
|
725 |
qed |
|
726 |
||
60839 | 727 |
lemma ran_distinct: |
728 |
assumes dist: "distinct (map fst al)" |
|
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
729 |
shows "ran (map_of al) = snd ` set al" |
60839 | 730 |
using assms |
731 |
proof (induct al) |
|
732 |
case Nil |
|
733 |
then show ?case by simp |
|
34979
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
734 |
next |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
735 |
case (Cons kv al) |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
736 |
then have "ran (map_of al) = snd ` set al" by simp |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
737 |
moreover from Cons.prems have "map_of al (fst kv) = None" |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
738 |
by (simp add: map_of_eq_None_iff) |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
739 |
ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
740 |
qed |
8cb6e7a42e9c
more correspondence lemmas between related operations
haftmann
parents:
34941
diff
changeset
|
741 |
|
66584 | 742 |
lemma ran_map_of_zip: |
743 |
assumes "length xs = length ys" "distinct xs" |
|
744 |
shows "ran (map_of (zip xs ys)) = set ys" |
|
745 |
using assms by (simp add: ran_distinct set_map[symmetric]) |
|
746 |
||
60057 | 747 |
lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m" |
60839 | 748 |
by (auto simp add: ran_def) |
749 |
||
73832 | 750 |
subsection \<open>@{term [source] graph}\<close> |
751 |
||
752 |
lemma graph_empty[simp]: "graph empty = {}" |
|
753 |
unfolding graph_def by simp |
|
754 |
||
755 |
lemma in_graphI: "m k = Some v \<Longrightarrow> (k, v) \<in> graph m" |
|
756 |
unfolding graph_def by blast |
|
757 |
||
758 |
lemma in_graphD: "(k, v) \<in> graph m \<Longrightarrow> m k = Some v" |
|
759 |
unfolding graph_def by blast |
|
760 |
||
761 |
lemma graph_map_upd[simp]: "graph (m(k \<mapsto> v)) = insert (k, v) (graph (m(k := None)))" |
|
762 |
unfolding graph_def by (auto split: if_splits) |
|
763 |
||
764 |
lemma graph_fun_upd_None: "graph (m(k := None)) = {e \<in> graph m. fst e \<noteq> k}" |
|
765 |
unfolding graph_def by (auto split: if_splits) |
|
766 |
||
767 |
lemma graph_restrictD: |
|
768 |
assumes "(k, v) \<in> graph (m |` A)" |
|
769 |
shows "k \<in> A" and "m k = Some v" |
|
770 |
using assms unfolding graph_def |
|
771 |
by (auto simp: restrict_map_def split: if_splits) |
|
772 |
||
773 |
lemma graph_map_comp[simp]: "graph (m1 \<circ>\<^sub>m m2) = graph m2 O graph m1" |
|
774 |
unfolding graph_def by (auto simp: map_comp_Some_iff relcomp_unfold) |
|
775 |
||
776 |
lemma graph_map_add: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> graph (m1 ++ m2) = graph m1 \<union> graph m2" |
|
777 |
unfolding graph_def using map_add_comm by force |
|
778 |
||
779 |
lemma graph_eq_to_snd_dom: "graph m = (\<lambda>x. (x, the (m x))) ` dom m" |
|
780 |
unfolding graph_def dom_def by force |
|
781 |
||
782 |
lemma fst_graph_eq_dom: "fst ` graph m = dom m" |
|
783 |
unfolding graph_eq_to_snd_dom by force |
|
784 |
||
785 |
lemma graph_domD: "x \<in> graph m \<Longrightarrow> fst x \<in> dom m" |
|
786 |
using fst_graph_eq_dom by (metis imageI) |
|
787 |
||
788 |
lemma snd_graph_ran: "snd ` graph m = ran m" |
|
789 |
unfolding graph_def ran_def by force |
|
790 |
||
791 |
lemma graph_ranD: "x \<in> graph m \<Longrightarrow> snd x \<in> ran m" |
|
792 |
using snd_graph_ran by (metis imageI) |
|
793 |
||
794 |
lemma finite_graph_map_of: "finite (graph (map_of al))" |
|
795 |
unfolding graph_eq_to_snd_dom finite_dom_map_of |
|
796 |
using finite_dom_map_of by blast |
|
797 |
||
74157
8e2355ddce1b
add/rename some theorems about Map(pings)
Lukas Stevens <mail@lukas-stevens.de>
parents:
73832
diff
changeset
|
798 |
lemma graph_map_of_if_distinct_dom: "distinct (map fst al) \<Longrightarrow> graph (map_of al) = set al" |
73832 | 799 |
unfolding graph_def by auto |
800 |
||
801 |
lemma finite_graph_iff_finite_dom[simp]: "finite (graph m) = finite (dom m)" |
|
802 |
by (metis graph_eq_to_snd_dom finite_imageI fst_graph_eq_dom) |
|
803 |
||
804 |
lemma inj_on_fst_graph: "inj_on fst (graph m)" |
|
805 |
unfolding graph_def inj_on_def by force |
|
13910 | 806 |
|
61799 | 807 |
subsection \<open>\<open>map_le\<close>\<close> |
13910 | 808 |
|
13912 | 809 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
60839 | 810 |
by (simp add: map_le_def) |
13910 | 811 |
|
17724 | 812 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
60839 | 813 |
by (force simp add: map_le_def) |
14187 | 814 |
|
13910 | 815 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
60839 | 816 |
by (fastforce simp add: map_le_def) |
13910 | 817 |
|
17724 | 818 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
60839 | 819 |
by (force simp add: map_le_def) |
14187 | 820 |
|
20800 | 821 |
lemma map_le_upds [simp]: |
60839 | 822 |
"f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)" |
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
823 |
proof (induct as arbitrary: f g bs) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
824 |
case (Cons a as) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
825 |
then show ?case |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
826 |
by (cases bs) (use Cons in auto) |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
827 |
qed auto |
13908 | 828 |
|
14033 | 829 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
60839 | 830 |
by (fastforce simp add: map_le_def dom_def) |
14033 | 831 |
|
832 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
60839 | 833 |
by (simp add: map_le_def) |
14033 | 834 |
|
14187 | 835 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
60839 | 836 |
by (auto simp add: map_le_def dom_def) |
14033 | 837 |
|
838 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
71616
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
839 |
unfolding map_le_def |
a9de39608b1a
more tidying up of old apply-proofs
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
840 |
by (metis ext domIff) |
14033 | 841 |
|
60839 | 842 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f" |
843 |
by (fastforce simp: map_le_def) |
|
14033 | 844 |
|
60839 | 845 |
lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f" |
846 |
by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits) |
|
15304 | 847 |
|
60839 | 848 |
lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
849 |
by (fastforce simp: map_le_def map_add_def dom_def) |
|
15303 | 850 |
|
60839 | 851 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h" |
852 |
by (auto simp: map_le_def map_add_def dom_def split: option.splits) |
|
15303 | 853 |
|
63828 | 854 |
lemma map_add_subsumed1: "f \<subseteq>\<^sub>m g \<Longrightarrow> f++g = g" |
855 |
by (simp add: map_add_le_mapI map_le_antisym) |
|
856 |
||
857 |
lemma map_add_subsumed2: "f \<subseteq>\<^sub>m g \<Longrightarrow> g++f = g" |
|
858 |
by (metis map_add_subsumed1 map_le_iff_map_add_commute) |
|
859 |
||
31080 | 860 |
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])" |
63834 | 861 |
(is "?lhs \<longleftrightarrow> ?rhs") |
862 |
proof |
|
863 |
assume ?rhs |
|
864 |
then show ?lhs by (auto split: if_split_asm) |
|
31080 | 865 |
next |
63834 | 866 |
assume ?lhs |
867 |
then obtain v where v: "f x = Some v" by auto |
|
868 |
show ?rhs |
|
869 |
proof |
|
870 |
show "f = [x \<mapsto> v]" |
|
871 |
proof (rule map_le_antisym) |
|
872 |
show "[x \<mapsto> v] \<subseteq>\<^sub>m f" |
|
873 |
using v by (auto simp add: map_le_def) |
|
874 |
show "f \<subseteq>\<^sub>m [x \<mapsto> v]" |
|
875 |
using \<open>dom f = {x}\<close> \<open>f x = Some v\<close> by (auto simp add: map_le_def) |
|
876 |
qed |
|
877 |
qed |
|
31080 | 878 |
qed |
879 |
||
68454 | 880 |
lemma map_add_eq_empty_iff[simp]: |
881 |
"(f++g = empty) \<longleftrightarrow> f = empty \<and> g = empty" |
|
882 |
by (metis map_add_None) |
|
883 |
||
884 |
lemma empty_eq_map_add_iff[simp]: |
|
885 |
"(empty = f++g) \<longleftrightarrow> f = empty \<and> g = empty" |
|
886 |
by(subst map_add_eq_empty_iff[symmetric])(rule eq_commute) |
|
887 |
||
35565 | 888 |
|
60758 | 889 |
subsection \<open>Various\<close> |
35565 | 890 |
|
891 |
lemma set_map_of_compr: |
|
892 |
assumes distinct: "distinct (map fst xs)" |
|
893 |
shows "set xs = {(k, v). map_of xs k = Some v}" |
|
60839 | 894 |
using assms |
895 |
proof (induct xs) |
|
896 |
case Nil |
|
897 |
then show ?case by simp |
|
35565 | 898 |
next |
899 |
case (Cons x xs) |
|
900 |
obtain k v where "x = (k, v)" by (cases x) blast |
|
901 |
with Cons.prems have "k \<notin> dom (map_of xs)" |
|
902 |
by (simp add: dom_map_of_conv_image_fst) |
|
903 |
then have *: "insert (k, v) {(k, v). map_of xs k = Some v} = |
|
77644
48b4e0cd94cd
bring priority in line with ordinary function update notation
nipkow
parents:
77361
diff
changeset
|
904 |
{(k', v'). ((map_of xs)(k \<mapsto> v)) k' = Some v'}" |
35565 | 905 |
by (auto split: if_splits) |
906 |
from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp |
|
60758 | 907 |
with * \<open>x = (k, v)\<close> show ?case by simp |
35565 | 908 |
qed |
909 |
||
67051 | 910 |
lemma eq_key_imp_eq_value: |
911 |
"v1 = v2" |
|
912 |
if "distinct (map fst xs)" "(k, v1) \<in> set xs" "(k, v2) \<in> set xs" |
|
913 |
proof - |
|
914 |
from that have "inj_on fst (set xs)" |
|
915 |
by (simp add: distinct_map) |
|
916 |
moreover have "fst (k, v1) = fst (k, v2)" |
|
917 |
by simp |
|
918 |
ultimately have "(k, v1) = (k, v2)" |
|
919 |
by (rule inj_onD) (fact that)+ |
|
920 |
then show ?thesis |
|
921 |
by simp |
|
922 |
qed |
|
923 |
||
35565 | 924 |
lemma map_of_inject_set: |
925 |
assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)" |
|
926 |
shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs") |
|
927 |
proof |
|
928 |
assume ?lhs |
|
60758 | 929 |
moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}" |
35565 | 930 |
by (rule set_map_of_compr) |
60758 | 931 |
moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}" |
35565 | 932 |
by (rule set_map_of_compr) |
933 |
ultimately show ?rhs by simp |
|
934 |
next |
|
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
935 |
assume ?rhs show ?lhs |
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
936 |
proof |
35565 | 937 |
fix k |
60839 | 938 |
show "map_of xs k = map_of ys k" |
939 |
proof (cases "map_of xs k") |
|
35565 | 940 |
case None |
60758 | 941 |
with \<open>?rhs\<close> have "map_of ys k = None" |
35565 | 942 |
by (simp add: map_of_eq_None_iff) |
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
943 |
with None show ?thesis by simp |
35565 | 944 |
next |
945 |
case (Some v) |
|
60758 | 946 |
with distinct \<open>?rhs\<close> have "map_of ys k = Some v" |
35565 | 947 |
by simp |
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
948 |
with Some show ?thesis by simp |
35565 | 949 |
qed |
950 |
qed |
|
951 |
qed |
|
952 |
||
73832 | 953 |
lemma finite_Map_induct[consumes 1, case_names empty update]: |
954 |
assumes "finite (dom m)" |
|
955 |
assumes "P Map.empty" |
|
956 |
assumes "\<And>k v m. finite (dom m) \<Longrightarrow> k \<notin> dom m \<Longrightarrow> P m \<Longrightarrow> P (m(k \<mapsto> v))" |
|
957 |
shows "P m" |
|
958 |
using assms(1) |
|
959 |
proof(induction "dom m" arbitrary: m rule: finite_induct) |
|
960 |
case empty |
|
961 |
then show ?case using assms(2) unfolding dom_def by simp |
|
962 |
next |
|
963 |
case (insert x F) |
|
964 |
then have "finite (dom (m(x:=None)))" "x \<notin> dom (m(x:=None))" "P (m(x:=None))" |
|
965 |
by (metis Diff_insert_absorb dom_fun_upd)+ |
|
966 |
with assms(3)[OF this] show ?case |
|
967 |
by (metis fun_upd_triv fun_upd_upd option.exhaust) |
|
968 |
qed |
|
969 |
||
970 |
hide_const (open) Map.empty Map.graph |
|
68450 | 971 |
|
3981 | 972 |
end |