| author | wenzelm | 
| Thu, 10 May 2007 00:39:51 +0200 | |
| changeset 22905 | dab6a898b47c | 
| parent 22744 | 5cbe966d67a2 | 
| child 24331 | 76f7a8c6e842 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 4 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 5 | |
| 6 | The datatype of `maps' (written ~=>); strongly resembles maps in VDM. | |
| 7 | *) | |
| 8 | ||
| 13914 | 9 | header {* Maps *}
 | 
| 10 | ||
| 15131 | 11 | theory Map | 
| 15140 | 12 | imports List | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 20800 | 15 | types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
 | 
| 14100 | 16 | translations (type) "a ~=> b " <= (type) "a => b option" | 
| 3981 | 17 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 18 | syntax (xsymbols) | 
| 20800 | 19 | "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 20 | |
| 19378 | 21 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 22 | empty :: "'a ~=> 'b" where | 
| 19378 | 23 | "empty == %x. None" | 
| 24 | ||
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 25 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 26 |   map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
 | 
| 20800 | 27 | "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | 
| 19378 | 28 | |
| 21210 | 29 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 30 | map_comp (infixl "\<circ>\<^sub>m" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 31 | |
| 20800 | 32 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 33 |   map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
 | 
| 20800 | 34 | "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)" | 
| 35 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 36 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 37 |   restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
 | 
| 20800 | 38 | "m|`A = (\<lambda>x. if x : A then m x else None)" | 
| 13910 | 39 | |
| 21210 | 40 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 41 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 42 | |
| 20800 | 43 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 44 |   dom :: "('a ~=> 'b) => 'a set" where
 | 
| 20800 | 45 |   "dom m = {a. m a ~= None}"
 | 
| 46 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   ran :: "('a ~=> 'b) => 'b set" where
 | 
| 20800 | 49 |   "ran m = {b. EX a. m a = Some b}"
 | 
| 50 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 51 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 52 |   map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 20800 | 53 | "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" | 
| 54 | ||
| 55 | consts | |
| 56 |   map_of :: "('a * 'b) list => 'a ~=> 'b"
 | |
| 57 |   map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
 | |
| 58 | ||
| 14180 | 59 | nonterminals | 
| 60 | maplets maplet | |
| 61 | ||
| 5300 | 62 | syntax | 
| 14180 | 63 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
 | 
| 64 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
 | |
| 65 |   ""         :: "maplet => maplets"             ("_")
 | |
| 66 |   "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
 | |
| 67 |   "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
 | |
| 68 |   "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
 | |
| 3981 | 69 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10137diff
changeset | 70 | syntax (xsymbols) | 
| 14180 | 71 |   "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
 | 
| 72 |   "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
 | |
| 73 | ||
| 5300 | 74 | translations | 
| 14180 | 75 | "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" | 
| 76 | "_MapUpd m (_maplet x y)" == "m(x:=Some y)" | |
| 77 | "_MapUpd m (_maplets x y)" == "map_upds m x y" | |
| 19947 | 78 | "_Map ms" == "_MapUpd (CONST empty) ms" | 
| 14180 | 79 | "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" | 
| 80 | "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" | |
| 81 | ||
| 5183 | 82 | primrec | 
| 83 | "map_of [] = empty" | |
| 5300 | 84 | "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" | 
| 85 | ||
| 20800 | 86 | defs | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22230diff
changeset | 87 | map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" | 
| 20800 | 88 | |
| 89 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 90 | subsection {* @{term [source] empty} *}
 | 
| 13908 | 91 | |
| 20800 | 92 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 93 | by (rule ext) simp | |
| 13908 | 94 | |
| 95 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 96 | subsection {* @{term [source] map_upd} *}
 | 
| 13908 | 97 | |
| 98 | lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" | |
| 20800 | 99 | by (rule ext) simp | 
| 13908 | 100 | |
| 20800 | 101 | lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty" | 
| 102 | proof | |
| 103 | assume "t(k \<mapsto> x) = empty" | |
| 104 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 105 | then show False by simp | |
| 106 | qed | |
| 13908 | 107 | |
| 20800 | 108 | lemma map_upd_eqD1: | 
| 109 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 110 | shows "x = y" | |
| 111 | proof - | |
| 112 | from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | |
| 113 | then show ?thesis by simp | |
| 114 | qed | |
| 14100 | 115 | |
| 20800 | 116 | lemma map_upd_Some_unfold: | 
| 117 | "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | |
| 118 | by auto | |
| 14100 | 119 | |
| 20800 | 120 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 121 | by auto | |
| 15303 | 122 | |
| 13908 | 123 | lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" | 
| 20800 | 124 | unfolding image_def | 
| 125 | apply (simp (no_asm_use) add: full_SetCompr_eq) | |
| 126 | apply (rule finite_subset) | |
| 127 | prefer 2 apply assumption | |
| 128 | apply auto | |
| 129 | done | |
| 13908 | 130 | |
| 131 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 132 | subsection {* @{term [source] map_of} *}
 | 
| 13908 | 133 | |
| 15304 | 134 | lemma map_of_eq_None_iff: | 
| 20800 | 135 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 136 | by (induct xys) simp_all | |
| 15304 | 137 | |
| 138 | lemma map_of_is_SomeD: | |
| 20800 | 139 | "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" | 
| 140 | apply (induct xys) | |
| 141 | apply simp | |
| 142 | apply (clarsimp split: if_splits) | |
| 143 | done | |
| 15304 | 144 | |
| 20800 | 145 | lemma map_of_eq_Some_iff [simp]: | 
| 146 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | |
| 147 | apply (induct xys) | |
| 148 | apply simp | |
| 149 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 150 | done | |
| 15304 | 151 | |
| 20800 | 152 | lemma Some_eq_map_of_iff [simp]: | 
| 153 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | |
| 154 | by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) | |
| 15304 | 155 | |
| 17724 | 156 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 157 | \<Longrightarrow> map_of xys x = Some y" | 
| 158 | apply (induct xys) | |
| 159 | apply simp | |
| 160 | apply force | |
| 161 | done | |
| 15304 | 162 | |
| 20800 | 163 | lemma map_of_zip_is_None [simp]: | 
| 164 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | |
| 165 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 166 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 167 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 20800 | 168 | apply (induct xys) | 
| 169 | apply (simp_all add: image_constant) | |
| 170 | apply (rule finite_subset) | |
| 171 | prefer 2 apply assumption | |
| 172 | apply auto | |
| 173 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 174 | |
| 20800 | 175 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 176 | by (induct xs) (simp, atomize (full), auto) | |
| 13908 | 177 | |
| 20800 | 178 | lemma map_of_mapk_SomeI: | 
| 179 | assumes "inj f" | |
| 180 | shows "map_of t k = Some x ==> | |
| 181 | map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" | |
| 182 | by (induct t) (auto simp add: `inj f` inj_eq) | |
| 13908 | 183 | |
| 20800 | 184 | lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" | 
| 185 | by (induct l) auto | |
| 13908 | 186 | |
| 20800 | 187 | lemma map_of_filter_in: | 
| 188 | assumes 1: "map_of xs k = Some z" | |
| 189 | and 2: "P k z" | |
| 190 | shows "map_of (filter (split P) xs) k = Some z" | |
| 191 | using 1 by (induct xs) (insert 2, auto) | |
| 13908 | 192 | |
| 193 | lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" | |
| 20800 | 194 | by (induct xs) auto | 
| 13908 | 195 | |
| 196 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 197 | subsection {* @{term [source] option_map} related *}
 | 
| 13908 | 198 | |
| 20800 | 199 | lemma option_map_o_empty [simp]: "option_map f o empty = empty" | 
| 200 | by (rule ext) simp | |
| 13908 | 201 | |
| 20800 | 202 | lemma option_map_o_map_upd [simp]: | 
| 203 | "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" | |
| 204 | by (rule ext) simp | |
| 205 | ||
| 13908 | 206 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 207 | subsection {* @{term [source] map_comp} related *}
 | 
| 17391 | 208 | |
| 20800 | 209 | lemma map_comp_empty [simp]: | 
| 210 | "m \<circ>\<^sub>m empty = empty" | |
| 211 | "empty \<circ>\<^sub>m m = empty" | |
| 17391 | 212 | by (auto simp add: map_comp_def intro: ext split: option.splits) | 
| 213 | ||
| 20800 | 214 | lemma map_comp_simps [simp]: | 
| 215 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | |
| 216 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 17391 | 217 | by (auto simp add: map_comp_def) | 
| 218 | ||
| 219 | lemma map_comp_Some_iff: | |
| 20800 | 220 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 17391 | 221 | by (auto simp add: map_comp_def split: option.splits) | 
| 222 | ||
| 223 | lemma map_comp_None_iff: | |
| 20800 | 224 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 17391 | 225 | by (auto simp add: map_comp_def split: option.splits) | 
| 13908 | 226 | |
| 20800 | 227 | |
| 14100 | 228 | subsection {* @{text "++"} *}
 | 
| 13908 | 229 | |
| 14025 | 230 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 20800 | 231 | unfolding map_add_def by simp | 
| 13908 | 232 | |
| 14025 | 233 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 20800 | 234 | unfolding map_add_def by (rule ext) (simp split: option.split) | 
| 13908 | 235 | |
| 14025 | 236 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 20800 | 237 | unfolding map_add_def by (rule ext) (simp add: map_add_def split: option.split) | 
| 238 | ||
| 239 | lemma map_add_Some_iff: | |
| 240 | "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" | |
| 241 | unfolding map_add_def by (simp split: option.split) | |
| 14025 | 242 | |
| 20800 | 243 | lemma map_add_SomeD [dest!]: | 
| 244 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | |
| 245 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 246 | |
| 20800 | 247 | lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" | 
| 248 | by (subst map_add_Some_iff) fast | |
| 13908 | 249 | |
| 14025 | 250 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" | 
| 20800 | 251 | unfolding map_add_def by (simp split: option.split) | 
| 13908 | 252 | |
| 14025 | 253 | lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" | 
| 20800 | 254 | unfolding map_add_def by (rule ext) simp | 
| 13908 | 255 | |
| 14186 | 256 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 20800 | 257 | by (simp add: map_upds_def) | 
| 14186 | 258 | |
| 20800 | 259 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 260 | unfolding map_add_def | |
| 261 | apply (induct xs) | |
| 262 | apply simp | |
| 263 | apply (rule ext) | |
| 264 | apply (simp split add: option.split) | |
| 265 | done | |
| 13908 | 266 | |
| 14025 | 267 | lemma finite_range_map_of_map_add: | 
| 20800 | 268 | "finite (range f) ==> finite (range (f ++ map_of l))" | 
| 269 | apply (induct l) | |
| 270 | apply (auto simp del: fun_upd_apply) | |
| 271 | apply (erule finite_range_updI) | |
| 272 | done | |
| 13908 | 273 | |
| 20800 | 274 | lemma inj_on_map_add_dom [iff]: | 
| 275 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | |
| 276 | unfolding map_add_def dom_def inj_on_def | |
| 277 | by (fastsimp split: option.splits) | |
| 278 | ||
| 15304 | 279 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 280 | subsection {* @{term [source] restrict_map} *}
 | 
| 14100 | 281 | |
| 20800 | 282 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 283 | by (simp add: restrict_map_def) | |
| 14186 | 284 | |
| 20800 | 285 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 286 | by (simp add: restrict_map_def) | |
| 14186 | 287 | |
| 15693 | 288 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 20800 | 289 | by (simp add: restrict_map_def) | 
| 14100 | 290 | |
| 15693 | 291 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 20800 | 292 | by (simp add: restrict_map_def) | 
| 14100 | 293 | |
| 15693 | 294 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 20800 | 295 | by (auto simp: restrict_map_def ran_def split: split_if_asm) | 
| 14100 | 296 | |
| 15693 | 297 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 20800 | 298 | by (auto simp: restrict_map_def dom_def split: split_if_asm) | 
| 14100 | 299 | |
| 15693 | 300 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 20800 | 301 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 302 | |
| 15693 | 303 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 20800 | 304 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 305 | |
| 20800 | 306 | lemma restrict_fun_upd [simp]: | 
| 307 |     "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | |
| 308 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 309 | |
| 20800 | 310 | lemma fun_upd_None_restrict [simp]: | 
| 311 |     "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
 | |
| 312 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 313 | |
| 20800 | 314 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 315 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 316 | |
| 20800 | 317 | lemma fun_upd_restrict_conv [simp]: | 
| 318 |     "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | |
| 319 | by (simp add: restrict_map_def expand_fun_eq) | |
| 14186 | 320 | |
| 14100 | 321 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 322 | subsection {* @{term [source] map_upds} *}
 | 
| 14025 | 323 | |
| 20800 | 324 | lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m" | 
| 325 | by (simp add: map_upds_def) | |
| 14025 | 326 | |
| 20800 | 327 | lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m" | 
| 328 | by (simp add:map_upds_def) | |
| 329 | ||
| 330 | lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" | |
| 331 | by (simp add:map_upds_def) | |
| 14025 | 332 | |
| 20800 | 333 | lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> | 
| 334 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | |
| 335 | apply(induct xs) | |
| 336 | apply (clarsimp simp add: neq_Nil_conv) | |
| 337 | apply (case_tac ys) | |
| 338 | apply simp | |
| 339 | apply simp | |
| 340 | done | |
| 14187 | 341 | |
| 20800 | 342 | lemma map_upds_list_update2_drop [simp]: | 
| 343 | "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> | |
| 344 | \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | |
| 345 | apply (induct xs arbitrary: m ys i) | |
| 346 | apply simp | |
| 347 | apply (case_tac ys) | |
| 348 | apply simp | |
| 349 | apply (simp split: nat.split) | |
| 350 | done | |
| 14025 | 351 | |
| 20800 | 352 | lemma map_upd_upds_conv_if: | 
| 353 | "(f(x|->y))(xs [|->] ys) = | |
| 354 | (if x : set(take (length ys) xs) then f(xs [|->] ys) | |
| 355 | else (f(xs [|->] ys))(x|->y))" | |
| 356 | apply (induct xs arbitrary: x y ys f) | |
| 357 | apply simp | |
| 358 | apply (case_tac ys) | |
| 359 | apply (auto split: split_if simp: fun_upd_twist) | |
| 360 | done | |
| 14025 | 361 | |
| 362 | lemma map_upds_twist [simp]: | |
| 20800 | 363 | "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" | 
| 364 | using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) | |
| 14025 | 365 | |
| 20800 | 366 | lemma map_upds_apply_nontin [simp]: | 
| 367 | "x ~: set xs ==> (f(xs[|->]ys)) x = f x" | |
| 368 | apply (induct xs arbitrary: ys) | |
| 369 | apply simp | |
| 370 | apply (case_tac ys) | |
| 371 | apply (auto simp: map_upd_upds_conv_if) | |
| 372 | done | |
| 14025 | 373 | |
| 20800 | 374 | lemma fun_upds_append_drop [simp]: | 
| 375 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | |
| 376 | apply (induct xs arbitrary: m ys) | |
| 377 | apply simp | |
| 378 | apply (case_tac ys) | |
| 379 | apply simp_all | |
| 380 | done | |
| 14300 | 381 | |
| 20800 | 382 | lemma fun_upds_append2_drop [simp]: | 
| 383 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | |
| 384 | apply (induct xs arbitrary: m ys) | |
| 385 | apply simp | |
| 386 | apply (case_tac ys) | |
| 387 | apply simp_all | |
| 388 | done | |
| 14300 | 389 | |
| 390 | ||
| 20800 | 391 | lemma restrict_map_upds[simp]: | 
| 392 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 393 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 394 | apply (induct xs arbitrary: m ys) | |
| 395 | apply simp | |
| 396 | apply (case_tac ys) | |
| 397 | apply simp | |
| 398 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 399 | apply (simp add: map_upd_upds_conv_if) | |
| 400 | done | |
| 14186 | 401 | |
| 402 | ||
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 403 | subsection {* @{term [source] dom} *}
 | 
| 13908 | 404 | |
| 405 | lemma domI: "m a = Some b ==> a : dom m" | |
| 20800 | 406 | unfolding dom_def by simp | 
| 14100 | 407 | (* declare domI [intro]? *) | 
| 13908 | 408 | |
| 15369 | 409 | lemma domD: "a : dom m ==> \<exists>b. m a = Some b" | 
| 20800 | 410 | by (cases "m a") (auto simp add: dom_def) | 
| 13908 | 411 | |
| 20800 | 412 | lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" | 
| 413 | unfolding dom_def by simp | |
| 13908 | 414 | |
| 20800 | 415 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 416 | unfolding dom_def by simp | |
| 13908 | 417 | |
| 20800 | 418 | lemma dom_fun_upd [simp]: | 
| 419 |     "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
 | |
| 420 | unfolding dom_def by auto | |
| 13908 | 421 | |
| 13937 | 422 | lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
 | 
| 20800 | 423 | by (induct xys) (auto simp del: fun_upd_apply) | 
| 13937 | 424 | |
| 15304 | 425 | lemma dom_map_of_conv_image_fst: | 
| 20800 | 426 | "dom(map_of xys) = fst ` (set xys)" | 
| 427 | unfolding dom_map_of by force | |
| 15304 | 428 | |
| 20800 | 429 | lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==> | 
| 430 | dom(map_of(zip xs ys)) = set xs" | |
| 431 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 432 | |
| 13908 | 433 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 20800 | 434 | unfolding dom_def | 
| 435 | by (induct l) (auto simp add: insert_Collect [symmetric]) | |
| 13908 | 436 | |
| 20800 | 437 | lemma dom_map_upds [simp]: | 
| 438 | "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" | |
| 439 | apply (induct xs arbitrary: m ys) | |
| 440 | apply simp | |
| 441 | apply (case_tac ys) | |
| 442 | apply auto | |
| 443 | done | |
| 13910 | 444 | |
| 20800 | 445 | lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" | 
| 446 | unfolding dom_def by auto | |
| 13910 | 447 | |
| 20800 | 448 | lemma dom_override_on [simp]: | 
| 449 | "dom(override_on f g A) = | |
| 450 |     (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
 | |
| 451 | unfolding dom_def override_on_def by auto | |
| 13908 | 452 | |
| 14027 | 453 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
 | 
| 20800 | 454 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | 
| 455 | ||
| 22230 | 456 | (* Due to John Matthews - could be rephrased with dom *) | 
| 457 | lemma finite_map_freshness: | |
| 458 | "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> | |
| 459 | \<exists>x. f x = None" | |
| 460 | by(bestsimp dest:ex_new_if_finite) | |
| 14027 | 461 | |
| 17399 
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
 wenzelm parents: 
17391diff
changeset | 462 | subsection {* @{term [source] ran} *}
 | 
| 14100 | 463 | |
| 20800 | 464 | lemma ranI: "m a = Some b ==> b : ran m" | 
| 465 | unfolding ran_def by auto | |
| 14100 | 466 | (* declare ranI [intro]? *) | 
| 13908 | 467 | |
| 20800 | 468 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 469 | unfolding ran_def by simp | |
| 13908 | 470 | |
| 20800 | 471 | lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" | 
| 472 | unfolding ran_def | |
| 473 | apply auto | |
| 474 | apply (subgoal_tac "aa ~= a") | |
| 475 | apply auto | |
| 476 | done | |
| 477 | ||
| 13910 | 478 | |
| 14100 | 479 | subsection {* @{text "map_le"} *}
 | 
| 13910 | 480 | |
| 13912 | 481 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 20800 | 482 | by (simp add: map_le_def) | 
| 13910 | 483 | |
| 17724 | 484 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 20800 | 485 | by (force simp add: map_le_def) | 
| 14187 | 486 | |
| 13910 | 487 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 20800 | 488 | by (fastsimp simp add: map_le_def) | 
| 13910 | 489 | |
| 17724 | 490 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 20800 | 491 | by (force simp add: map_le_def) | 
| 14187 | 492 | |
| 20800 | 493 | lemma map_le_upds [simp]: | 
| 494 | "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" | |
| 495 | apply (induct as arbitrary: f g bs) | |
| 496 | apply simp | |
| 497 | apply (case_tac bs) | |
| 498 | apply auto | |
| 499 | done | |
| 13908 | 500 | |
| 14033 | 501 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 502 | by (fastsimp simp add: map_le_def dom_def) | |
| 503 | ||
| 504 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 505 | by (simp add: map_le_def) | |
| 506 | ||
| 14187 | 507 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 18447 | 508 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 509 | |
| 510 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 20800 | 511 | unfolding map_le_def | 
| 14033 | 512 | apply (rule ext) | 
| 14208 | 513 | apply (case_tac "x \<in> dom f", simp) | 
| 514 | apply (case_tac "x \<in> dom g", simp, fastsimp) | |
| 20800 | 515 | done | 
| 14033 | 516 | |
| 517 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" | |
| 18576 | 518 | by (fastsimp simp add: map_le_def) | 
| 14033 | 519 | |
| 15304 | 520 | lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" | 
| 20800 | 521 | by (fastsimp simp add: map_add_def map_le_def expand_fun_eq split: option.splits) | 
| 15304 | 522 | |
| 15303 | 523 | lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 20800 | 524 | by (fastsimp simp add: map_le_def map_add_def dom_def) | 
| 15303 | 525 | |
| 526 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" | |
| 20800 | 527 | by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) | 
| 15303 | 528 | |
| 3981 | 529 | end |