| author | wenzelm | 
| Thu, 09 Jan 2020 15:45:31 +0100 | |
| changeset 71360 | fcf5ee85743d | 
| parent 71189 | 954ee5acaae0 | 
| child 71633 | 07bec530f02e | 
| permissions | -rw-r--r-- | 
| 56215 | 1 | (* Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno | 
| 2 | Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014) | |
| 3 | *) | |
| 4 | ||
| 60420 | 5 | section \<open>Complex Analysis Basics\<close> | 
| 71167 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
71030diff
changeset | 6 | text \<open>Definitions of analytic and holomorphic functions, limit theorems, complex differentiation\<close> | 
| 56215 | 7 | |
| 8 | theory Complex_Analysis_Basics | |
| 71001 
3e374c65f96b
reorganisation to eliminate Brouwer_Fixpoint from complex analysis
 paulson <lp15@cam.ac.uk> parents: 
70817diff
changeset | 9 | imports Derivative "HOL-Library.Nonpos_Ints" | 
| 56215 | 10 | begin | 
| 11 | ||
| 70136 | 12 | subsection\<^marker>\<open>tag unimportant\<close>\<open>General lemmas\<close> | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 13 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 14 | lemma nonneg_Reals_cmod_eq_Re: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> norm z = Re z" | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 15 | by (simp add: complex_nonneg_Reals_iff cmod_eq_Re) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 16 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 17 | lemma fact_cancel: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 18 | fixes c :: "'a::real_field" | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 19 | shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 20 | using of_nat_neq_0 by force | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 21 | |
| 68721 | 22 | lemma vector_derivative_cnj_within: | 
| 23 | assumes "at x within A \<noteq> bot" and "f differentiable at x within A" | |
| 24 | shows "vector_derivative (\<lambda>z. cnj (f z)) (at x within A) = | |
| 25 | cnj (vector_derivative f (at x within A))" (is "_ = cnj ?D") | |
| 26 | proof - | |
| 27 | let ?D = "vector_derivative f (at x within A)" | |
| 28 | from assms have "(f has_vector_derivative ?D) (at x within A)" | |
| 29 | by (subst (asm) vector_derivative_works) | |
| 30 | hence "((\<lambda>x. cnj (f x)) has_vector_derivative cnj ?D) (at x within A)" | |
| 31 | by (rule has_vector_derivative_cnj) | |
| 32 | thus ?thesis using assms by (auto dest: vector_derivative_within) | |
| 33 | qed | |
| 34 | ||
| 35 | lemma vector_derivative_cnj: | |
| 36 | assumes "f differentiable at x" | |
| 37 | shows "vector_derivative (\<lambda>z. cnj (f z)) (at x) = cnj (vector_derivative f (at x))" | |
| 38 | using assms by (intro vector_derivative_cnj_within) auto | |
| 39 | ||
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 40 | lemma | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 41 |   shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 42 |     and open_halfspace_Re_gt: "open {z. Re(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 43 |     and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 44 |     and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 45 |     and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 46 |     and open_halfspace_Im_lt: "open {z. Im(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 47 |     and open_halfspace_Im_gt: "open {z. Im(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 48 |     and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 49 |     and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 50 |     and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
 | 
| 63332 | 51 | by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re | 
| 52 | continuous_on_Im continuous_on_id continuous_on_const)+ | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 53 | |
| 61070 | 54 | lemma closed_complex_Reals: "closed (\<real> :: complex set)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 55 | proof - | 
| 61070 | 56 |   have "(\<real> :: complex set) = {z. Im z = 0}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 57 | by (auto simp: complex_is_Real_iff) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 58 | then show ?thesis | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 59 | by (metis closed_halfspace_Im_eq) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 60 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 61 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 62 | lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 63 | by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 64 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 65 | lemma closed_nonpos_Reals_complex [simp]: "closed (\<real>\<^sub>\<le>\<^sub>0 :: complex set)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 66 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 67 |   have "\<real>\<^sub>\<le>\<^sub>0 = \<real> \<inter> {z. Re(z) \<le> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 68 | using complex_nonpos_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 69 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 70 | by (metis closed_Real_halfspace_Re_le) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 71 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 72 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 73 | lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 74 | using closed_halfspace_Re_ge | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 75 | by (simp add: closed_Int closed_complex_Reals) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 76 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 77 | lemma closed_nonneg_Reals_complex [simp]: "closed (\<real>\<^sub>\<ge>\<^sub>0 :: complex set)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 78 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 79 |   have "\<real>\<^sub>\<ge>\<^sub>0 = \<real> \<inter> {z. Re(z) \<ge> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 80 | using complex_nonneg_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 81 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 82 | by (metis closed_Real_halfspace_Re_ge) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 83 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 84 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 85 | lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 86 | proof - | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 87 |   have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 88 | by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 89 |   then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 90 | by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 91 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 92 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 93 | lemma real_lim: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 94 | fixes l::complex | 
| 69508 | 95 | assumes "(f \<longlongrightarrow> l) F" and "\<not> trivial_limit F" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 96 | shows "l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 97 | proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 98 | show "eventually (\<lambda>x. f x \<in> \<real>) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 99 | using assms(3, 4) by (auto intro: eventually_mono) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 100 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 101 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 102 | lemma real_lim_sequentially: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 103 | fixes l::complex | 
| 61973 | 104 | shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 105 | by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 106 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 107 | lemma real_series: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 108 | fixes l::complex | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 109 | shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 110 | unfolding sums_def | 
| 64267 | 111 | by (metis real_lim_sequentially sum_in_Reals) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 112 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 113 | lemma Lim_null_comparison_Re: | 
| 61973 | 114 | assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 115 | by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp | 
| 56215 | 116 | |
| 60420 | 117 | subsection\<open>Holomorphic functions\<close> | 
| 56215 | 118 | |
| 70136 | 119 | definition\<^marker>\<open>tag important\<close> holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 120 | (infixl "(holomorphic'_on)" 50) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 121 | where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f field_differentiable (at x within s)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 122 | |
| 70136 | 123 | named_theorems\<^marker>\<open>tag important\<close> holomorphic_intros "structural introduction rules for holomorphic_on" | 
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 124 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 125 | lemma holomorphic_onI [intro?]: "(\<And>x. x \<in> s \<Longrightarrow> f field_differentiable (at x within s)) \<Longrightarrow> f holomorphic_on s" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 126 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 127 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 128 | lemma holomorphic_onD [dest?]: "\<lbrakk>f holomorphic_on s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x within s)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 129 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 130 | |
| 64394 | 131 | lemma holomorphic_on_imp_differentiable_on: | 
| 132 | "f holomorphic_on s \<Longrightarrow> f differentiable_on s" | |
| 133 | unfolding holomorphic_on_def differentiable_on_def | |
| 134 | by (simp add: field_differentiable_imp_differentiable) | |
| 135 | ||
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 136 | lemma holomorphic_on_imp_differentiable_at: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 137 | "\<lbrakk>f holomorphic_on s; open s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 138 | using at_within_open holomorphic_on_def by fastforce | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 139 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 140 | lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 141 | by (simp add: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 142 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 143 | lemma holomorphic_on_open: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 144 | "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 145 | by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s]) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 146 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 147 | lemma holomorphic_on_imp_continuous_on: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 148 | "f holomorphic_on s \<Longrightarrow> continuous_on s f" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 149 | by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 150 | |
| 62540 
f2fc5485e3b0
Wenda Li's new material: residue theorem, argument_principle, Rouche_theorem
 paulson <lp15@cam.ac.uk> parents: 
62534diff
changeset | 151 | lemma holomorphic_on_subset [elim]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 152 | "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 153 | unfolding holomorphic_on_def | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 154 | by (metis field_differentiable_within_subset subsetD) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 155 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 156 | lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 157 | by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 158 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 159 | lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 160 | by (metis holomorphic_transform) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 161 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 162 | lemma holomorphic_on_linear [simp, holomorphic_intros]: "((*) c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 163 | unfolding holomorphic_on_def by (metis field_differentiable_linear) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 164 | |
| 62217 | 165 | lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 166 | unfolding holomorphic_on_def by (metis field_differentiable_const) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 167 | |
| 62217 | 168 | lemma holomorphic_on_ident [simp, holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 169 | unfolding holomorphic_on_def by (metis field_differentiable_ident) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 170 | |
| 62217 | 171 | lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 172 | unfolding id_def by (rule holomorphic_on_ident) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 173 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 174 | lemma holomorphic_on_compose: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 175 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 176 | using field_differentiable_compose_within[of f _ s g] | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 177 | by (auto simp: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 178 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 179 | lemma holomorphic_on_compose_gen: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 180 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 181 | by (metis holomorphic_on_compose holomorphic_on_subset) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 182 | |
| 68721 | 183 | lemma holomorphic_on_balls_imp_entire: | 
| 184 | assumes "\<not>bdd_above A" "\<And>r. r \<in> A \<Longrightarrow> f holomorphic_on ball c r" | |
| 185 | shows "f holomorphic_on B" | |
| 186 | proof (rule holomorphic_on_subset) | |
| 187 | show "f holomorphic_on UNIV" unfolding holomorphic_on_def | |
| 188 | proof | |
| 189 | fix z :: complex | |
| 190 | from \<open>\<not>bdd_above A\<close> obtain r where r: "r \<in> A" "r > norm (z - c)" | |
| 191 | by (meson bdd_aboveI not_le) | |
| 192 | with assms(2) have "f holomorphic_on ball c r" by blast | |
| 193 | moreover from r have "z \<in> ball c r" by (auto simp: dist_norm norm_minus_commute) | |
| 194 | ultimately show "f field_differentiable at z" | |
| 195 | by (auto simp: holomorphic_on_def at_within_open[of _ "ball c r"]) | |
| 196 | qed | |
| 197 | qed auto | |
| 198 | ||
| 199 | lemma holomorphic_on_balls_imp_entire': | |
| 200 | assumes "\<And>r. r > 0 \<Longrightarrow> f holomorphic_on ball c r" | |
| 201 | shows "f holomorphic_on B" | |
| 202 | proof (rule holomorphic_on_balls_imp_entire) | |
| 203 |   {
 | |
| 204 | fix M :: real | |
| 205 | have "\<exists>x. x > max M 0" by (intro gt_ex) | |
| 206 | hence "\<exists>x>0. x > M" by auto | |
| 207 | } | |
| 208 |   thus "\<not>bdd_above {(0::real)<..}" unfolding bdd_above_def
 | |
| 209 | by (auto simp: not_le) | |
| 210 | qed (insert assms, auto) | |
| 211 | ||
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 212 | lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 213 | by (metis field_differentiable_minus holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 214 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 215 | lemma holomorphic_on_add [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 216 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 217 | unfolding holomorphic_on_def by (metis field_differentiable_add) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 218 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 219 | lemma holomorphic_on_diff [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 220 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 221 | unfolding holomorphic_on_def by (metis field_differentiable_diff) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 222 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 223 | lemma holomorphic_on_mult [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 224 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 225 | unfolding holomorphic_on_def by (metis field_differentiable_mult) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 226 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 227 | lemma holomorphic_on_inverse [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 228 | "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 229 | unfolding holomorphic_on_def by (metis field_differentiable_inverse) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 230 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 231 | lemma holomorphic_on_divide [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 232 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 233 | unfolding holomorphic_on_def by (metis field_differentiable_divide) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 234 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 235 | lemma holomorphic_on_power [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 236 | "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 237 | unfolding holomorphic_on_def by (metis field_differentiable_power) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 238 | |
| 64267 | 239 | lemma holomorphic_on_sum [holomorphic_intros]: | 
| 240 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) holomorphic_on s" | |
| 241 | unfolding holomorphic_on_def by (metis field_differentiable_sum) | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 242 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 243 | lemma holomorphic_on_prod [holomorphic_intros]: | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 244 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. prod (\<lambda>i. f i x) I) holomorphic_on s" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 245 | by (induction I rule: infinite_finite_induct) (auto intro: holomorphic_intros) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 246 | |
| 66486 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 247 | lemma holomorphic_pochhammer [holomorphic_intros]: | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 248 | "f holomorphic_on A \<Longrightarrow> (\<lambda>s. pochhammer (f s) n) holomorphic_on A" | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 249 | by (induction n) (auto intro!: holomorphic_intros simp: pochhammer_Suc) | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 250 | |
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 251 | lemma holomorphic_on_scaleR [holomorphic_intros]: | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 252 | "f holomorphic_on A \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) holomorphic_on A" | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 253 | by (auto simp: scaleR_conv_of_real intro!: holomorphic_intros) | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 254 | |
| 67167 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 255 | lemma holomorphic_on_Un [holomorphic_intros]: | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 256 | assumes "f holomorphic_on A" "f holomorphic_on B" "open A" "open B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 257 | shows "f holomorphic_on (A \<union> B)" | 
| 68239 | 258 | using assms by (auto simp: holomorphic_on_def at_within_open[of _ A] | 
| 67167 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 259 | at_within_open[of _ B] at_within_open[of _ "A \<union> B"] open_Un) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 260 | |
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 261 | lemma holomorphic_on_If_Un [holomorphic_intros]: | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 262 | assumes "f holomorphic_on A" "g holomorphic_on B" "open A" "open B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 263 | assumes "\<And>z. z \<in> A \<Longrightarrow> z \<in> B \<Longrightarrow> f z = g z" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 264 | shows "(\<lambda>z. if z \<in> A then f z else g z) holomorphic_on (A \<union> B)" (is "?h holomorphic_on _") | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 265 | proof (intro holomorphic_on_Un) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 266 | note \<open>f holomorphic_on A\<close> | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 267 | also have "f holomorphic_on A \<longleftrightarrow> ?h holomorphic_on A" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 268 | by (intro holomorphic_cong) auto | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 269 | finally show \<dots> . | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 270 | next | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 271 | note \<open>g holomorphic_on B\<close> | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 272 | also have "g holomorphic_on B \<longleftrightarrow> ?h holomorphic_on B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 273 | using assms by (intro holomorphic_cong) auto | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 274 | finally show \<dots> . | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 275 | qed (insert assms, auto) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 276 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 277 | lemma holomorphic_derivI: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 278 | "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk> | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 279 | \<Longrightarrow> (f has_field_derivative deriv f x) (at x within T)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 280 | by (metis DERIV_deriv_iff_field_differentiable at_within_open holomorphic_on_def has_field_derivative_at_within) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 281 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 282 | lemma complex_derivative_transform_within_open: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 283 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 284 | \<Longrightarrow> deriv f z = deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 285 | unfolding holomorphic_on_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 286 | by (rule DERIV_imp_deriv) | 
| 71029 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 paulson <lp15@cam.ac.uk> parents: 
71001diff
changeset | 287 | (metis DERIV_deriv_iff_field_differentiable has_field_derivative_transform_within_open at_within_open) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 288 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 289 | lemma holomorphic_nonconstant: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 290 | assumes holf: "f holomorphic_on S" and "open S" "\<xi> \<in> S" "deriv f \<xi> \<noteq> 0" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 291 | shows "\<not> f constant_on S" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 292 | by (rule nonzero_deriv_nonconstant [of f "deriv f \<xi>" \<xi> S]) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 293 | (use assms in \<open>auto simp: holomorphic_derivI\<close>) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 294 | |
| 60420 | 295 | subsection\<open>Analyticity on a set\<close> | 
| 56215 | 296 | |
| 70136 | 297 | definition\<^marker>\<open>tag important\<close> analytic_on (infixl "(analytic'_on)" 50) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 298 | where "f analytic_on S \<equiv> \<forall>x \<in> S. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)" | 
| 56215 | 299 | |
| 70136 | 300 | named_theorems\<^marker>\<open>tag important\<close> analytic_intros "introduction rules for proving analyticity" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 301 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 302 | lemma analytic_imp_holomorphic: "f analytic_on S \<Longrightarrow> f holomorphic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 303 | by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 304 | (metis centre_in_ball field_differentiable_at_within) | 
| 56215 | 305 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 306 | lemma analytic_on_open: "open S \<Longrightarrow> f analytic_on S \<longleftrightarrow> f holomorphic_on S" | 
| 56215 | 307 | apply (auto simp: analytic_imp_holomorphic) | 
| 308 | apply (auto simp: analytic_on_def holomorphic_on_def) | |
| 309 | by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball) | |
| 310 | ||
| 311 | lemma analytic_on_imp_differentiable_at: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 312 | "f analytic_on S \<Longrightarrow> x \<in> S \<Longrightarrow> f field_differentiable (at x)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 313 | apply (auto simp: analytic_on_def holomorphic_on_def) | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 314 | by (metis open_ball centre_in_ball field_differentiable_within_open) | 
| 56215 | 315 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 316 | lemma analytic_on_subset: "f analytic_on S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> f analytic_on T" | 
| 56215 | 317 | by (auto simp: analytic_on_def) | 
| 318 | ||
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 319 | lemma analytic_on_Un: "f analytic_on (S \<union> T) \<longleftrightarrow> f analytic_on S \<and> f analytic_on T" | 
| 56215 | 320 | by (auto simp: analytic_on_def) | 
| 321 | ||
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 322 | lemma analytic_on_Union: "f analytic_on (\<Union>\<T>) \<longleftrightarrow> (\<forall>T \<in> \<T>. f analytic_on T)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 323 | by (auto simp: analytic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 324 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 325 | lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. S i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (S i))" | 
| 56215 | 326 | by (auto simp: analytic_on_def) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 327 | |
| 56215 | 328 | lemma analytic_on_holomorphic: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 329 | "f analytic_on S \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f holomorphic_on T)" | 
| 56215 | 330 | (is "?lhs = ?rhs") | 
| 331 | proof - | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 332 | have "?lhs \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T)" | 
| 56215 | 333 | proof safe | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 334 | assume "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 335 | then show "\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T" | 
| 56215 | 336 | apply (simp add: analytic_on_def) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 337 |       apply (rule exI [where x="\<Union>{U. open U \<and> f analytic_on U}"], auto)
 | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 338 | apply (metis open_ball analytic_on_open centre_in_ball) | 
| 56215 | 339 | by (metis analytic_on_def) | 
| 340 | next | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 341 | fix T | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 342 | assume "open T" "S \<subseteq> T" "f analytic_on T" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 343 | then show "f analytic_on S" | 
| 56215 | 344 | by (metis analytic_on_subset) | 
| 345 | qed | |
| 346 | also have "... \<longleftrightarrow> ?rhs" | |
| 347 | by (auto simp: analytic_on_open) | |
| 348 | finally show ?thesis . | |
| 349 | qed | |
| 350 | ||
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 351 | lemma analytic_on_linear [analytic_intros,simp]: "((*) c) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 352 | by (auto simp add: analytic_on_holomorphic) | 
| 56215 | 353 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 354 | lemma analytic_on_const [analytic_intros,simp]: "(\<lambda>z. c) analytic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 355 | by (metis analytic_on_def holomorphic_on_const zero_less_one) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 356 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 357 | lemma analytic_on_ident [analytic_intros,simp]: "(\<lambda>x. x) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 358 | by (simp add: analytic_on_def gt_ex) | 
| 56215 | 359 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 360 | lemma analytic_on_id [analytic_intros]: "id analytic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 361 | unfolding id_def by (rule analytic_on_ident) | 
| 56215 | 362 | |
| 363 | lemma analytic_on_compose: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 364 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 365 | and g: "g analytic_on (f ` S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 366 | shows "(g o f) analytic_on S" | 
| 56215 | 367 | unfolding analytic_on_def | 
| 368 | proof (intro ballI) | |
| 369 | fix x | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 370 | assume x: "x \<in> S" | 
| 56215 | 371 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f | 
| 372 | by (metis analytic_on_def) | |
| 373 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 374 | by (metis analytic_on_def g image_eqI x) | 
| 56215 | 375 | have "isCont f x" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 376 | by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x) | 
| 56215 | 377 | with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'" | 
| 378 | by (auto simp: continuous_at_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 379 | have "g \<circ> f holomorphic_on ball x (min d e)" | 
| 56215 | 380 | apply (rule holomorphic_on_compose) | 
| 381 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 382 | by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball) | |
| 383 | then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 384 | by (metis d e min_less_iff_conj) | 
| 56215 | 385 | qed | 
| 386 | ||
| 387 | lemma analytic_on_compose_gen: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 388 | "f analytic_on S \<Longrightarrow> g analytic_on T \<Longrightarrow> (\<And>z. z \<in> S \<Longrightarrow> f z \<in> T) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 389 | \<Longrightarrow> g o f analytic_on S" | 
| 56215 | 390 | by (metis analytic_on_compose analytic_on_subset image_subset_iff) | 
| 391 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 392 | lemma analytic_on_neg [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 393 | "f analytic_on S \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on S" | 
| 56215 | 394 | by (metis analytic_on_holomorphic holomorphic_on_minus) | 
| 395 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 396 | lemma analytic_on_add [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 397 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 398 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 399 | shows "(\<lambda>z. f z + g z) analytic_on S" | 
| 56215 | 400 | unfolding analytic_on_def | 
| 401 | proof (intro ballI) | |
| 402 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 403 | assume z: "z \<in> S" | 
| 56215 | 404 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 405 | by (metis analytic_on_def) | |
| 406 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 407 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 408 | have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 409 | apply (rule holomorphic_on_add) | 
| 56215 | 410 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 411 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 412 | then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e" | |
| 413 | by (metis e e' min_less_iff_conj) | |
| 414 | qed | |
| 415 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 416 | lemma analytic_on_diff [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 417 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 418 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 419 | shows "(\<lambda>z. f z - g z) analytic_on S" | 
| 56215 | 420 | unfolding analytic_on_def | 
| 421 | proof (intro ballI) | |
| 422 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 423 | assume z: "z \<in> S" | 
| 56215 | 424 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 425 | by (metis analytic_on_def) | |
| 426 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 427 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 428 | have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 429 | apply (rule holomorphic_on_diff) | 
| 56215 | 430 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 431 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 432 | then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e" | |
| 433 | by (metis e e' min_less_iff_conj) | |
| 434 | qed | |
| 435 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 436 | lemma analytic_on_mult [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 437 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 438 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 439 | shows "(\<lambda>z. f z * g z) analytic_on S" | 
| 56215 | 440 | unfolding analytic_on_def | 
| 441 | proof (intro ballI) | |
| 442 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 443 | assume z: "z \<in> S" | 
| 56215 | 444 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 445 | by (metis analytic_on_def) | |
| 446 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 447 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 448 | have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 449 | apply (rule holomorphic_on_mult) | 
| 56215 | 450 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 451 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 452 | then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e" | |
| 453 | by (metis e e' min_less_iff_conj) | |
| 454 | qed | |
| 455 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 456 | lemma analytic_on_inverse [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 457 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 458 | and nz: "(\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 0)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 459 | shows "(\<lambda>z. inverse (f z)) analytic_on S" | 
| 56215 | 460 | unfolding analytic_on_def | 
| 461 | proof (intro ballI) | |
| 462 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 463 | assume z: "z \<in> S" | 
| 56215 | 464 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 465 | by (metis analytic_on_def) | |
| 466 | have "continuous_on (ball z e) f" | |
| 467 | by (metis fh holomorphic_on_imp_continuous_on) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 468 | then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 469 | by (metis open_ball centre_in_ball continuous_on_open_avoid e z nz) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 470 | have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" | 
| 56215 | 471 | apply (rule holomorphic_on_inverse) | 
| 472 | apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 473 | by (metis nz' mem_ball min_less_iff_conj) | 
| 56215 | 474 | then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e" | 
| 475 | by (metis e e' min_less_iff_conj) | |
| 476 | qed | |
| 477 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 478 | lemma analytic_on_divide [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 479 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 480 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 481 | and nz: "(\<And>z. z \<in> S \<Longrightarrow> g z \<noteq> 0)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 482 | shows "(\<lambda>z. f z / g z) analytic_on S" | 
| 56215 | 483 | unfolding divide_inverse | 
| 484 | by (metis analytic_on_inverse analytic_on_mult f g nz) | |
| 485 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 486 | lemma analytic_on_power [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 487 | "f analytic_on S \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 488 | by (induct n) (auto simp: analytic_on_mult) | 
| 56215 | 489 | |
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 490 | lemma analytic_on_sum [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 491 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on S) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) analytic_on S" | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 492 | by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add) | 
| 56215 | 493 | |
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 494 | lemma deriv_left_inverse: | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 495 | assumes "f holomorphic_on S" and "g holomorphic_on T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 496 | and "open S" and "open T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 497 | and "f ` S \<subseteq> T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 498 | and [simp]: "\<And>z. z \<in> S \<Longrightarrow> g (f z) = z" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 499 | and "w \<in> S" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 500 | shows "deriv f w * deriv g (f w) = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 501 | proof - | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 502 | have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 503 | by (simp add: algebra_simps) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 504 | also have "... = deriv (g o f) w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 505 | using assms | 
| 71189 
954ee5acaae0
Split off new HOL-Complex_Analysis session from HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 506 | by (metis analytic_on_imp_differentiable_at analytic_on_open deriv_chain image_subset_iff) | 
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 507 | also have "... = deriv id w" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 508 | proof (rule complex_derivative_transform_within_open [where s=S]) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 509 | show "g \<circ> f holomorphic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 510 | by (rule assms holomorphic_on_compose_gen holomorphic_intros)+ | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 511 | qed (use assms in auto) | 
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 512 | also have "... = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 513 | by simp | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 514 | finally show ?thesis . | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 515 | qed | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 516 | |
| 70136 | 517 | subsection\<^marker>\<open>tag unimportant\<close>\<open>Analyticity at a point\<close> | 
| 56215 | 518 | |
| 519 | lemma analytic_at_ball: | |
| 520 |   "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
 | |
| 521 | by (metis analytic_on_def singleton_iff) | |
| 522 | ||
| 523 | lemma analytic_at: | |
| 524 |     "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
 | |
| 525 | by (metis analytic_on_holomorphic empty_subsetI insert_subset) | |
| 526 | ||
| 527 | lemma analytic_on_analytic_at: | |
| 528 |     "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
 | |
| 529 | by (metis analytic_at_ball analytic_on_def) | |
| 530 | ||
| 531 | lemma analytic_at_two: | |
| 532 |   "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
 | |
| 533 | (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)" | |
| 534 | (is "?lhs = ?rhs") | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 535 | proof | 
| 56215 | 536 | assume ?lhs | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 537 | then obtain s t | 
| 56215 | 538 | where st: "open s" "z \<in> s" "f holomorphic_on s" | 
| 539 | "open t" "z \<in> t" "g holomorphic_on t" | |
| 540 | by (auto simp: analytic_at) | |
| 541 | show ?rhs | |
| 542 | apply (rule_tac x="s \<inter> t" in exI) | |
| 543 | using st | |
| 69286 | 544 | apply (auto simp: holomorphic_on_subset) | 
| 56215 | 545 | done | 
| 546 | next | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 547 | assume ?rhs | 
| 56215 | 548 | then show ?lhs | 
| 549 | by (force simp add: analytic_at) | |
| 550 | qed | |
| 551 | ||
| 70136 | 552 | subsection\<^marker>\<open>tag unimportant\<close>\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close> | 
| 56215 | 553 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 554 | lemma | 
| 56215 | 555 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 556 | shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 557 | and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 558 | and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z = | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 559 | f z * deriv g z + deriv f z * g z" | 
| 56215 | 560 | proof - | 
| 561 | obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s" | |
| 562 | using assms by (metis analytic_at_two) | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 563 | show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 564 | apply (rule DERIV_imp_deriv [OF DERIV_add]) | 
| 56215 | 565 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 566 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 567 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 568 | show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 569 | apply (rule DERIV_imp_deriv [OF DERIV_diff]) | 
| 56215 | 570 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 571 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 572 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 573 | show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 574 | apply (rule DERIV_imp_deriv [OF DERIV_mult']) | 
| 56215 | 575 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 576 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 577 | done | 
| 578 | qed | |
| 579 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 580 | lemma deriv_cmult_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 581 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
 | 
| 61848 | 582 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 583 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 584 | lemma deriv_cmult_right_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 585 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
 | 
| 61848 | 586 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 587 | |
| 70136 | 588 | subsection\<^marker>\<open>tag unimportant\<close>\<open>Complex differentiation of sequences and series\<close> | 
| 56215 | 589 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 590 | (* TODO: Could probably be simplified using Uniform_Limit *) | 
| 56215 | 591 | lemma has_complex_derivative_sequence: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 592 | fixes S :: "complex set" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 593 | assumes cvs: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 594 | and df: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 595 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S \<longrightarrow> norm (f' n x - g' x) \<le> e" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 596 | and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 597 | shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 598 | (g has_field_derivative (g' x)) (at x within S)" | 
| 56215 | 599 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 600 | from assms obtain x l where x: "x \<in> S" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 56215 | 601 | by blast | 
| 602 |   { fix e::real assume e: "e > 0"
 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 603 | then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> S \<longrightarrow> cmod (f' n x - g' x) \<le> e" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 604 | by (metis conv) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 605 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | 
| 56215 | 606 | proof (rule exI [of _ N], clarify) | 
| 607 | fix n y h | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 608 | assume "N \<le> n" "y \<in> S" | 
| 56215 | 609 | then have "cmod (f' n y - g' y) \<le> e" | 
| 610 | by (metis N) | |
| 611 | then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e" | |
| 612 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 613 | then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h" | |
| 614 | by (simp add: norm_mult [symmetric] field_simps) | |
| 615 | qed | |
| 616 | } note ** = this | |
| 617 | show ?thesis | |
| 68055 | 618 | unfolding has_field_derivative_def | 
| 56215 | 619 | proof (rule has_derivative_sequence [OF cvs _ _ x]) | 
| 68239 | 620 | show "(\<lambda>n. f n x) \<longlonglongrightarrow> l" | 
| 621 | by (rule tf) | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 622 | next show "\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | 
| 68239 | 623 | unfolding eventually_sequentially by (blast intro: **) | 
| 68055 | 624 | qed (metis has_field_derivative_def df) | 
| 56215 | 625 | qed | 
| 626 | ||
| 627 | lemma has_complex_derivative_series: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 628 | fixes S :: "complex set" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 629 | assumes cvs: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 630 | and df: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 631 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S | 
| 56215 | 632 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 633 | and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) sums l)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 634 | shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within S))" | 
| 56215 | 635 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 636 | from assms obtain x l where x: "x \<in> S" and sf: "((\<lambda>n. f n x) sums l)" | 
| 56215 | 637 | by blast | 
| 638 |   { fix e::real assume e: "e > 0"
 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 639 | then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> S | 
| 56215 | 640 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 641 | by (metis conv) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 642 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | 
| 56215 | 643 | proof (rule exI [of _ N], clarify) | 
| 644 | fix n y h | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 645 | assume "N \<le> n" "y \<in> S" | 
| 56215 | 646 | then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e" | 
| 647 | by (metis N) | |
| 648 | then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e" | |
| 649 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 650 | then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h" | |
| 64267 | 651 | by (simp add: norm_mult [symmetric] field_simps sum_distrib_left) | 
| 56215 | 652 | qed | 
| 653 | } note ** = this | |
| 654 | show ?thesis | |
| 655 | unfolding has_field_derivative_def | |
| 656 | proof (rule has_derivative_series [OF cvs _ _ x]) | |
| 657 | fix n x | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 658 | assume "x \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 659 | then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within S)" | 
| 56215 | 660 | by (metis df has_field_derivative_def mult_commute_abs) | 
| 661 | next show " ((\<lambda>n. f n x) sums l)" | |
| 662 | by (rule sf) | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 663 | next show "\<And>e. e>0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | 
| 68239 | 664 | unfolding eventually_sequentially by (blast intro: **) | 
| 56215 | 665 | qed | 
| 666 | qed | |
| 667 | ||
| 70136 | 668 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Taylor on Complex Numbers\<close> | 
| 56215 | 669 | |
| 64267 | 670 | lemma sum_Suc_reindex: | 
| 56215 | 671 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 64267 | 672 |     shows  "sum f {0..n} = f 0 - f (Suc n) + sum (\<lambda>i. f (Suc i)) {0..n}"
 | 
| 56215 | 673 | by (induct n) auto | 
| 674 | ||
| 69529 | 675 | lemma field_Taylor: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 676 | assumes S: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 677 | and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 678 | and B: "\<And>x. x \<in> S \<Longrightarrow> norm (f (Suc n) x) \<le> B" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 679 | and w: "w \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 680 | and z: "z \<in> S" | 
| 66252 | 681 | shows "norm(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i))) | 
| 682 | \<le> B * norm(z - w)^(Suc n) / fact n" | |
| 56215 | 683 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 684 | have wzs: "closed_segment w z \<subseteq> S" using assms | 
| 56215 | 685 | by (metis convex_contains_segment) | 
| 686 |   { fix u
 | |
| 687 | assume "u \<in> closed_segment w z" | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 688 | then have "u \<in> S" | 
| 56215 | 689 | by (metis wzs subsetD) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 690 | have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 691 | f (Suc i) u * (z-u)^i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 692 | f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56215 | 693 | proof (induction n) | 
| 694 | case 0 show ?case by simp | |
| 695 | next | |
| 696 | case (Suc n) | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 697 | have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 698 | f (Suc i) u * (z-u) ^ i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 699 | f (Suc n) u * (z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 700 | f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 701 | f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 702 | using Suc by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 703 | also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))" | 
| 56215 | 704 | proof - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 705 | have "(fact(Suc n)) * | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 706 | (f(Suc n) u *(z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 707 | f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 708 | f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 709 | ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 710 | ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 711 | ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 712 | by (simp add: algebra_simps del: fact_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 713 | also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 714 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 715 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 716 | by (simp del: fact_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 717 | also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 718 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 719 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 720 | by (simp only: fact_Suc of_nat_mult ac_simps) simp | 
| 56215 | 721 | also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)" | 
| 722 | by (simp add: algebra_simps) | |
| 723 | finally show ?thesis | |
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 724 | by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact_Suc) | 
| 56215 | 725 | qed | 
| 726 | finally show ?case . | |
| 727 | qed | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 728 | then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i))) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 729 | has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n)) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 730 | (at u within S)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 731 | apply (intro derivative_eq_intros) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 732 | apply (blast intro: assms \<open>u \<in> S\<close>) | 
| 56215 | 733 | apply (rule refl)+ | 
| 734 | apply (auto simp: field_simps) | |
| 735 | done | |
| 736 | } note sum_deriv = this | |
| 737 |   { fix u
 | |
| 738 | assume u: "u \<in> closed_segment w z" | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 739 | then have us: "u \<in> S" | 
| 56215 | 740 | by (metis wzs subsetD) | 
| 66252 | 741 | have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> norm (f (Suc n) u) * norm (u - z) ^ n" | 
| 56215 | 742 | by (metis norm_minus_commute order_refl) | 
| 66252 | 743 | also have "... \<le> norm (f (Suc n) u) * norm (z - w) ^ n" | 
| 56215 | 744 | by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u]) | 
| 66252 | 745 | also have "... \<le> B * norm (z - w) ^ n" | 
| 56215 | 746 | by (metis norm_ge_zero zero_le_power mult_right_mono B [OF us]) | 
| 66252 | 747 | finally have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> B * norm (z - w) ^ n" . | 
| 56215 | 748 | } note cmod_bound = this | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 749 | have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)" | 
| 56215 | 750 | by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 751 | also have "\<dots> = f 0 z / (fact 0)" | 
| 64267 | 752 | by (subst sum_zero_power) simp | 
| 66252 | 753 | finally have "norm (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i))) | 
| 754 | \<le> norm ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) - | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 755 | (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))" | 
| 56215 | 756 | by (simp add: norm_minus_commute) | 
| 66252 | 757 | also have "... \<le> B * norm (z - w) ^ n / (fact n) * norm (w - z)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 758 | apply (rule field_differentiable_bound | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 759 | [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 760 | and S = "closed_segment w z", OF convex_closed_segment]) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 761 | apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs] | 
| 56215 | 762 | norm_divide norm_mult norm_power divide_le_cancel cmod_bound) | 
| 763 | done | |
| 66252 | 764 | also have "... \<le> B * norm (z - w) ^ Suc n / (fact n)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 765 | by (simp add: algebra_simps norm_minus_commute) | 
| 56215 | 766 | finally show ?thesis . | 
| 767 | qed | |
| 768 | ||
| 69529 | 769 | lemma complex_Taylor: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 770 | assumes S: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 771 | and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 772 | and B: "\<And>x. x \<in> S \<Longrightarrow> cmod (f (Suc n) x) \<le> B" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 773 | and w: "w \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 774 | and z: "z \<in> S" | 
| 66252 | 775 | shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i))) | 
| 776 | \<le> B * cmod(z - w)^(Suc n) / fact n" | |
| 69529 | 777 | using assms by (rule field_Taylor) | 
| 66252 | 778 | |
| 779 | ||
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 780 | text\<open>Something more like the traditional MVT for real components\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 781 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 782 | lemma complex_mvt_line: | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 783 | assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)" | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 784 | shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 785 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 786 | have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 787 | by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib) | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 788 | note assms[unfolded has_field_derivative_def, derivative_intros] | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 789 | show ?thesis | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 790 | apply (cut_tac mvt_simple | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 791 | [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w + t *\<^sub>R z)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 792 | "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"]) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 793 | apply auto | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 794 | apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 795 | apply (auto simp: closed_segment_def twz) [] | 
| 67979 
53323937ee25
new material about vec, real^1, etc.
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 796 | apply (intro derivative_eq_intros has_derivative_at_withinI, simp_all) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 797 | apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 798 | apply (force simp: twz closed_segment_def) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 799 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 800 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 801 | |
| 69529 | 802 | lemma complex_Taylor_mvt: | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 803 | assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 804 | shows "\<exists>u. u \<in> closed_segment w z \<and> | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 805 | Re (f 0 z) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 806 | Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 807 | (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 808 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 809 |   { fix u
 | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 810 | assume u: "u \<in> closed_segment w z" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 811 | have "(\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 812 | (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 813 | (fact i)) = | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 814 | f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 815 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 816 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 817 | (\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 818 | (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 819 | (fact (Suc i)))" | 
| 64267 | 820 | by (subst sum_Suc_reindex) simp | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 821 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 822 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 823 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 824 | (\<Sum>i = 0..n. | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 825 | f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i)) - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 826 | f (Suc i) u * (z-u) ^ i / (fact i))" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 827 | by (simp only: diff_divide_distrib fact_cancel ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 828 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 829 | (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 830 | (fact (Suc n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 831 | f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u" | 
| 64267 | 832 | by (subst sum_Suc_diff) auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 833 | also have "... = f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 834 | by (simp only: algebra_simps diff_divide_distrib fact_cancel) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 835 | finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 836 | - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 837 | f (Suc n) u * (z - u) ^ n / (fact n)" . | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 838 | then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 839 | f (Suc n) u * (z - u) ^ n / (fact n)) (at u)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 840 | apply (intro derivative_eq_intros)+ | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 841 | apply (force intro: u assms) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 842 | apply (rule refl)+ | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 843 | apply (auto simp: ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 844 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 845 | } | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 846 | then show ?thesis | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 847 | apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 848 | "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"]) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 849 | apply (auto simp add: intro: open_closed_segment) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 850 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 851 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 852 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 853 | |
| 56215 | 854 | end |