| author | chaieb | 
| Wed, 29 Aug 2007 11:10:59 +0200 | |
| changeset 24471 | d7cf53c1085f | 
| parent 24331 | 76f7a8c6e842 | 
| child 25483 | 65de74f62874 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 4 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 5 | |
| 6 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 7 | *) | |
| 8 | ||
| 13914 | 9 | header {* Maps *}
 | 
| 10 | ||
| 15131 | 11 | theory Map | 
| 15140 | 12 | imports List | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 20800 | 15 | types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
 | 
| 14100 | 16 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 17 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 18 | syntax (xsymbols) | 
| 20800 | 19 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 20 | |
| 19378 | 21 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 22 | empty :: "'a ~=> 'b" where | 
| 19378 | 23 | "empty == %x. None" | 
| 24 | ||
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 25 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 26 |   map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 27 | "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | 
| 19378 | 28 | |
| 21210 | 29 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 30 | map_comp (infixl "\<circ>\<^sub>m" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 31 | |
| 20800 | 32 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 33 |   map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 34 | "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" | 
| 35 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 36 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 37 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 38 | "m|`A = (\<lambda>x. if x : A then m x else None)" | 
| 13910 | 39 | |
| 21210 | 40 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 41 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 42 | |
| 20800 | 43 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 44 |   dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 45 |   "dom m = {a. m a ~= None}"
 | 
| 46 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 49 |   "ran m = {b. EX a. m a = Some b}"
 | 
| 50 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 51 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 52 |   map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 53 | "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" | 
| 54 | ||
| 55 | consts | |
| 56 |   map_of :: "('a * 'b) list => 'a ~=> 'b"
 | |
| 57 |   map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
 | |
| 58 | ||
| 14180 | 59 | nonterminals | 
| 60 | maplets maplet | |
| 61 | ||
| 5300 | 62 | syntax | 
| 14180 | 63 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
| 64 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 65 |   ""         :: "maplet => maplets"             ("_")
 | |
| 66 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 67 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 68 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 69 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 70 | syntax (xsymbols) | 
| 14180 | 71 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 72 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 73 | ||
| 5300 | 74 | translations | 
| 14180 | 75 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 76 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 77 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 19947 | 78 | "_Map ms" == "_MapUpd (CONST empty) ms" | 
| 14180 | 79 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | 
| 80 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 81 | ||
| 5183 | 82 | primrec | 
| 83 | "map_of [] = empty" | |
| 5300 | 84 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 85 | ||
| 20800 | 86 | defs | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22230diff
changeset | 87 | map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | 
| 20800 | 88 | |
| 89 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 90 | subsection {* @{term [source] empty} *}
 | 
| 13908 | 91 | |
| 20800 | 92 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 24331 | 93 | by (rule ext) simp | 
| 13908 | 94 | |
| 95 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 96 | subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 97 | |
| 98 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 24331 | 99 | by (rule ext) simp | 
| 13908 | 100 | |
| 20800 | 101 | lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" | 
| 102 | proof | |
| 103 | assume "t(k \<mapsto> x) = empty" | |
| 104 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 105 | then show False by simp | |
| 106 | qed | |
| 13908 | 107 | |
| 20800 | 108 | lemma map_upd_eqD1: | 
| 109 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 110 | shows "x = y" | |
| 111 | proof - | |
| 112 | from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | |
| 113 | then show ?thesis by simp | |
| 114 | qed | |
| 14100 | 115 | |
| 20800 | 116 | lemma map_upd_Some_unfold: | 
| 24331 | 117 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | 
| 118 | by auto | |
| 14100 | 119 | |
| 20800 | 120 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 24331 | 121 | by auto | 
| 15303 | 122 | |
| 13908 | 123 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 24331 | 124 | unfolding image_def | 
| 125 | apply (simp (no_asm_use) add:full_SetCompr_eq) | |
| 126 | apply (rule finite_subset) | |
| 127 | prefer 2 apply assumption | |
| 128 | apply (auto) | |
| 129 | done | |
| 13908 | 130 | |
| 131 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 132 | subsection {* @{term [source] map_of} *}
 | 
| 13908 | 133 | |
| 15304 | 134 | lemma map_of_eq_None_iff: | 
| 24331 | 135 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 136 | by (induct xys) simp_all | |
| 15304 | 137 | |
| 24331 | 138 | lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | 
| 139 | apply (induct xys) | |
| 140 | apply simp | |
| 141 | apply (clarsimp split: if_splits) | |
| 142 | done | |
| 15304 | 143 | |
| 20800 | 144 | lemma map_of_eq_Some_iff [simp]: | 
| 24331 | 145 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | 
| 146 | apply (induct xys) | |
| 147 | apply simp | |
| 148 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 149 | done | |
| 15304 | 150 | |
| 20800 | 151 | lemma Some_eq_map_of_iff [simp]: | 
| 24331 | 152 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | 
| 153 | by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) | |
| 15304 | 154 | |
| 17724 | 155 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 156 | \<Longrightarrow> map_of xys x = Some y" | 
| 24331 | 157 | apply (induct xys) | 
| 158 | apply simp | |
| 159 | apply force | |
| 160 | done | |
| 15304 | 161 | |
| 20800 | 162 | lemma map_of_zip_is_None [simp]: | 
| 24331 | 163 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 164 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 165 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 166 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 24331 | 167 | apply (induct xys) | 
| 168 | apply (simp_all add: image_constant) | |
| 169 | apply (rule finite_subset) | |
| 170 | prefer 2 apply assumption | |
| 171 | apply auto | |
| 172 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 173 | |
| 20800 | 174 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 24331 | 175 | by (induct xs) (simp, atomize (full), auto) | 
| 13908 | 176 | |
| 20800 | 177 | lemma map_of_mapk_SomeI: | 
| 24331 | 178 | "inj f ==> map_of t k = Some x ==> | 
| 179 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 180 | by (induct t) (auto simp add: inj_eq) | |
| 13908 | 181 | |
| 20800 | 182 | lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" | 
| 24331 | 183 | by (induct l) auto | 
| 13908 | 184 | |
| 20800 | 185 | lemma map_of_filter_in: | 
| 24331 | 186 | "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z" | 
| 187 | by (induct xs) auto | |
| 13908 | 188 | |
| 189 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" | |
| 24331 | 190 | by (induct xs) auto | 
| 13908 | 191 | |
| 192 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 193 | subsection {* @{term [source] option_map} related *}
 | 
| 13908 | 194 | |
| 20800 | 195 | lemma option_map_o_empty [simp]: "option_map f o empty = empty" | 
| 24331 | 196 | by (rule ext) simp | 
| 13908 | 197 | |
| 20800 | 198 | lemma option_map_o_map_upd [simp]: | 
| 24331 | 199 | "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" | 
| 200 | by (rule ext) simp | |
| 20800 | 201 | |
| 13908 | 202 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 203 | subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 204 | |
| 20800 | 205 | lemma map_comp_empty [simp]: | 
| 24331 | 206 | "m \<circ>\<^sub>m empty = empty" | 
| 207 | "empty \<circ>\<^sub>m m = empty" | |
| 208 | by (auto simp add: map_comp_def intro: ext split: option.splits) | |
| 17391 | 209 | |
| 20800 | 210 | lemma map_comp_simps [simp]: | 
| 24331 | 211 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | 
| 212 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 213 | by (auto simp add: map_comp_def) | |
| 17391 | 214 | |
| 215 | lemma map_comp_Some_iff: | |
| 24331 | 216 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 217 | by (auto simp add: map_comp_def split: option.splits) | |
| 17391 | 218 | |
| 219 | lemma map_comp_None_iff: | |
| 24331 | 220 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 221 | by (auto simp add: map_comp_def split: option.splits) | |
| 13908 | 222 | |
| 20800 | 223 | |
| 14100 | 224 | subsection {* @{text "++"} *}
 | 
| 13908 | 225 | |
| 14025 | 226 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 24331 | 227 | by(simp add: map_add_def) | 
| 13908 | 228 | |
| 14025 | 229 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 24331 | 230 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 13908 | 231 | |
| 14025 | 232 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 24331 | 233 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 20800 | 234 | |
| 235 | lemma map_add_Some_iff: | |
| 24331 | 236 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | 
| 237 | by (simp add: map_add_def split: option.split) | |
| 14025 | 238 | |
| 20800 | 239 | lemma map_add_SomeD [dest!]: | 
| 24331 | 240 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | 
| 241 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 242 | |
| 20800 | 243 | lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 24331 | 244 | by (subst map_add_Some_iff) fast | 
| 13908 | 245 | |
| 14025 | 246 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 24331 | 247 | by (simp add: map_add_def split: option.split) | 
| 13908 | 248 | |
| 14025 | 249 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 24331 | 250 | by (rule ext) (simp add: map_add_def) | 
| 13908 | 251 | |
| 14186 | 252 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 24331 | 253 | by (simp add: map_upds_def) | 
| 14186 | 254 | |
| 20800 | 255 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 24331 | 256 | unfolding map_add_def | 
| 257 | apply (induct xs) | |
| 258 | apply simp | |
| 259 | apply (rule ext) | |
| 260 | apply (simp split add: option.split) | |
| 261 | done | |
| 13908 | 262 | |
| 14025 | 263 | lemma finite_range_map_of_map_add: | 
| 20800 | 264 | "finite (range f) ==> finite (range (f ++ map_of l))" | 
| 24331 | 265 | apply (induct l) | 
| 266 | apply (auto simp del: fun_upd_apply) | |
| 267 | apply (erule finite_range_updI) | |
| 268 | done | |
| 13908 | 269 | |
| 20800 | 270 | lemma inj_on_map_add_dom [iff]: | 
| 24331 | 271 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | 
| 272 | by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits) | |
| 20800 | 273 | |
| 15304 | 274 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 275 | subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 276 | |
| 20800 | 277 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 278 | by (simp add: restrict_map_def) | 
| 14186 | 279 | |
| 20800 | 280 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 24331 | 281 | by (simp add: restrict_map_def) | 
| 14186 | 282 | |
| 15693 | 283 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 24331 | 284 | by (simp add: restrict_map_def) | 
| 14100 | 285 | |
| 15693 | 286 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 24331 | 287 | by (simp add: restrict_map_def) | 
| 14100 | 288 | |
| 15693 | 289 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 24331 | 290 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 14100 | 291 | |
| 15693 | 292 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 24331 | 293 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 14100 | 294 | |
| 15693 | 295 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 296 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 297 | |
| 15693 | 298 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 24331 | 299 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 300 | |
| 20800 | 301 | lemma restrict_fun_upd [simp]: | 
| 24331 | 302 |   "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 303 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 304 | |
| 20800 | 305 | lemma fun_upd_None_restrict [simp]: | 
| 24331 | 306 |   "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | 
| 307 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 308 | |
| 20800 | 309 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 24331 | 310 | by (simp add: restrict_map_def expand_fun_eq) | 
| 14186 | 311 | |
| 20800 | 312 | lemma fun_upd_restrict_conv [simp]: | 
| 24331 | 313 |   "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 314 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 315 | |
| 14100 | 316 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 317 | subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 318 | |
| 20800 | 319 | lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" | 
| 24331 | 320 | by (simp add: map_upds_def) | 
| 14025 | 321 | |
| 20800 | 322 | lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" | 
| 24331 | 323 | by (simp add:map_upds_def) | 
| 20800 | 324 | |
| 325 | lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 24331 | 326 | by (simp add:map_upds_def) | 
| 14025 | 327 | |
| 20800 | 328 | lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 24331 | 329 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | 
| 330 | apply(induct xs) | |
| 331 | apply (clarsimp simp add: neq_Nil_conv) | |
| 332 | apply (case_tac ys) | |
| 333 | apply simp | |
| 334 | apply simp | |
| 335 | done | |
| 14187 | 336 | |
| 20800 | 337 | lemma map_upds_list_update2_drop [simp]: | 
| 338 | "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 339 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 24331 | 340 | apply (induct xs arbitrary: m ys i) | 
| 341 | apply simp | |
| 342 | apply (case_tac ys) | |
| 343 | apply simp | |
| 344 | apply (simp split: nat.split) | |
| 345 | done | |
| 14025 | 346 | |
| 20800 | 347 | lemma map_upd_upds_conv_if: | 
| 348 | "(f(x|->y))(xs [|->] ys) = | |
| 349 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 350 | else (f(xs [|->] ys))(x|->y))" | |
| 24331 | 351 | apply (induct xs arbitrary: x y ys f) | 
| 352 | apply simp | |
| 353 | apply (case_tac ys) | |
| 354 | apply (auto split: split_if simp: fun_upd_twist) | |
| 355 | done | |
| 14025 | 356 | |
| 357 | lemma map_upds_twist [simp]: | |
| 24331 | 358 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | 
| 359 | using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) | |
| 14025 | 360 | |
| 20800 | 361 | lemma map_upds_apply_nontin [simp]: | 
| 24331 | 362 | "x ~: set xs ==> (f(xs[|->]ys)) x = f x" | 
| 363 | apply (induct xs arbitrary: ys) | |
| 364 | apply simp | |
| 365 | apply (case_tac ys) | |
| 366 | apply (auto simp: map_upd_upds_conv_if) | |
| 367 | done | |
| 14025 | 368 | |
| 20800 | 369 | lemma fun_upds_append_drop [simp]: | 
| 24331 | 370 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | 
| 371 | apply (induct xs arbitrary: m ys) | |
| 372 | apply simp | |
| 373 | apply (case_tac ys) | |
| 374 | apply simp_all | |
| 375 | done | |
| 14300 | 376 | |
| 20800 | 377 | lemma fun_upds_append2_drop [simp]: | 
| 24331 | 378 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | 
| 379 | apply (induct xs arbitrary: m ys) | |
| 380 | apply simp | |
| 381 | apply (case_tac ys) | |
| 382 | apply simp_all | |
| 383 | done | |
| 14300 | 384 | |
| 385 | ||
| 20800 | 386 | lemma restrict_map_upds[simp]: | 
| 387 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 388 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 24331 | 389 | apply (induct xs arbitrary: m ys) | 
| 390 | apply simp | |
| 391 | apply (case_tac ys) | |
| 392 | apply simp | |
| 393 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 394 | apply (simp add: map_upd_upds_conv_if) | |
| 395 | done | |
| 14186 | 396 | |
| 397 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 398 | subsection {* @{term [source] dom} *}
 | 
| 13908 | 399 | |
| 400 | lemma domI: "m a = Some b ==> a : dom m" | |
| 24331 | 401 | by(simp add:dom_def) | 
| 14100 | 402 | (* declare domI [intro]? *) | 
| 13908 | 403 | |
| 15369 | 404 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 24331 | 405 | by (cases "m a") (auto simp add: dom_def) | 
| 13908 | 406 | |
| 20800 | 407 | lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" | 
| 24331 | 408 | by(simp add:dom_def) | 
| 13908 | 409 | |
| 20800 | 410 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 24331 | 411 | by(simp add:dom_def) | 
| 13908 | 412 | |
| 20800 | 413 | lemma dom_fun_upd [simp]: | 
| 24331 | 414 |   "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | 
| 415 | by(auto simp add:dom_def) | |
| 13908 | 416 | |
| 13937 | 417 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 24331 | 418 | by (induct xys) (auto simp del: fun_upd_apply) | 
| 13937 | 419 | |
| 15304 | 420 | lemma dom_map_of_conv_image_fst: | 
| 24331 | 421 | "dom(map_of xys) = fst ` (set xys)" | 
| 422 | by(force simp: dom_map_of) | |
| 15304 | 423 | |
| 20800 | 424 | lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 24331 | 425 | dom(map_of(zip xs ys)) = set xs" | 
| 426 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 427 | |
| 13908 | 428 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 24331 | 429 | by (induct l) (auto simp add: dom_def insert_Collect [symmetric]) | 
| 13908 | 430 | |
| 20800 | 431 | lemma dom_map_upds [simp]: | 
| 24331 | 432 | "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | 
| 433 | apply (induct xs arbitrary: m ys) | |
| 434 | apply simp | |
| 435 | apply (case_tac ys) | |
| 436 | apply auto | |
| 437 | done | |
| 13910 | 438 | |
| 20800 | 439 | lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" | 
| 24331 | 440 | by(auto simp:dom_def) | 
| 13910 | 441 | |
| 20800 | 442 | lemma dom_override_on [simp]: | 
| 443 | "dom(override_on f g A) = | |
| 444 |     (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 24331 | 445 | by(auto simp: dom_def override_on_def) | 
| 13908 | 446 | |
| 14027 | 447 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 24331 | 448 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | 
| 20800 | 449 | |
| 22230 | 450 | (* Due to John Matthews - could be rephrased with dom *) | 
| 451 | lemma finite_map_freshness: | |
| 452 | "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> | |
| 453 | \<exists>x. f x = None" | |
| 454 | by(bestsimp dest:ex_new_if_finite) | |
| 14027 | 455 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 456 | subsection {* @{term [source] ran} *}
 | 
| 14100 | 457 | |
| 20800 | 458 | lemma ranI: "m a = Some b ==> b : ran m" | 
| 24331 | 459 | by(auto simp: ran_def) | 
| 14100 | 460 | (* declare ranI [intro]? *) | 
| 13908 | 461 | |
| 20800 | 462 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 24331 | 463 | by(auto simp: ran_def) | 
| 13908 | 464 | |
| 20800 | 465 | lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 24331 | 466 | unfolding ran_def | 
| 467 | apply auto | |
| 468 | apply (subgoal_tac "aa ~= a") | |
| 469 | apply auto | |
| 470 | done | |
| 20800 | 471 | |
| 13910 | 472 | |
| 14100 | 473 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 474 | |
| 13912 | 475 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 24331 | 476 | by (simp add: map_le_def) | 
| 13910 | 477 | |
| 17724 | 478 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 24331 | 479 | by (force simp add: map_le_def) | 
| 14187 | 480 | |
| 13910 | 481 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 24331 | 482 | by (fastsimp simp add: map_le_def) | 
| 13910 | 483 | |
| 17724 | 484 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 24331 | 485 | by (force simp add: map_le_def) | 
| 14187 | 486 | |
| 20800 | 487 | lemma map_le_upds [simp]: | 
| 24331 | 488 | "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | 
| 489 | apply (induct as arbitrary: f g bs) | |
| 490 | apply simp | |
| 491 | apply (case_tac bs) | |
| 492 | apply auto | |
| 493 | done | |
| 13908 | 494 | |
| 14033 | 495 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 24331 | 496 | by (fastsimp simp add: map_le_def dom_def) | 
| 14033 | 497 | |
| 498 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 24331 | 499 | by (simp add: map_le_def) | 
| 14033 | 500 | |
| 14187 | 501 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 24331 | 502 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 503 | |
| 504 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 24331 | 505 | unfolding map_le_def | 
| 506 | apply (rule ext) | |
| 507 | apply (case_tac "x \<in> dom f", simp) | |
| 508 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 509 | done | |
| 14033 | 510 | |
| 511 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 24331 | 512 | by (fastsimp simp add: map_le_def) | 
| 14033 | 513 | |
| 15304 | 514 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 24331 | 515 | by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits) | 
| 15304 | 516 | |
| 15303 | 517 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 24331 | 518 | by (fastsimp simp add: map_le_def map_add_def dom_def) | 
| 15303 | 519 | |
| 520 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 24331 | 521 | by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) | 
| 15303 | 522 | |
| 3981 | 523 | end |